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Abstract—Early detection of cervical cancer through Pap smear image analysis plays a crucial role in 
reducing mortality rates associated with this disease. This study aims to optimize the VGG16 architecture to 
improve the classification accuracy of Pap smear images. The proposed method employs transfer learning with 
pre-trained ImageNet weights, customization of fully connected layers, and data augmentation techniques to 
enhance the diversity of training images. Experimental results demonstrate a significant improvement in 
training accuracy, reaching 98.50%, while validation accuracy remained stable at 88.24%, indicating 
potential overfitting. Performance testing on unseen data yielded an accuracy of 80%, with high precision for 
the negative class but low recall for the positive class, suggesting a bias toward the majority class. These 
findings highlight the need for additional strategies, such as data balancing and hybrid method integration, to 
improve sensitivity to positive cases. This research contributes to the development of adaptive deep learning-
based classification models that support clinical decision-making in cervical cancer screening and opens 
opportunities for further research on model optimization and dataset expansion. 
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Intisari—Deteksi dini kanker serviks melalui analisis citra Pap Smear memiliki peran penting dalam menekan 
angka kematian akibat penyakit ini. Penelitian ini bertujuan mengoptimalkan arsitektur VGG16 untuk 
meningkatkan akurasi klasifikasi citra Pap Smear. Metode yang digunakan meliputi transfer learning dengan 
bobot pra-latih dari ImageNet, penyesuaian lapisan fully connected, dan teknik augmentasi data untuk 
meningkatkan keragaman citra latih. Hasil pelatihan menunjukkan peningkatan akurasi signifikan pada data 
latih hingga 98,50%, namun akurasi validasi cenderung stabil di angka 88,24%, yang mengindikasikan 
potensi overfitting. Uji performa pada data baru menghasilkan akurasi 80%, dengan precision tinggi pada 
kelas negatif tetapi recall rendah pada kelas positif, menandakan bias terhadap kelas mayoritas. Temuan ini 
memperkuat perlunya strategi tambahan seperti penyeimbangan data dan integrasi metode hibrid untuk 
meningkatkan sensitivitas terhadap kasus positif. Penelitian ini memberikan kontribusi penting dalam 
pengembangan model klasifikasi berbasis deep learning yang adaptif untuk mendukung sistem pendukung 
keputusan klinis pada skrining kanker serviks, serta membuka peluang penelitian lanjutan pada optimasi 
model dan perluasan data. 
 
Kata Kunci : Kanker Serviks, Klasifikasi Citra, Pap Smear, Pembelajaran Transfer, VGG16. 
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INTRODUCTION 
 

Cancer remains one of the leading causes of 
death worldwide, with high morbidity and mortality 
rates, including in Indonesia[1], [2]. Early detection 
of cancer plays a crucial role in increasing the 
success rate of treatment and reducing mortality 
rates. In this context, advancements in Artificial 
Intelligence (AI), particularly deep learning, have 
led to significant progress in medical image 
analysis[3], [4], [5]. Among the most widely used 
approaches is the Convolutional Neural Network 
(CNN), with the VGG16 architecture being one of the 
most frequently adopted models due to its proven 
ability to effectively extract complex features from 
medical imaging data [6], [7],[8]. 

The use of VGG16 in cancer diagnosis has 
been reported for various cancer types, including 
lung cancer, breast cancer, and cervical cancer[8], 
[9], [10]. Developed by the Visual Geometry Group 
at the University of Oxford, VGG16 comprises 16 
layers with an architectural depth that facilitates 
high-level feature extraction. In studies by 
Klangbunrueang . (2025) and Lakide (2025), VGG16 
demonstrated its effectiveness in classifying lung 
cancer CT scan images into normal, benign, and 
malignant categories, thereby assisting radiologists 
in making more accurate diagnostic decisions[11], 
[12]. 

Nonetheless, challenges remain in 
interpreting complex medical images, such as 
overlapping features between benign and 
malignant lesions, limited training data, and 
variability in image quality. This is where transfer 
learning becomes particularly valuable. By 
leveraging pre-trained VGG16 weights, training can 
be more efficient, and accuracy can be improved, as 
shown by Lakide (2025) for lung cancer detection 
and Hameed et al. (2020) for breast cancer 
histopathological classification[12], [13], [14], [15]. 

In the context of cervical cancer, VGG16 has 
also been applied to classify histopathology and 
colposcopy images with promising results  [16], 
[17]. The use of techniques such as data 
augmentation, early stopping, and fine-tuning has 
been shown to enhance model performance. Valdés 
& Interian [18] demonstrated that integrating CNNs 
with optimization strategies can effectively predict 
rectal toxicity in cervical cancer patients, 
contributing to the personalization of radiotherapy 
treatment. Additionally, Yadav et al. (2022) 
emphasized the potential of CNNs, including VGG16, 
in detecting precancerous lesions through 
histopathological image analysis with high 
accuracy[19], [20]. 

Recent research focusing specifically on Pap 
Smear classification further demonstrates the 
potential of CNNs. Maurya et al. (2023) proposed 
VisionCervix, integrating CNN and Vision 
Transformer, achieving 97.65 % accuracy on Pap-
Smear images [18]. Mishra et al. (2023) developed a 
Hybrid Pooling-Based CNN to improve 
morphological-feature representation, reducing 
false-negative detection [25]. Attallah (2023) 
introduced CerCan·Net, combining lightweight 
CNNs through multi-layer feature ensembles, 
yielding more stable recall on minority (positive) 
classes [23]. Yang et al. (2025) proposed a Pyramid 
Convolutional Mixer architecture to enhance feature 
learning efficiency in Pap-Smear image 
classification [22]. 

However, misclassification issues caused by 
morphological similarities between benign lesions, 
such as chronic cervicitis, and neoplastic tissues 
remain a challenge (Huang et al., 2022). This 
underscores the importance of developing more 
sophisticated methods, including multimodal data 
integration and the application of attention 
mechanisms, to enhance diagnostic reliability[21], 
[22], [23], [24]. 

Recent literature from the Scopus database 
also shows rapid advancements in cervical cancer 
detection methods using CNNs and hybrid variants. 
For example, Vision Cervix Maurya, 2023, which 
integrates Vision Transformer with CNN, achieved 
an accuracy of 97.65% [18]. Similarly, a deep 
feature selection approach based on Opposition-
based Harmony Search Das 2023 improved 
classification performance [25]. Other notable 
models include CNN-LSVM Wu, 2023 and the 
integration of 3D CNN with Vision Transformer K. & 
Sivakumar, 2024, which excel in processing 
spatiotemporal data and high-level features. These 
findings indicate that integrating VGG16 as a 
backbone in hybrid systems can be a promising 
strategy [26], [27]. 

Considering these various approaches, a 
research gap can be identified in the application of 
VGG16 for cervical cancer detection, particularly in 
addressing the challenges of limited data, complex 
tissue morphology, and the need for interpretable 
results. This study aims to develop and optimize a 
VGG16-based model for cervical cancer 
classification by employing transfer learning, data 
augmentation, and the integration of attention 
mechanisms. The novelty of this research lies in the 
optimization of VGG16 architecture tailored to the 
classification of cervical cancer images, as well as 
evaluating its performance on multi-source data to 
improve the accuracy and reliability of early 
detection. 
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MATERIALS AND METHODS 
 

The research workflow is designed to 
systematically describe each stage of the study, 
from the initial problem identification to the final 
evaluation of model performance. The methodology 
is divided into three main stages, as illustrated in 
Figure 1. 

 
Source : (Research Results, 2025) 

Figure 1. Research Workflow of the Proposed 
VGG16-Based Cervical Cancer Detection System  

Diagram 
 

1. First Stage : Problem Identification and 

Data Collection 

The initial stage involved identifying the 
research problem. The problem was defined based 
on two primary sources: Sumber Waras Hospital 
and the International Agency for Research on 
Cancer (IARC). Following problem identification, a 
data collection process was conducted, in which Pap 
smear images were obtained from both sources. 
These data served as the foundation for subsequent 
stages of the research.  

 

 
Source : (Research Results, 2025) 

Figure 2. Pap Smear 

Figure 2 illustrates a Pap smear image 
showing an irregular red lesion in the cervical area. 
This highlights the importance of early detection as 
a key factor in reducing cervical cancer mortality 
rates. 

 
2. Second Stage : Data Preprocessing 

The preprocessing stage is a crucial step 
carried out after data acquisition to ensure that the 
images are in optimal condition for model training. 
The objective of preprocessing is to enhance data 
quality so that the model can learn effectively. In 
this study, preprocessing comprised three main 
processes: 

1. Noise Removal The removal of unwanted 
noise or distortion in the images that could 
negatively impact classification accuracy. 

2. Data Augmentation Techniques used to 
increase the diversity of the training data 
through image transformations, such as 
rotation, flipping, and scaling, to improve the 
model’s robustness against variations in 
data. 

3. Image Normalization Adjusting the pixel 
value scale to a consistent range, ensuring 
uniform input data that facilitates efficient 
model learning. 
Through these preprocessing steps, the 

quality and diversity of the dataset were improved, 
thereby increasing the likelihood of achieving high 
classification accuracy. 

 
3. Third Stage : Model Development, 

Training, and Testing 

In the final stage, the preprocessed data were 
fed into the VGG16 Convolutional Neural Network 
(CNN) architecture for both training and testing. 
Training Process The model was trained using the 
training dataset to learn distinctive patterns, 
features, and characteristics from the Pap smear 
images. This involved adjusting model parameters 
to minimize classification errors. Testing Process 
The trained model was then evaluated using an 
independent test dataset that was not used during 
training. This process measured the model's 
generalization ability and provided an objective 
assessment of its classification performance. The 
resulting accuracy score served as the primary 
indicator of the model’s performance, forming the 
basis for evaluating the effectiveness of the 
proposed method. 
 

RESULTS AND DISCUSSION 
 

Developing a robust image classification 
system requires a neural network architecture 
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capable of optimally extracting features from visual 
data. One of the most effective architectures for this 
task is VGG16, introduced by the Visual Geometry 
Group (VGG) at the University of Oxford. VGG16 

leverages network depth through a hierarchical 
arrangement of convolutional layers, consistently 
applying small 3×33×3 kernels to capture spatial 
details at multiple representation levels. 

 
Table 1. Model architecture of the VGG16 

No 
Layer 
(Type) 

Output Shape Parameters 

1 input_layer (InputLayer) (None, 224, 224, 3) 0 
2 block1_conv1 (Conv2D) (None, 224, 224, 64) 1.792 
3 block1_conv2 (Conv2D) (None, 224, 224, 64) 36.928 
4 block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 
5 block2_conv1 (Conv2D) (None, 112, 112, 128) 73.856 
6 block2_conv2 (Conv2D) (None, 112, 112, 128) 147.584 
7 block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 
8 block3_conv1 (Conv2D) (None, 56, 56, 256) 295.168 
9 block3_conv2 (Conv2D) (None, 56, 56, 256) 590.080 

10 block3_conv3 (Conv2D) (None, 56, 56, 256) 590.080 
11 block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 
12 block4_conv1 (Conv2D) (None, 28, 28, 512) 1.180.160 
13 block4_conv2 (Conv2D) (None, 28, 28, 512) 2.359.808 
14 block4_conv3 (Conv2D) (None, 28, 28, 512) 2.359.808 
15 block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 
16 block5_conv1 (Conv2D) (None, 14, 14, 512) 2.359.808 
17 block5_conv2 (Conv2D) (None, 14, 14, 512) 2.359.808 
18 block5_conv3 (Conv2D) (None, 14, 14, 512) 2.359.808 
19 block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 
20 flatten (Flatten) (None, 25088) 0 
21 dense (Dense) (None, 128) 3.211.392 
22 dropout (Dropout) (None, 128) 0 
23 dense_1 (Dense) (None, 2) 258 

Source : (Research Results, 2025) 
 

 
Source : (Research Results, 2025) 
Figure 3. Layer Hierarchy Visualization on Models 

 
Figure 3 and Table 1 presents the 

architecture of the VGG16 Convolutional Neural 
Network designed for digital image processing. The 
network receives an RGB image input of 
224×224224 \times 224224×224 pixels via the 
input layer, which does not contain trainable 
parameters and serves solely as the entry point for 
image data. The VGG16 architecture is composed of 
five convolutional blocks, each followed by a max-

pooling layer to reduce spatial dimensions while 
retaining essential image features: 

1. Block 1: Two convolutional layers with 64 
filters (3×33 \times 33×3) followed by max 
pooling, reducing the dimension to 
112×112×64112 \times 112 \times 
64112×112×64. 

2. Block 2: Two convolutional layers with 128 
filters (3×33 \times 33×3) followed by max 
pooling, producing 56×56×12856 \times 56 
\times 12856×56×128. 

3. Block 3: Three convolutional layers with 256 
filters, ending with pooling to 28×28×25628 
\times 28 \times 25628×28×256. 

4. Block 4 & Block 5: Each contains three 
convolutional layers with 512 filters, 
extracting high-level and complex features, 
with pooling reducing dimensions to 
7×7×5127 \times 7 \times 5127×7×512. 
The output from the final pooling layer is 

flattened into a one-dimensional vector of 25,088 
elements, which feeds into the fully connected 
layers: 
1. Two dense layers of 4,096 units each with 

ReLU activation. 
2. Dropout layers applied for regularization to 

reduce overfitting. 



 

 

VOL. 11. NO. 3 FEBRUARI 2026. 
 . 

DOI: 10.33480/jitk.v11i3.7131. 
 

  

825 

3. An output layer using softmax activation with 
the number of units equal to the target 
classes. 
This architecture comprises approximately 

23.7 million parameters, of which 3.12 million are 
trainable, and 17.84 million are non-trainable pre-
trained weights from ImageNet. This design enables 
efficient transfer learning, in which pre-trained 
weights remain fixed while fully connected layers 
are fine-tuned for the Pap smear classification task. 

 
Model Training Performance 

The VGG16 model was trained using transfer 
learning, where pre-trained weights for feature 
extraction were retained, and the customized fully 
connected layers were trained on the Pap smear 
dataset. Training parameters included an 
adaptively tuned learning rate, an optimal batch 
size for stable weight updates, and an appropriate 
number of epochs to ensure convergence. 
Preprocessing steps—such as resizing, pixel 
normalization, and data augmentation (rotation, 
flipping, zooming)—were applied to enhance 
dataset diversity and reduce overfitting risks. 

 
Table 2. Presents training results: 

Epoch Accuracy Loss Val Accuracy Val Loss 
1 0,8121 0,5716 0,8824 0,3989 
2 0,8518 0,4026 0,8824 0,3494 
3 0,9037 0,2672 0,8824 0,3727 
4 0,8898 0,239 0,8824 0,3304 
5 0,9395 0,1677 0,8824 0,3353 
6 0,9695 0,1314 0,8824 0,3238 
7 0,9767 0,0953 0,8824 0,3122 
8 0,969 0,091 0,8824 0,2979 
9 0,9802 0,1013 0,8824 0,3373 

10 0,985 0,0568 0,8824 0,3154 

Source : (Research Results, 2025) 
 

From the first epoch, the model achieved a 
training accuracy of 81.21% with a loss of 0.5716, 
while validation accuracy was already relatively 
high at 88.24% with a validation loss of 0.3989. This 
suggests that from the early stages of training, the 
model could capture key patterns in the data, likely 
due to the benefit of pre-trained weights. Between 
epochs two and three, training accuracy improved 
significantly from 85.18% to 90.37%, accompanied 
by a consistent reduction in loss. However, 
validation accuracy remained stable at 88.24%, 
indicating that the model reached convergence on 
the validation set early in the training process. 

During epochs four to six, training accuracy 
continued to increase, reaching 96.95% with a 
notable drop in loss from 0.2390 to 0.1314. Despite 
this, validation accuracy did not improve and 
remained fixed at 88.24%, signaling the onset of 
overfitting, where further training improved 

performance on the training set but not on the 
validation set. By epochs seven to ten, training 
accuracy peaked at 98.50% with a very low loss of 
0.0568. Validation accuracy still showed no 
improvement, staying constant at 88.24%, while 
validation loss fluctuated slightly within a narrow 
range (0.2979 – 0.3373). This indicates that 
although the model learned the training set well, 
limited diversity in the validation set constrained 
further improvements. 

 

 
Source : (Research Results, 2025) 

Figure 4. Epoch Graph 
 

The training accuracy curve (blue line) 
shows a steep increase from around 81% in the first 
epoch to nearly 98% by the ninth epoch, indicating 
progressive learning of patterns and features from 
the training set. However, the validation accuracy 
curve (orange line) remained almost flat around 
88% from the beginning to the end of training. This 
lack of improvement reflects early convergence and 
suggests that the model’s ability to generalize to 
unseen data did not improve after the first epoch — 
a sign of potential overfitting. 

 

 
Source : (Research Results, 2025) 

Figure 5. Loss Graph 
 

The training loss curve (blue line) 
demonstrates a steady decrease from 0.57 in the 



 

VOL. 11. NO. 3 FEBRUARY 2026 
. 

DOI: 10.33480 /jitk.v11i3.7131 
 

 

 

826 

first epoch to about 0.05 in the final epoch, showing 
that the model increasingly minimized errors on the 
training set. In contrast, the validation loss curve 
(orange line) remained relatively stable between 
0.30 and 0.40, with minor fluctuations. This lack of 
a significant downward trend in validation loss 
reinforces the earlier observation that the model’s 
generalization capability did not improve notably 
after the early epochs. 

 
Model Evaluation and Testing 

After completing the training and validation 
phases, the model was further evaluated using a test 
dataset that had not been used during the training 
process. This step aimed to assess the model’s 
generalization ability and provide an unbiased 
measure of its classification performance on unseen 
data. 

 
Table 3. Summarizes the testing results for 

individual images: 

File Name Prediction 
Percentage 

(%) 
File Test_Negative_7.jpg Negative 62,6 
File Test_Negative_1.jpg Negative 62,9 
File Test_Positive_1.jpg Negative 95,6 
File Test_Positive_4.jpg Negative 80,0 
File Test_Negative_12.jpg Negative 74,6 
File Test_Negative_8.jpg Negative 62,6 
File Test_Positive_10.jpg Negative 86,5 
File Test_Negative_22.jpg Negative 76,1 
File Test_Negative_6.jpg Negative 70,5 
File Test_Negative_28.jpg Negative 75,0 
File Test_Positive_2.jpg Positive 65,0 

Source : (Research Results, 2025) 
 

Overall Accuracy and Class-wise Performance 
 

 
Source : (Research Results, 2025) 

Figure 6. Result Test  
 

The model achieved an overall test accuracy 
of 80.00%, indicating that it correctly classified 80% 
of the test images. However, a closer analysis of 
class-wise metrics reveals a significant performance 
gap between the negative and positive classes: 

1. Negative Class: Precision = 0.79, Recall = 
1.00, F1-score = 0.88 

2. Positive Class: Precision = 1.00, Recall = 0.20, 
F1-score = 0.33 
These results indicate that the model 

performs exceptionally well at identifying negative 

cases (100% recall) but struggles to detect positive 
cases (only 20% recall). Although every positive 
prediction made by the model was correct 
(precision = 100%), many actual positive cases 
were misclassified as negative, suggesting a bias 
toward the majority class The macro-average F1-
score was 0.61, while the weighted-average F1-
score was 0.75, further reflecting the imbalance in 
model performance between classes. The high 
precision but low recall for the positive class 
indicates that the model is conservative in 
predicting positives, possibly due to class imbalance 
in the dataset Figure 6 illustrates the classification 
results, visually confirming the model's tendency to 
correctly identify most negative samples while 
frequently failing to recognize positive samples. 
 
Interpretation and Implications 

While the overall accuracy appears 
reasonably high, the low recall for the positive class 
is concerning in the context of cervical cancer 
detection, where false negatives could have severe 
implications for patient outcomes. In medical 
diagnostics, high sensitivity (recall) for positive 
cases is crucial to ensure that all potential cases are 
flagged for further examination. 
To address this limitation, several strategies could 
be considered: 

1. Data Balancing: Oversampling positive cases 
or undersampling negative cases to reduce 
class imbalance. 

2. Threshold Tuning: Adjusting the decision 
threshold to favor higher recall for the 
positive class. 

3. Hybrid Model Integration: Combining VGG16 
with other classifiers or attention-based 
mechanisms to improve sensitivity. 

4. Advanced Data Augmentation: Introducing 
more synthetic variations of positive cases to 
improve the model’s exposure to positive 
patterns. 
implementing these strategies, the model's 

ability to detect positive cervical cancer cases could 
be significantly improved, making it more suitable 
for clinical decision support systems. 
 

CONCLUSION 
 

This study successfully developed and 
optimized the VGG16 architecture for Pap smear 
image classification in cervical cancer detection by 
leveraging transfer learning and data augmentation 
techniques. The training results demonstrated a 
significant improvement in training accuracy, 
reaching 98.50%, although validation accuracy 
remained stable at 88.24%, suggesting a potential 
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risk of overfitting. Evaluation on the unseen test 
dataset achieved an overall accuracy of 80.00%, 
with excellent performance for the negative class 
but considerably lower recall for the positive class. 
This indicates that the model tends to be biased 
toward the majority (negative) class, which could 
lead to missed detections of positive cervical cancer 
cases. The findings highlight the necessity of 
implementing additional strategies to improve 
model sensitivity toward positive cases, such as 
data balancing, decision threshold adjustment, and 
hybrid model integration. The key contribution of 
this research lies in adapting and optimizing the 
VGG16 architecture specifically for Pap smear 
image characteristics, which can serve as a 
foundation for developing reliable clinical decision 
support systems for early cervical cancer screening. 
Future research is recommended to expand the 
dataset, apply more advanced data balancing 
techniques, and explore the integration of VGG16 
with other deep learning architectures to enhance 
generalization performance and diagnostic 
accuracy. 
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