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Abstract—Early detection of cervical cancer through Pap smear image analysis plays a crucial role in
reducing mortality rates associated with this disease. This study aims to optimize the VGG16 architecture to
improve the classification accuracy of Pap smear images. The proposed method employs transfer learning with
pre-trained ImageNet weights, customization of fully connected layers, and data augmentation techniques to
enhance the diversity of training images. Experimental results demonstrate a significant improvement in
training accuracy, reaching 98.50%, while validation accuracy remained stable at 88.24%, indicating
potential overfitting. Performance testing on unseen data yielded an accuracy of 80%, with high precision for
the negative class but low recall for the positive class, suggesting a bias toward the majority class. These
findings highlight the need for additional strategies, such as data balancing and hybrid method integration, to
improve sensitivity to positive cases. This research contributes to the development of adaptive deep learning -
based classification models that support clinical decision-making in cervical cancer screening and opens
opportunities for further research on model optimization and dataset expansion.

Keywords : Cervical Cancer, Image Classification, Pap Smear, Transfer Learning, VGG16

Intisari—Deteksi dini kanker serviks melalui analisis citra Pap Smear memiliki peran penting dalam menekan
angka kematian akibat penyakit ini. Penelitian ini bertujuan mengoptimalkan arsitektur VGG16 untuk
meningkatkan akurasi klasifikasi citra Pap Smear. Metode yang digunakan meliputi transfer learning dengan
bobot pra-latih dari ImageNet, penyesuaian lapisan fully connected, dan teknik augmentasi data untuk
meningkatkan keragaman citra latih. Hasil pelatihan menunjukkan peningkatan akurasi signifikan pada data
latih hingga 98,50%, namun akurasi validasi cenderung stabil di angka 88,24%, yang mengindikasikan
potensi overfitting. Uji performa pada data baru menghasilkan akurasi 80%, dengan precision tinggi pada
kelas negatif tetapi recall rendah pada kelas positif, menandakan bias terhadap kelas mayoritas. Temuan ini
memperkuat perlunya strategi tambahan seperti penyeimbangan data dan integrasi metode hibrid untuk
meningkatkan sensitivitas terhadap kasus positif. Penelitian ini memberikan kontribusi penting dalam
pengembangan model klasifikasi berbasis deep learning yang adaptif untuk mendukung sistem pendukung
keputusan klinis pada skrining kanker serviks, serta membuka peluang penelitian lanjutan pada optimasi
model dan perluasan data.

Kata Kunci : Kanker Serviks, Klasifikasi Citra, Pap Smear, Pembelajaran Transfer, VGG16.
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INTRODUCTION

Cancer remains one of the leading causes of
death worldwide, with high morbidity and mortality
rates, including in Indonesia[1], [2]. Early detection
of cancer plays a crucial role in increasing the
success rate of treatment and reducing mortality
rates. In this context, advancements in Artificial
Intelligence (Al), particularly deep learning, have
led to significant progress in medical image
analysis[3], [4], [5]. Among the most widely used
approaches is the Convolutional Neural Network
(CNN), with the VGG16 architecture being one of the
most frequently adopted models due to its proven
ability to effectively extract complex features from
medical imaging data [6], [7],[8]-

The use of VGG16 in cancer diagnosis has
been reported for various cancer types, including
lung cancer, breast cancer, and cervical cancer[8],
[9], [10]. Developed by the Visual Geometry Group
at the University of Oxford, VGG16 comprises 16
layers with an architectural depth that facilitates
high-level feature extraction. In studies by
Klangbunrueang. (2025) and Lakide (2025), VGG16
demonstrated its effectiveness in classifying lung
cancer CT scan images into normal, benign, and
malignant categories, thereby assisting radiologists
in making more accurate diagnostic decisions[11],
[12].

Nonetheless, challenges remain in
interpreting complex medical images, such as
overlapping features between benign and
malignant lesions, limited training data, and
variability in image quality. This is where transfer
learning becomes particularly valuable. By
leveraging pre-trained VGG16 weights, training can
be more efficient, and accuracy can be improved, as
shown by Lakide (2025) for lung cancer detection
and Hameed et al. (2020) for breast cancer
histopathological classification[12], [13], [14], [15].

In the context of cervical cancer, VGG16 has
also been applied to classify histopathology and
colposcopy images with promising results [16],
[17]. The wuse of techniques such as data
augmentation, early stopping, and fine-tuning has
been shown to enhance model performance. Valdés
& Interian [18] demonstrated that integrating CNNs
with optimization strategies can effectively predict
rectal toxicity in cervical cancer patients,
contributing to the personalization of radiotherapy
treatment. Additionally, Yadav et al. (2022)
emphasized the potential of CNNs, including VGG16,
in detecting precancerous lesions through
histopathological image analysis with high
accuracy[19], [20].
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Recent research focusing specifically on Pap
Smear classification further demonstrates the
potential of CNNs. Maurya et al. (2023) proposed
VisionCervix, integrating CNN and Vision
Transformer, achieving 97.65 % accuracy on Pap-
Smear images [18]. Mishra et al. (2023) developed a
Hybrid  Pooling-Based ~ CNN  to  improve
morphological-feature representation, reducing
false-negative detection [25]. Attallah (2023)
introduced CerCan-Net, combining lightweight
CNNs through multi-layer feature ensembles,
yielding more stable recall on minority (positive)
classes [23]. Yang et al. (2025) proposed a Pyramid
Convolutional Mixer architecture to enhance feature
learning  efficiency in  Pap-Smear image
classification [22].

However, misclassification issues caused by
morphological similarities between benign lesions,
such as chronic cervicitis, and neoplastic tissues
remain a challenge (Huang et al, 2022). This
underscores the importance of developing more
sophisticated methods, including multimodal data
integration and the application of attention
mechanisms, to enhance diagnostic reliability[21],
[22], [23], [24].

Recent literature from the Scopus database
also shows rapid advancements in cervical cancer
detection methods using CNNs and hybrid variants.
For example, Vision Cervix Maurya, 2023, which
integrates Vision Transformer with CNN, achieved
an accuracy of 97.65% [18]. Similarly, a deep
feature selection approach based on Opposition-
based Harmony Search Das 2023 improved
classification performance [25]. Other notable
models include CNN-LSVM Wu, 2023 and the
integration of 3D CNN with Vision Transformer K. &
Sivakumar, 2024, which excel in processing
spatiotemporal data and high-level features. These
findings indicate that integrating VGG16 as a
backbone in hybrid systems can be a promising
strategy [26], [27].

Considering these various approaches, a
research gap can be identified in the application of
VGG16 for cervical cancer detection, particularly in
addressing the challenges of limited data, complex
tissue morphology, and the need for interpretable
results. This study aims to develop and optimize a
VGGl6-based model for cervical cancer
classification by employing transfer learning, data
augmentation, and the integration of attention
mechanisms. The novelty of this research lies in the
optimization of VGG16 architecture tailored to the
classification of cervical cancer images, as well as
evaluating its performance on multi-source data to
improve the accuracy and reliability of early

detection.
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MATERIALS AND METHODS

The research workflow is designed to
systematically describe each stage of the study,
from the initial problem identification to the final
evaluation of model performance. The methodology
is divided into three main stages, as illustrated in
Figure 1.
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Source : (Research Results, 2025)
Figure 1. Research Workflow of the Proposed
VGG16-Based Cervical Cancer Detection System
Diagram

1. First Stage : Problem Identification and

Data Collection

The initial stage involved identifying the
research problem. The problem was defined based
on two primary sources: Sumber Waras Hospital
and the International Agency for Research on
Cancer (IARC). Following problem identification, a
data collection process was conducted, in which Pap
smear images were obtained from both sources.
These data served as the foundation for subsequent
stages of the research.

e I—-

Source : (Reseérch Results, 2025)

Figure 2. Pap Smear
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Figure 2 illustrates a Pap smear image
showing an irregular red lesion in the cervical area.
This highlights the importance of early detection as
a key factor in reducing cervical cancer mortality
rates.

2. Second Stage : Data Preprocessing

The preprocessing stage is a crucial step
carried out after data acquisition to ensure that the
images are in optimal condition for model training.
The objective of preprocessing is to enhance data
quality so that the model can learn effectively. In
this study, preprocessing comprised three main
processes:

1. Noise Removal The removal of unwanted
noise or distortion in the images that could
negatively impact classification accuracy.

2.  Data Augmentation Techniques used to
increase the diversity of the training data
through image transformations, such as
rotation, flipping, and scaling, to improve the
model’s robustness against variations in
data.

3. Image Normalization Adjusting the pixel
value scale to a consistent range, ensuring
uniform input data that facilitates efficient
model learning.

Through these preprocessing steps, the
quality and diversity of the dataset were improved,
thereby increasing the likelihood of achieving high
classification accuracy.

3. Third Stage Model

Training, and Testing

In the final stage, the preprocessed data were
fed into the VGG16 Convolutional Neural Network
(CNN) architecture for both training and testing.
Training Process The model was trained using the
training dataset to learn distinctive patterns,
features, and characteristics from the Pap smear
images. This involved adjusting model parameters
to minimize classification errors. Testing Process
The trained model was then evaluated using an
independent test dataset that was not used during
training. This process measured the model's
generalization ability and provided an objective
assessment of its classification performance. The
resulting accuracy score served as the primary
indicator of the model’s performance, forming the
basis for evaluating the effectiveness of the
proposed method.

Development,

RESULTS AND DISCUSSION

Developing a robust image classification
system requires a neural network architecture

823




VOL. 11. NO. 3 FEBRUARY 2026
P-ISSN: 2685-8223 | E-ISSN: 2527-4864
DOI: 10.33480 /jitk.v11i3.7131

JITK (JURNAL ILMU PENGETAHUAN

DAN TEKNOLOGI KOMPUTER)

capable of optimally extracting features from visual
data. One of the most effective architectures for this
task is VGG16, introduced by the Visual Geometry
Group (VGG) at the University of Oxford. VGG16

leverages network depth through a hierarchical
arrangement of convolutional layers, consistently
applying small 3x33x3 kernels to capture spatial
details at multiple representation levels.

Table 1. Model architecture of the VGG16

No %,?;’:2) Output Shape Parameters
1 input_layer (InputLayer) (None, 224, 224, 3) 0
2 block1_conv1 (Conv2D) (None, 224, 224, 64) 1.792
3 block1_conv2 (Conv2D) (None, 224, 224, 64) 36.928
4 block1_pool (MaxPooling2D) (None, 112,112, 64) 0
5 block2_conv1 (Conv2D) (None, 112,112,128) 73.856
6 block2_conv2 (Conv2D) (None, 112,112,128) 147.584
7 block2_pool (MaxPooling2D) (None, 56, 56, 128) 0
8 block3_conv1 (Conv2D) (None, 56, 56, 256) 295.168
9 block3_conv2 (Conv2D) (None, 56, 56, 256) 590.080
10 block3_conv3 (Conv2D) (None, 56, 56, 256) 590.080
11 block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
12 block4_conv1 (Conv2D) (None, 28, 28, 512) 1.180.160
13 block4_conv2 (Conv2D) (None, 28, 28, 512) 2.359.808
14 block4_conv3 (Conv2D) (None, 28, 28, 512) 2.359.808
15 block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
16 block5_conv1l (Conv2D) (None, 14, 14, 512) 2.359.808
17 block5_conv2 (Conv2D) (None, 14, 14, 512) 2.359.808
18 block5_conv3 (Conv2D) (None, 14, 14, 512) 2.359.808
19 block5_pool (MaxPooling2D) (None, 7,7, 512) 0
20 flatten (Flatten) (None, 25088) 0
21 dense (Dense) (None, 128) 3.211.392
22 dropout (Dropout) (None, 128) 0
23 dense_1 (Dense) (None, 2) 258

Source : (Research Results, 2025)

Modified VGG-16 Architecture

Input Layer
(224, 224, 3)

Conv2D Block 1
(112, 112, 128
MaxPooling2D Block 2
(112, 112, 64
MaxPooling2D Block 3
(56, 56, 128
MaxPooling2D Block 4
(28, 28, 256
MaxPooling2D Block 5
(14, 14, 512
Flatten Fl
(25088) atten
Dro(;))out Dropout
Dense

Source : (Research Results, 2025)
Figure 3. Layer Hierarchy Visualization on Models

Figure 3 and Table 1 presents the
architecture of the VGG16 Convolutional Neural
Network designed for digital image processing. The
network receives an RGB image input of
224x224224 \times 224224x224 pixels via the
input layer, which does not contain trainable
parameters and serves solely as the entry point for
image data. The VGG16 architecture is composed of
five convolutional blocks, each followed by a max-
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pooling layer to reduce spatial dimensions while
retaining essential image features:

1. Block 1: Two convolutional layers with 64

filters (3x33 \times 33x3) followed by max

pooling, reducing the dimension to
112x112x64112  \times 112  \times
64112x112x64.

2. Block 2: Two convolutional layers with 128
filters (3x33 \times 33x3) followed by max
pooling, producing 56x56x12856 \times 56
\times 12856x56x128.

3. Block 3: Three convolutional layers with 256
filters, ending with pooling to 28x28x25628
\times 28 \times 25628x28x256.

4. Block 4 & Block 5: Each contains three
convolutional layers with 512 filters,
extracting high-level and complex features,
with pooling reducing dimensions to
7x7x5127 \times 7 \times 5127x7x512.
The output from the final pooling layer is

flattened into a one-dimensional vector of 25,088

elements, which feeds into the fully connected

layers:

1. Two dense layers of 4,096 units each with
ReLU activation.

2. Dropout layers applied for regularization to
reduce overfitting.
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3. Anoutputlayer using softmax activation with
the number of units equal to the target
classes.

This architecture comprises approximately
23.7 million parameters, of which 3.12 million are
trainable, and 17.84 million are non-trainable pre-
trained weights from ImageNet. This design enables
efficient transfer learning, in which pre-trained
weights remain fixed while fully connected layers
are fine-tuned for the Pap smear classification task.

Model Training Performance

The VGG16 model was trained using transfer
learning, where pre-trained weights for feature
extraction were retained, and the customized fully
connected layers were trained on the Pap smear
dataset. Training parameters included an
adaptively tuned learning rate, an optimal batch
size for stable weight updates, and an appropriate
number of epochs to ensure convergence.
Preprocessing steps—such as resizing, pixel
normalization, and data augmentation (rotation,
flipping, zooming)—were applied to enhance
dataset diversity and reduce overfitting risks.

Table 2. Presents training results:

Epoch  Accuracy Loss Val Accuracy  Val Loss
1 0,8121 0,5716 0,8824 0,3989
2 0,8518 0,4026 0,8824 0,3494
3 0,9037 0,2672 0,8824 0,3727
4 0,8898 0,239 0,8824 0,3304
5 0,9395 0,1677 0,8824 0,3353
6 0,9695 0,1314 0,8824 0,3238
7 0,9767 0,0953 0,8824 0,3122
8 0,969 0,091 0,8824 0,2979
9 0,9802 0,1013 0,8824 0,3373
10 0,985 0,0568 0,8824 0,3154

Source : (Research Results, 2025)

From the first epoch, the model achieved a
training accuracy of 81.21% with a loss of 0.5716,
while validation accuracy was already relatively
high at 88.24% with a validation loss of 0.3989. This
suggests that from the early stages of training, the
model could capture key patterns in the data, likely
due to the benefit of pre-trained weights. Between
epochs two and three, training accuracy improved
significantly from 85.18% to 90.37%, accompanied
by a consistent reduction in loss. However,
validation accuracy remained stable at 88.24%,
indicating that the model reached convergence on
the validation set early in the training process.

During epochs four to six, training accuracy
continued to increase, reaching 96.95% with a
notable drop in loss from 0.2390 to 0.1314. Despite
this, validation accuracy did not improve and
remained fixed at 88.24%, signaling the onset of
overfitting, where further training improved
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performance on the training set but not on the
validation set. By epochs seven to ten, training
accuracy peaked at 98.50% with a very low loss of
0.0568. Validation accuracy still showed no
improvement, staying constant at 88.24%, while
validation loss fluctuated slightly within a narrow
range (0.2979 - 0.3373). This indicates that
although the model learned the training set well,
limited diversity in the validation set constrained
further improvements.

—— Train Accuracy
Validation Accuracy

T T T T T
o 2 a4 6 8
Epoch

Source : (Research Results, 2025)
Figure 4. Epoch Graph

The training accuracy curve (blue line)
shows a steep increase from around 81% in the first
epoch to nearly 98% by the ninth epoch, indicating
progressive learning of patterns and features from
the training set. However, the validation accuracy
curve (orange line) remained almost flat around
88% from the beginning to the end of training. This
lack of improvement reflects early convergence and
suggests that the model’s ability to generalize to
unseen data did not improve after the first epoch —
a sign of potential overfitting.

—— Train Loss

0.5 Validation Loss

0.4 4
9 0.34
k]

0.24

0.1+

0 2 4 6 8
Epoch

Source : (Research Results, 2025)
Figure 5. Loss Graph

The training loss curve (blue line)
demonstrates a steady decrease from 0.57 in the
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first epoch to about 0.05 in the final epoch, showing
that the model increasingly minimized errors on the
training set. In contrast, the validation loss curve
(orange line) remained relatively stable between
0.30 and 0.40, with minor fluctuations. This lack of
a significant downward trend in validation loss
reinforces the earlier observation that the model’s
generalization capability did not improve notably
after the early epochs.

Model Evaluation and Testing

After completing the training and validation
phases, the model was further evaluated using a test
dataset that had not been used during the training
process. This step aimed to assess the model’s
generalization ability and provide an unbiased
measure of its classification performance on unseen
data.

Table 3. Summarizes the testing results for
individual images:

File Name Prediction Percentage

(%)
File Test_Negative_7.jpg Negative 62,6
File Test_Negative_1.jpg Negative 62,9
File Test_Positive_1.jpg Negative 95,6
File Test_Positive_4.jpg Negative 80,0
File Test_Negative_12.jpg Negative 74,6
File Test_Negative_8.jpg Negative 62,6
File Test_Positive_10.jpg Negative 86,5
File Test_Negative_22.jpg Negative 76,1
File Test_Negative_6.jpg Negative 70,5
File Test_Negative_28.jpg Negative 75,0
File Test_Positive_2.jpg Positive 65,0

Source : (Research Results, 2025)
Overall Accuracy and Class-wise Performance

°| Classification Report:

precision recall fl-score support

negatif a8.79 1.00 .88 38
positif 1.88 9.20 .33 18
accuracy @.80 48
macro avg 8.89 8.60 8.61 48
weighted avg .84 .80 8.75 48

Source : (Research Results, 2025)
Figure 6. Result Test

The model achieved an overall test accuracy
0f 80.00%, indicating that it correctly classified 80%
of the test images. However, a closer analysis of
class-wise metrics reveals a significant performance
gap between the negative and positive classes:
1. Negative Class: Precision = 0.79, Recall =
1.00, F1-score = 0.88
2. Positive Class: Precision = 1.00, Recall = 0.20,
F1-score = 0.33
These results indicate that the model
performs exceptionally well at identifying negative
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cases (100% recall) but struggles to detect positive
cases (only 20% recall). Although every positive
prediction made by the model was correct
(precision = 100%), many actual positive cases
were misclassified as negative, suggesting a bias
toward the majority class The macro-average F1-
score was 0.61, while the weighted-average F1-
score was 0.75, further reflecting the imbalance in
model performance between classes. The high
precision but low recall for the positive class
indicates that the model is conservative in
predicting positives, possibly due to class imbalance
in the dataset Figure 6 illustrates the classification
results, visually confirming the model's tendency to
correctly identify most negative samples while
frequently failing to recognize positive samples.

Interpretation and Implications

While the overall accuracy appears
reasonably high, the low recall for the positive class
is concerning in the context of cervical cancer
detection, where false negatives could have severe
implications for patient outcomes. In medical
diagnostics, high sensitivity (recall) for positive
cases is crucial to ensure that all potential cases are
flagged for further examination.
To address this limitation, several strategies could
be considered:

1. Data Balancing: Oversampling positive cases
or undersampling negative cases to reduce
class imbalance.

2. Threshold Tuning: Adjusting the decision
threshold to favor higher recall for the
positive class.

3. Hybrid Model Integration: Combining VGG16
with other classifiers or attention-based
mechanisms to improve sensitivity.

4. Advanced Data Augmentation: Introducing
more synthetic variations of positive cases to
improve the model’s exposure to positive
patterns.
implementing these strategies, the model's

ability to detect positive cervical cancer cases could
be significantly improved, making it more suitable
for clinical decision support systems.

CONCLUSION

This study successfully developed and
optimized the VGG16 architecture for Pap smear
image classification in cervical cancer detection by
leveraging transfer learning and data augmentation
techniques. The training results demonstrated a
significant improvement in training accuracy,
reaching 98.50%, although validation accuracy
remained stable at 88.24%, suggesting a potential
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risk of overfitting. Evaluation on the unseen test
dataset achieved an overall accuracy of 80.00%,
with excellent performance for the negative class
but considerably lower recall for the positive class.
This indicates that the model tends to be biased
toward the majority (negative) class, which could
lead to missed detections of positive cervical cancer
cases. The findings highlight the necessity of
implementing additional strategies to improve
model sensitivity toward positive cases, such as
data balancing, decision threshold adjustment, and
hybrid model integration. The key contribution of
this research lies in adapting and optimizing the
VGG16 architecture specifically for Pap smear
image characteristics, which can serve as a
foundation for developing reliable clinical decision
support systems for early cervical cancer screening.
Future research is recommended to expand the
dataset, apply more advanced data balancing
techniques, and explore the integration of VGG16
with other deep learning architectures to enhance
generalization performance and diagnostic
accuracy.
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