

261

IMPLEMENTATION OF LARAVEL FRAMEWORK IN THE DEVELOPMENT
OF LIBRARY INFORMATION SYSTEM (STUDY CASE: SMK PGRI 2

SALATIGA)

Embang Aulia Wicaksono1* ; Magdalena A. Ineke Pakereng2
Program Studi Teknik Informatika
Universitas Kristen Satya Wacana

www.uksw.edu
1 672016025@student.uksw.edu,2 ineke.pakereng@uksw.edu

(*) Corresponding Author

Abstract—library is a means of support for students
to develop their potential by increasing their
knowledge through books. good library
management is needed to facilitate students to
support their learning. SMK PGRI 2 Salatiga has a
library. the system applied to manage this library
uses conventional methods where all library data is
recorded into books. This system has a weakness
that is prone to errors in recording and searching
data. To deal with this problem, we need a system
that can help manage library data. library
information system can assist library management
because all data can be recorded into the system and
accessed through the system. This research was
conducted to build a library information system that
implements the laravel framework as an application
framework. Laravel has various functions that can
be used to help web application development. Based
on the application testing carried out, the library
information system of SMK PGRI 2 Salatiga has been
running according to design and can handle library
data recording by implementing the functions of the
laravel.

Keywords: laravel framework, library information
system, eloquent.

Abstrak—Perpustakaan merupakan sebuah
sarana penunjang bagi siswa untuk
mengembangkan potensi dengan menambah ilmu
pengetahuannya melalui buku. diperlukan sebuah
pengelolaan perpustakaan yang baik agar dapat
memfasilitasi siswa untuk menunjang
pembelajaran mereka. SMK PGRI 2 Salatiga
memiliki sebuah perpustakaan. sistem yang
diterapkan untuk mengelola perpustakaan ini
menggunakan metode konvensional dimana
seluruh data perpustakaan direkam kedalam buku.
sistem ini memiliki kelemahan yaitu rentan terjadi
kesalahan dalam perekaman maupun pencarian
data. untuk menangani masalah tersebut, maka
diperlukan sebuah sistem yang dapat membantu
pengelolaan data perpustakaan. sistem informasi
perpustakaan dapat membantu pengelolaan

perpustakaan karena seluruh data dapat terekam
ke dalam sistem dan dapat diakses melalui sistem.
Penelitian ini dilakukan untuk membangun sebuah
sistem informasi perpustakaan yang menerapkan
framework laravel sebagai kerangka kerja aplikasi.
Laravel memiliki berbagai fungsi yang dapat
digunakan untuk membantu pengembangan
aplikasi web. Berdasarkan dengan pengujian
aplikasi yang dilakukan, sistem informasi
perpustakaan SMK PGRI 2 Salatiga telah berjalan
sesuai dengan rancangan dan dapat menangani
perekaman data perpustakaan dengan
menerapkan fungsi - fungsi dari laravel.

Kata Kunci: framework laravel, sistem informasi
perpustakaan, eloquent.

INTRODUCTION

Library is a facility in educational
institutions such as schools which has an important
role in the development of science and supporting
learning for students (Yulviantoro, 2018). It can be
a center for knowledge resources and learning
activities that can encourage students to think
rationally and find new ideas (Mangnga, 2015).
Therefore, good library management is needed to
facilitate students to be able to develop themselves.

SMK PGRI 2 Salatiga is a vocational high
school in the city of Salatiga which has been
established since 1986. This school has a library
room managed by the school library staff with one
librarian who is in charge of managing and
maintaining the library.

At SMK PGRI 2 school library, library staff
make various books that are used to record all
library activities for one semester. At the end of the
semester, all library activities that have been
recorded in the book are then included in the
library report. At the beginning of each semester,
the librarian print books that are used to record
library activities. Librarian also need space to store
library data books (Aeni et al., 2014).

262

Manual library management methods can
cause errors in data retrieval, such as borrowing
and returning books (Nastiti Andharini et al.,
2019). Also, there is redundancy in data recording
where library data is recorded back into library
reports (Wicaksono, 2020). Therefore, web-based
information systems can be a solution to assist the
librarian in managing library data (Puspitasari,
2016). With the library information system, the
entire library activity process will be recorded in
the system(Hutagalung & Arif, 2018). So the
librarian can more easily manage library data.

There are several previous studies used as a
reference in designing the library information
system of SMK PGRI 2 Salatiga. A study entitled
“Designing of Library Information System to Support
Learning in High School”(Wardhana, 2018)
designed a system that helps improve performance
in managing libraries, starting from borrowing data
management, book data, to making school library
reports by providing a dashboard for the librarian.

Then the study entitled “Development of a
Robust Library Management System” (Iwayemi &
Oyeniyi, 2019) designed a library management
system for the Federal Polytechnic of Ile-Oluji,
Nigeria. This study designed a web application
based on the PHP programming language. The
system assists in the circulation of book lending,
book collection management, and has 3 actors who
can use the system, namely students, staff, and
admin (Iwayemi & Oyeniyi, 2019).

Another study entitled “Rancang Bangun
Sistem Informasi Perpustakaan Berbasis Web pada
Smk Citra Negara Depok” (Hutagalung & Arif,
2018) designed a library information system that
has an additional feature to recording library
visitor data into the system by entering data into
the provided page and making library reports.
Loan transactions in the system are accommodated
in the loan table that is connected to the book and
member table by intermediate tables (Hutagalung
& Arif, 2018).
Based on those studies, this study designed a
library information system to meet the needs of
SMK PGRI 2 Salatiga library. However, in this study,
the library information system was built with the
MVC (Model View and Controller) architecture.

MVC is an application architecture that
consists of three layers including the Model layer
which interacts with the database, the View layer
for the application interface, and the Controller
layer which manages the other two layers(Majeed
& Rauf, 2018). The MVC architecture has the
advantage that the division of applications by class
allows the use of reusable code (Uyun & Rifqi,
2010).

To form an MVC architecture in an
application, this study applies an MVC architecture

web application development framework named
Laravel (Verma, 2014). This framework was
chosen because Laravel uses a small number of
configuration files compared to other frameworks,
making it easier to start an application
development (Armel, 2014). This research was
conducted to build a library information system for
SMK PGRI 2 Salatiga by implementing Laravel as an
application development framework.

MATERIAL AND METHOD

Data Collection Method
In this study, the data needed to create a

library information system was collected using the
observation method to case studies to determine
field conditions. Then find out the problems that
must be answered in the study by interview the
library staff. Furthermore, conducting literature
studies to find the information needed to create a
library information system.

System Development Method

In the development of this library
information system, the SDLC (System
Development Life Cycle) method is used with the
Waterfall model. The Waterfall model is an
application development model with stages that
are carried out sequentially as in Figure 1. This
model is suitable for projects of this scale, and any
mistakes and shortcomings can be corrected before
moving on to the next stage (Kannan et al., 2014).
This model has 5 stages in the application
development process, namely, the analysis stage,
the design stage, the implementation stage, the
testing phase, and the operational and
maintenance stage(Kannan et al., 2014).

Source: (Wicaksono, 2020)

Figure 1 Waterfall Model Stages

The stages of designing a library information

system using the waterfall model are as follows:
Requirement analysis stage. This stage is the stage
of analyzing the needs of the system to be designed
by conducting interviews with the school librarian.

263

Design Stage. this stage is the system design stage
which will refer to the needs analysis that has been
done previously. Implementation stage. At this
stage, the results of the previously created designs
are then implemented into the code in the Laravel
framework. The system database structure design
is created using a Laravel function called
Migrations(Armel, 2014). This function is used by
creating a database migration file created using
artisan, then migrating it to MySQL with artisan
(Armel, 2014). Artisan is Laravel's command-line
interface which allows you to perform functions
such as creating controllers, models, migrations,
generating dummy data, and many others. (Armel,
2014).

System testing stage. At this stage, the
system that has been created is tested to find bugs
and errors using the black box method. This
method is a method of testing system functionality
based on specifications and focuses on the input
and output generated from the system (Nidhra &
Dondeti, 2012).

Operation and maintenance stage. This stage
is the last stage of the library information system
development. At this stage, the system is ready to
be installed and implemented in the library of SMK
PGRI 2 Salatiga.

RESULT AND DISCUSSION

A. Requirement Analysis

Based on the results of interviews and
observation at the school library, the following
requirement analysis results are obtained.
1. The librarian can manage book lending data of

library members.
2. The librarian recapitulates book loan data for

library reports.
3. The librarian can manage library book

collection data.
4. The librarian manages the book-entry report

data

5. The library clerk manages the library visitor
report data

6. Every library member who enters the library
must fill in the library visitor data

7. teachers can propose additional collections of
library books for teaching and learning
purposes

8. The librarian manages additional collections of
library books proposal.

9. The librarian notes the library members fines
10. Library members can search for a book in the

library
11. Library members can see their loan status

B. Designing The System

1. Information System Design Diagrams

Source: (Wicaksono, 2020)
Figure 2 Use Case Diagram of Library Information

System

Figure 2 shows that the library information system
of SMK PGRI 2 Salatiga has 2 main actors who can
run the system, namely member and librarian.

 Source: (Wicaksono, 2020)

Figure 3 Entity Relational Diagram of Library Information System

264

Figure 3 shows that the library information

system has 2 main tables named library member
table and book table. Book lending data is
accommodated in the loan table which is an
intermediate table for item book table and member
table. Each copy of the book is accommodated in
the book item table so that the details of each copy
can be recorded.

Source: (Wicaksono, 2020)

Figure 4 Class Diagram of Library Information System

Figure 4 shows that controller classes act as

a function center for managing data rotation in
application and database views. Model classes
represent tables in the database. The circle symbol
in the diagram describes the user interface.

C. System Design Implementation

In this study, the library information system
that has been developed has a login page as shown
in Figure 5.

Source: (Wicaksono, 2020)

Figure 5 Login Page

To deal with user authentication problems,
Laravel has provided an authentication function
that can be prepared using artisan via the following
command:

Php artisan make:auth

By using this command, artisan will create a

controller to handle the login, register, reset
password, verification, forgot password functions.
By default, Laravel sets up a migration file to create
a user table and uses e-mail as the username.
However, this study does not require e-mail as a
username but uses the registration number.
Therefore, the file migration of the user table is
modified as follows:

<?php

use Illuminate\Support\Facades\Schema;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration {

public function up() {

Schema::dropIfExists('users');

Schema::create('users', function (Blueprint $

table) {

$table->bigIncrements('id');

$table->string('name');

$table->string('status');

$table->char('jenis kelamin', 20);

$table->string('kelas');

$table->char('telepon', 13);

$table->string('username')->unique();

$table->string('password');

$table->rememberToken();

$table->timestamps();

});

}

public function down()

{ Schema::dropIfExists('users');

} }

This code is a migration file that is used to

create a user table or member table. Attributes on
the user table are arranged in this file according to
design. Then the controller for login is modified
like the following code:

<?php

namespace App\Http\Controllers\Auth;

use App\Http\Controllers\Controller;

use Illuminate\Foundation\Auth\AuthenticatesU

sers;

use Illuminate\Support\Facades\Auth;

class LoginController extends Controller {

public function redirectTo() {

$status = Auth::user()->status;

switch ($status) {

case 'admin':

return '/dashboard';

break;

default:

return '/home';

break;

} }

public function __construct(){

265

$this->middleware('guest')->except('logout');

}

public function username() {

return 'username';

}

}

The controller login function was added so

that laravel can log in using the username which in
this case is the registration number. In the
redirectTo function, logged in users will be checked
for their status attribute. If the status of the user is
admin, it will be redirected to the admin dashboard
page. If not, then the user will be redirected to the
main page for library members.

Source: (Wicaksono, 2020)

Figure 6 Register User Page

Figure 6 shows the library member account

registration page. Data sent via registration form
will be validated in the validator function. If an
attribute is found that does not meet the
conditions, the process will be redirected back to
the registration page and then displays a warning
to the user. Data that has successfully passed
validation will be saved to the database using
Eloquent ORM by creating a member or user table
object in the create function. Eloquent ORM (Object
Relational Mapper) is Laravel's active record
implementation which is used to interact with the
database and perform CRUD (Create, Read, Update,
Delete) without using SQL(Parkar et al., 2016). The
following is a controller class for validating and
storing registration data.

<?php

namespace App\Http\Controllers\Auth;

use App\User;

use App\Http\Controllers\Controller;

use Illuminate\Support\Facades\Hash;

use Illuminate\Support\Facades\Validator;

use Illuminate\Foundation\Auth\RegistersUsers

;

class RegisterController extends Controller

{

use RegistersUsers;

protected $redirectTo = '/home';

public function __construct() {

$this->middleware('guest');

}

protected function validator(array $data) {

return Validator::make($data, [

'name' => ['required', 'string', 'max:255'],

'status' => ['required', 'string'],

'jenis_kelamin' => ['required'],

'kelas' => ['string', 'nullable'],

 'telepon' => ['numeric', 'digits_between:10

,13'],

'username' => ['required', 'string', 'max:255

', 'unique:users'],

'password' => ['required', 'string', 'min:8',

 'confirmed'],

]);

}

protected function create(array $data) {

return User::create([

'name' => $data['name'],

'status' => $data['status'],

'jenis kelamin' => $data['jenis_kelamin'],

'kelas' => $data['kelas'],

'telepon' => $data['telepon'],

'username' => $data['username'],

 'password' => Hash::make($data['password']),

]);

}

}

Eloquent uses model classes as objects to

hold data. Therefore, for the model class to be
consistent with the existing tables in the database,
it is given a function that states the same
constraints as the database table. the program code
for the publisher table model is as follows:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class publisher extends Model{

public function book(){

return $this-

>hasMany('App\Book', 'ID Penerbit');

}

}

In the Entity Relational Diagram of the

Library Information System, the book table only
depends on the publisher table by retrieving the
foreign key id from the publisher table. Therefore,
a book function was created which states that the
publisher model has multiple book models using
the HasMany function. The first parameter is the
directory location of the related model, the second
parameter is the foreign key of the related model.
While the program code of the book model is as
follows:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Book extends Model {

protected $primaryKey = 'ISBN';

public $incrementing = false;

protected $keyType = 'string';

public function publisher() {

return $this-

>belongsTo('App\publisher', 'ID Penerbit');

}

266

public function book_item() {

return $this-

>hasMany('App\book_item', 'ISBN', 'ISBN');

}

public function book_entry() {

return $this-

>hasMany('App\book_entry', 'ISBN', 'ISBN');

}

public function author() {

return $this-

>belongsToMany('App\author','book_authors','b

ook_id','author_id')

 ->withPivot('role')

 ->withTimestamps();

} }

book model has publisher function which

states that the book model depends on the
publisher model using belongsTo function. The
first parameter is the location of the related model,
the second parameter is the foreign key of the
publisher table in the book table. Laravel will
automatically detect the primary key used by the
parent table with the name id, However, if the
names are different, then the HasMany and
belongsTo functions can be added to the third
parameter to determine the primary key used.

Source: (Wicaksono, 2020)

Figure 7 Book Data List Page

Source: (Wicaksono, 2020)

Figure 8 Add Book Data Page

Figure 7 shows the book data list page

accessed from the admin dashboard. On this page,
the librarian can delete, add, modify and search
book data. To add book data, the librarian can
press the “tambah buku” button, then it will be
redirected to the add book form page as shown in
Figure 8. Data from the add book form is sent to the
Admin book controller in the insertbiblio function
to add book data. The following is the program
code for the insertbiblio function on the admin
book controller:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Collection;

use Illuminate\Support\Facades\Input;

use Maatwebsite\Excel\Facades\Excel;

use App\Exports\BookEntry;

use App\Exports\Visitorlist;

use App\Exports\LoanReport;

use App\publisher;

use App\author;

use App\Book;

use App\book_entry;

use App\book_item;

class AdminbookController extends Controller

{

public function insertbiblio(Request $request

) {

$this->validate($request,[

'ISBN' => 'required|numeric', 'Judul' => 're

quired',

'Tahun_Terbit' => 'required|numeric|digits:4'

,

'Klasifikasi' => 'required',

'Bahasa' => 'required']);

$Book = new Book;

$Book->ISBN = $request->input('ISBN');

$Book->{'Judul Buku'} = $request-

>input('Judul');

$Book->{'Tahun Terbit'} = $request-

>input('Tahun_Terbit');

$Book->{'Jenis Buku'} = $request-

>input('Jenis_Buku');

$Book->Klasifikasi = $request-

>input('Klasifikasi');

$Book->Bahasa = $request->input('Bahasa');

$Book->{'ID Penerbit'} = $request-

>input('Penerbit');

$Book->save();

for ($i=0; $i < count($request-

>input('Penulis')); $i++) {

$author_id = author::firstOrCreate(['nama' =>

 $request-

>input('Penulis.'.$i)],['type' => 'Nama Priba

di']);

$Book->author()-

>attach($author_id,['role' => $request-

>input('role.'.$i)]);

}

 return redirect('/addbiblio')->with

('success', 'Data Berhasil Dimasukkan');

}

}

267

The insertbiblio function has the following
program flow. First, all attribute request data will
be validated one by one. Then the Book model is
initialized to an object variable named $book. Each
attribute in $book is assigned a value based on the
incoming request from the add book form. after
that, the data from $book is stored using syntax
save().

To save author data from the book, it is done
in a for loop as many as the number of author input
obtained. First, the name of the author that is
entered is searched in the database and entered
into the $author_id object variable. If the data you
are looking for is not found, a new record will be
created. Then, the $author_id and $book data are
linked and stored in the database.

Source: (Wicaksono, 2020)

Figure 9 Book Loaning Page

Figure 9 shows the interface of the book

loaning page on the admin dashboard. On this page,
the librarian can make borrowing transactions by
entering the member's registration number, then
the librarian enters the book code that will be
borrowed by the library members. Books that have
been borrowed will be displayed in the table below
the member information. The process of borrowing
this book is done on the TransactionController. The
functions used for the TransactionController are as
follows:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\DB;

use App\User;

use App\fine;

use App\book_item;

use App\loan;

use App\reservation;

use Carbon\Carbon;

class TransactionController extends Controlle

r {

public function __construct() {

$this->middleware('auth.admin');

}

public function transactionloan() {

return view('admin.loan');

}

public function showmemberloan(Request $reque

st) {

$user = User::where('username',$request->id)-

>first();

if (!isset($user)) {

return redirect()->back()-

>with('error','nomor induk tidak ditemukan');

}

return view('admin.loan')-

>with('user', $user);

}

public function addloan(Request $request) {

$book_item = book_item::findOrFail($request-

>input('kode'));

if ($book_item->borrow == 1) {

$user = User::findOrFail($request-

>input('id'));

$today = Carbon::now()->format('Y-m-d');

$returnday = Carbon::now()->addDays(3)-

>format('Y-m-d');

$book_item->borrow = 0;

$book_item->save();

$user->book_item()-

>attach($book_item, ['nama peminjam' => $user

->name,'kode buku' => $book_item-

>{'kode buku'},'judul buku' => $book_item-

>{'judul buku'},'tanggal pinjam' => $today, '

batas kembali' => $returnday, 'perpanjang' =>

 0]);

} else {

return redirect()->back()-

>with('error','buku sedang dipinjam');

}

return redirect()->back();

} }

The showmemberloan function is used to

search for library member data based on the
entered registration number. The addloan function
is used to enter loan data from library members
into the database. The book codes are searched in
the database and then see whether the status can
be borrowed. If possible, the book loan data is
added to the database and then the status of the
book is changed so that it cannot be borrowed by
other people. A successful transaction can be seen
in Figure 10.

Source: (Wicaksono, 2020)

Gambar 10 Library Member Loan Data

268

D. System Testing

At the system testing stage, SMK PGRI 2
Salatiga Library Information System conducted a
system functionality test using the black box
method. The following are the results of black-box
testing on the process of adding book data and
borrowing books which can be seen in Table 1 and
Table 2.

Table 1. Add Book Data Function Testing

Scenario
Condition

Expected
Results

Received
Result

Conclusion

The book
data form
is filled
following
the
provisions

Data saved
in database

Data
successfully
saved to
database

success

Some
attributes
are not
filled in the
book data
form

A warning
appears on
the text
field that is
not filled

"data
dibutuhkan"
warning
appears in
the text
field

success

The ISBN
attribute is
filled in
with letters

A warning
appears on
the ISBN
text field

A warning
"ISBN harus
angka"
appears in
the ISBN
text field

success

Source: (Wicaksono, 2020)

Table 2. Book Loan Function Testing
Scenario
Condition

Expected
Results

Received
Result

Conclusio
n

The
registration
number is
filled
following
existing
data

Display
library
member
data and
borrowed
books

Display
library
member
data and
borrowed
books

success

Registratio
n number
filled
randomly

data not
found
warning
appears

A "the
identificatio
n number
not found"
warning
appears

success

Book code
is filled in
according
to existing
data

Data has
been
successfull
y stored
and
displayed
in the table

Data has
been
successfully
stored and
displayed in
the table

success

Book code
filled
randomly

A data not
found
warning
appears

A warning
appears "the
identificatio
n number
not found"

success

Source: (Wicaksono, 2020)

Based on Table 1, the book loan function

manages to save form data into the database. The
validation function for the attribute can give a
warning to the user if it does not meet the existing
conditions.

In Table 2, the member registration number
search function can find the data registered in the
database. If the registration number is not
registered in the database, a warning will appear
that the data was not found. If the book codes are
not registered in the database, a warning will
appear that the data was not found.

E. Operation and Maintenance

The information system application made is
offered to SMK PGRI 2 Salatiga to be implemented
in the school library. The following are the
specifications used:

1. Hardware System
System Manufacturer: To Be Filled By O.E.M.
System Model: To Be Filled By O.E.M.
BIOS: (04/24/2014)ZX-G41D3LM Ver:2.1
Processor: Intel(R) Core(TM)2 Duo CPU E6550
Memory: 2048MB RAM
Available OS Memory: 2014MB RAM

2. Display System
Card name: Intel(R) Q45/Q43 Express Chipset
Chip type: Intel(R) 4 Series Express Chipset Family
Display Memory: 782 MB
Dedicated Memory: 32 MB
Shared Memory: 750 MB
Current Mode: 1024 x 768 (32 bit) (60Hz)
Monitor Name: Generic PnP Monitor

3. Software
Operating System: Windows 7 Ultimate
Web Server: Apache
Database: MySQL
Framework: Laravel 5.8.38
UI Framework: Bootstrap 4.1.0
Web Browser: Google Chrome

4. Web Hosting
Storage: 2GB
Bandwidth: Unlimited
Database: MySQL Support

CONCLUSION

This research has made a library information
system that implements the Laravel web
development framework and has been running

269

according to the design. The book loan function can
handle the data of each library member. Eloquent
ORM provides convenience in book loan
transactions with a code structure that is easy to
read and build. Also, model class objects that are
interconnected with predefined constraint
functions based on database structure prevents
conflict in data storage. Laravel makes it easy to
create user authentication functions that can be
modified as needed. The database structure can be
created with the migration function in the Laravel
framework without having to interact directly with
the database.

REFERENCE

Aeni, W. N., Santosa, S., & Supriyanto, C. (2014).

Algoritma Klasifikasi data mining naïve bayes
berbasis Particle Swarm Optimization untuk
deteksi penyakit jantung. Jurnal Pseudocode,
1(1), 11–14.
https://ejournal.unib.ac.id/index.php/pseud
ocode/article/view/57/

Armel, J. (2014). Web application development

with Laravel PHP Framework version 4 [Web
application development with Laravel PHP
Framework version 4]. In Media engineering
(Issue April).
https://www.theseus.fi/handle/10024/7405
2

Hutagalung, D. D., & Arif, F. (2018). RANCANG

BANGUN SISTEM INFORMASI
PERPUSTAKAAN BERBASIS WEB PADA SMK
CITRA NEGARA DEPOK. Jurnal Rekayasa
Informasi, 7(1), 13–22.
https://doi.org/10.1017/CBO978110741532
4.004

Iwayemi, A., & Oyeniyi, S. (2019). Development of a

Robust Library Management System.
International Journal of Computer
Applications, 178(12), 9–16.
https://doi.org/10.5120/ijca2019918850

Kannan, V., Jhajharia, S., & Verma, S. (2014). Agile

vs waterfall : A Comparative Analysis.
International Journal of Science, Engineering
and Technology Research (IJSETR), 3(10),
2680–2686. http://ijsetr.org/wp-
content/uploads/2014/10/IJSETR-VOL-3-
ISSUE-10-2680-2686.pdf

Majeed, A., & Rauf, I. (2018). MVC Architecture: A

Detailed Insight to the Modern Web
Applications Development. Crimson
Publishers, 1(1), 1–7.

https://crimsonpublishers.com/prsp/pdf/PR
SP.000505.pdf

Mangnga, A. (2015). Peran Perpustakaan Sekolah

Terhadap Proses Belajar Mengajar Di
Sekolah. Jupiter, 14(1), 38–42.
https://journal.unhas.ac.id/index.php/jupite
r/article/view/27/

Nastiti Andharini, S., Puji Lestari, N., Ratna Satiti, N.,

& Roz, K. (2019). Analysis of Library
Management Information System in
Muhammadiyah 2 Vocational High School,
Malang. KnE Social Sciences, 3(13), 948.
https://doi.org/10.18502/kss.v3i13.4259

Nidhra, S., & Dondeti, J. (2012). Black Box and
White Box Testing Techniques - A Literature
Review. International Journal of Embedded
Systems and Applications, 2(2), 29–50.
https://doi.org/10.5121/ijesa.2012.2204

Parkar, V. V, Shinde, P. P., Gadade, S. C., & Shinde, P.

M. (2016). Utilization of Laravel Framework
for Development of Web Based Recruitment
Tool. National Conference On “Changing
Technology and Rural Development,” 36–41.
https://www.iosrjournals.org/iosr-
jce/papers/Conf.16051/Volume-1/8. 36-
41.pdf?id=7557

Puspitasari, D. (2016). Sistem informasi

perpustakaan sekolah berbasis web. Pilar
Nusa Mandiri, 12(2), 227–240.
http://ejournal.nusamandiri.ac.id/index.php
/pilar/article/view/277

Uyun, S., & Rifqi, M. (2010). Implementation of

Model View Controller (MVC) Architecture
on Building Web-Based Information System.
Seminar Nasional Aplikasi Teknologi Informasi
2010 (SNATI 2010), 47–50.
https://journal.uii.ac.id/Snati/article/view/1
939/

Verma, A. (2014). MVC Architecture : a Comparitive

Study Between Ruby on Rails and Laravel.
Indian Journal of Computer Science and
Engineering (IJCSE), 5(5), 196–198.
http://www.ijcse.com/docs/INDJCSE14-05-
05-053.pdf

Wardhana, A. (2018). Designing of Library

Information System to Support Learning in
High School. International Journal of
Computer Techniques, 5(1), 1–4.
http://www.ijctjournal.org/Volume5/Issue1
/IJCT-V5I1P1.pdf

270

Wicaksono, E. A. (2020). Laporan Akhir Penelitian -
Implementasi Framework Laravel dalam
Pembangunan Sistem Informasi Perpustakaan
SMK (Studi Kasus: SMK PGRI 2 Salatiga).

Yulviantoro, A. B. (2018). Pengembangan Sistem

Informasi Perpustakaan Sekolah Berbasis
Web Di Smk Negeri 1 Jogonalan [Universitas
Negeri Yogyakarta]. In Universitas Negeri
Yogyakarta.
https://eprints.uny.ac.id/59325/1/naskah
skripsi fix.pdf

