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Abstract— Diseases affecting pepper leaves can significantly reduce crop productivity and quality, while 
manual disease identification remains subjective, time-consuming, and prone to error. Therefore, an accurate 
automated classification system is required to support early disease detection. This study aims to evaluate and 
compare the performance of a conventional Convolutional Neural Network (CNN) with two transfer learning–
based architectures, VGG16 and EfficientNetB3, for classifying pepper leaf images into healthy and bacterial 
spot classes, as well as to analyze the impact of applying a soft voting ensemble method on classification 
performance. The dataset was obtained from Kaggle and divided into training, validation, and test sets. Image 
preprocessing included resizing all images to 224×224 pixels and applying data augmentation to improve 
model generalization. Model performance was evaluated using accuracy, precision, recall, and F1-score 
metrics. The experimental results indicate that EfficientNetB3 outperforms the conventional CNN and VGG16 
models. Furthermore, the application of the soft voting ensemble enhances prediction stability, achieving an 
accuracy of 99.68% on the test dataset with balanced precision and recall across both classes. These findings 
demonstrate that the integration of transfer learning and soft voting ensemble methods is an effective 
approach for image-based pepper leaf disease classification under the experimental conditions, and provides 
a basis for further validation using more diverse datasets. 

 
Keywords: CNN, EfficientNetB3, Ensemble Soft Voting, Pepper leaf classification, Transfer learning. 

 
Intisari— Penyakit pada daun paprika dapat menurunkan produktivitas dan kualitas hasil panen secara 
signifikan, sementara proses identifikasi penyakit secara manual masih bersifat subjektif, memerlukan waktu, 
dan rentan terhadap kesalahan. Oleh karena itu, diperlukan sistem klasifikasi otomatis yang akurat untuk 
mendukung deteksi dini penyakit tanaman. Penelitian ini bertujuan untuk mengevaluasi dan membandingkan 
kinerja model Convolutional Neural Network (CNN) konvensional dengan dua arsitektur berbasis transfer 
learning, yaitu VGG16 dan EfficientNetB3, dalam mengklasifikasikan citra daun paprika ke dalam kelas sehat 
dan Bacterial spot, serta menganalisis pengaruh penerapan metode ensemble soft voting terhadap performa 
klasifikasi. Dataset yang digunakan diperoleh dari Kaggle dan dibagi ke dalam data pelatihan, validasi, dan 
pengujian. Proses prapemrosesan meliputi pengubahan ukuran citra menjadi 224×224 piksel serta penerapan 
augmentasi data untuk meningkatkan kemampuan generalisasi model. Evaluasi kinerja dilakukan 
menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil eksperimen menunjukkan bahwa 
EfficientNetB3 memberikan performa terbaik dibandingkan CNN konvensional dan VGG16. Selain itu, 
penerapan ensemble soft voting mampu meningkatkan stabilitas prediksi dan mencapai akurasi sebesar 
99,68% pada data uji dengan nilai presisi dan recall yang seimbang pada kedua kelas Temuan ini 
menunjukkan bahwa kombinasi transfer learning dan ensemble soft voting merupakan pendekatan yang 
efektif dan andal untuk klasifikasi penyakit daun paprika berbasis citra dalam kondisi eksperimental yang 
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digunakan, serta berpotensi dikembangkan lebih lanjut melalui pengujian pada dataset yang lebih beragam 
dan kompleks. 
 
Kata Kunci: CNN, EfficientNetB3, Ensemble soft voting, Klasifikasi daun lada, Transfer learning. 
 

INTRODUCTION 
 

The bell pepper plant (Capsicum annuum 
var. grossum) is a high-value horticultural 
commodity widely cultivated in Indonesia due to 
strong market demand, both domestically and 
internationally [1], [2]. Bell pepper cultivation has 
expanded to several regions in Indonesia, including 
West Bandung, Cianjur, Bogor, Garut, Wonosobo, 
Batu City, Bali, West Nusa Tenggara, and Bantaeng 
in South Sulawesi [3]. Despite increasing demand, 
bell pepper productivity often declines due to pest 
attacks and leaf diseases [4]. This condition makes 
it difficult for farmers to distinguish between 
healthy and diseased leaves in a timely manner, 
leading to delayed treatment and a reduction in 
both the quality and quantity of the harvest [5]. 

The development of deep learning 
technology has created new opportunities for 
automatic plant classification. Deep learning is a 
branch of machine learning that utilizes multilayer 
neural network architectures to identify and learn 
patterns from complex datasets [6]. Among various 
deep learning approaches, the Convolutional Neural 
Network (CNN) is one of the most widely used 
methods for image processing due to its ability to 
extract visual features—such as color patterns, 
textures, and shapes—through convolutional and 
pooling layers [7]. 

The transfer learning approach enables 
models to leverage knowledge from neural 
networks pre-trained on large-scale datasets, 
thereby making training more efficient even with 
limited data [8]. This technique not only accelerates 
the training process but also improves accuracy, as 
the model already possesses robust low-level and 
high-level feature representations [9]. In addition, 
data augmentation increases the diversity of the 
training data and reduces the risk of overfitting, 
allowing the model to produce more stable and 
accurate predictions when classifying healthy 
pepper leaves and those affected by diseases or 
pests [10]. 

In this study, three modeling approaches 
were employed: a conventional CNN and two 
transfer learning architectures, VGG16 and 
EfficientNetB3, to evaluate improvements in 
classification performance. After training the three 
models, a soft voting ensemble method was applied 
to combine their predictions and enhance the 
stability of the final results. VGG16 features a simple 

and consistent architecture with 3×3 convolutional 
kernels across its 16 layers, making it effective for 
learning fundamental image features [11]. In 
contrast, EfficientNetB3 achieves superior 
efficiency through compound scaling, which 
proportionally balances network depth, width, and 
input resolution to deliver high accuracy with 
reduced computational complexity [12], [13]. 

Research on plant disease classification 
based on leaf images has advanced rapidly in 
parallel with developments in deep learning 
technology. Numerous studies have demonstrated 
the effectiveness of CNN in classifying diseases in 
rice, tomatoes, grapes, and other horticultural 
crops. For instance, in rice leaf disease classification, 
the application of CNNs combined with transfer 
learning using the VGG16 architecture achieved an 
accuracy of 93%, outperforming standard CNN 
models [14]. Studies on corn plants also reported 
the effectiveness of EfficientNetB1–B3 
architectures, achieving an accuracy of 97.77%, 
which indicates that modern architectures can 
efficiently handle large-scale datasets [15]. 
Furthermore, research on chili plants comparing 
VGG16 and MobileNetV2 found that MobileNetV2 
performed better, achieving an accuracy of 92%, 
making it more suitable for leaf disease 
classification under diverse data conditions [16]. 
Another study on bell pepper leaves using the 
DenseNet-201 architecture achieved an accuracy of 
99.5%, highlighting the strong potential of transfer 
learning for precise leaf disease detection [6]. 

Another study showed that an optimized 
CNN model was able to achieve a very high accuracy 
of 99.89% in distinguishing between healthy 
pepper leaves and leaves infected with bacteria 
[17]. Another study evaluated the effectiveness of 
transfer learning with MobileNetV2 and 
InceptionV2 architectures for detecting bacterial 
spot disease on pepper leaves, showing that 
MobileNetV2 provided the best performance with 
an accuracy of 99.96%, making it more effective for 
classifying pepper leaf diseases than InceptionV2 
[18]. In addition, there is also a literature review 
that confirms that CNN architectures such as VGG, 
EfficientNet, GoogleNet, and Resnet are the best 
performing models for plant disease image 
classification [19]. 

However, research related to pepper leaf 
disease classification is still limited and generally 
only uses one CNN architecture, without conducting 
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multi-model comparisons between conventional 
CNNs and transfer learning approaches such as 
VGG16 and EfficientNetB3. In addition, most 
previous studies have not evaluated ensemble 
learning strategies, particularly the soft voting 
ensemble method, as an approach to improve model 
prediction robustness and stability. As a result, the 
potential benefits of combining multiple models in 
an early diagnosis system based on pepper leaf 
images have not been comprehensively explored, 
especially in limited dataset conditions. 

Based on these issues, this study aims to 
analyze and compare the performance of 
conventional CNN, VGG16, and EfficientNetB3 in 
classifying healthy pepper leaves and disease-
infected pepper leaves, as well as to evaluate 
performance improvements through the 
application of the soft voting ensemble method. The 
results of this study are expected to provide 
recommendations for more effective and efficient 
models to support the development of an automatic 
plant disease diagnosis system based on images. 

 
MATERIALS AND METHODS 

 
This study conducted a deep learning-based 

classification experiment by comparing the 
performance of three models, namely conventional 
CNN and two transfer learning architectures, VGG16 
and EfficientNetB3. All models were developed to 
classify bell pepper leaves. After model training and 
testing were completed, the output probabilities of 
the three models were combined through ensemble 
soft voting to produce a more stable and accurate 
final prediction. The stages of this research can be 
seen in Figure 1. 

 

 
Source: (Research Results, 2025) 

Figure 1. Research Stages 
 

Data Collection 
At this stage, data collection was carried out 

to be used as a dataset for the classification process 
in this study. The dataset used was obtained from 

the Bell Pepper Dataset on Kaggle 
(https://www.kaggle.com/datasets/manjuphoenix
/bellpepper/). The original dataset consisted of two 
classes of bell pepper leaf images, namely 3,989 
images of leaves with bacterial spots and 5,905 
images of healthy leaves. 

However, to maintain data balance while 
ensuring image quality, this study used 3,111 
images, consisting of 1,598 Healthy class images 
and 1,513 Bacterial spot class images. All images 
were resized to a resolution of 224 × 224 pixels and 
divided into three data subsets, namely 80% for 
training data, 10% for validation data, and 10% for 
testing data. A sample of bell pepper leaf images can 
be seen in Figure 2. 

 

 
Source: (Research Results, 2025) 

Figure 2. Research Dataset 
 
Preprocessing 

The preprocessing stage was carried out 
through image augmentation using 
ImageDataGenerator. Data augmentation 
parameters are selected to simulate real-world 
variations that are often encountered during image 
capture in field conditions. Rotation in the range of 
±20° represents camera angle variations, while a 
zoom factor of 0.2 simulates differences in camera 
distance. Horizontal and vertical shifts of 0.2 take 
into account object shifts and perspective changes. 
This augmentation aims to improve model 
robustness and reduce overfitting. 

 
Model Training 

This study employs three modeling 
approaches: a conventional CNN and two transfer 
learning architectures, VGG16 and EfficientNetB3, 
for pepper leaf classification. The conventional CNN 

https://www.kaggle.com/datasets/manjuphoenix/bellpepper/
https://www.kaggle.com/datasets/manjuphoenix/bellpepper/
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model in this study was developed and trained from 
the ground up, comprising several convolutional 
and pooling layers to extract features from leaf 
images, followed by a fully connected layer to 
perform binary classificationThe CNN architecture 
used is adapted from the model proposed in [20], as 
illustrated in Figure 3. 

 
Source: (Kumar [20], 2023)  

Figure 3. Conventional CNN Architecture Used in 
Bell Pepper Leaf Classification 

 
The VGG16 architecture is used as the 

backbone model with a transfer learning approach, 
which utilizes pretrained weights from the 
ImageNet dataset. The original classification layer is 
removed and replaced with a new classification 
layer that is adjusted to the number of classes in the 
paprika leaf dataset. This architecture refers to the 
model introduced by [21], as shown in Figure 4. 

 

 
Source: (Nguyen [21], 2022)  

Figure 4. VGG16 Architecture Used in Bell Pepper 
Leaf Classification 

 
Meanwhile, the EfficientNetB3 architecture 

was applied with the compound scaling principle, 
which balances the depth, width, and resolution of 
the network. Similar to VGG16, this model uses 
pretrained ImageNet weights before adding a 
classification layer tailored to the paprika leaf 
dataset. This architecture refers to the model 
introduced by [22], as shown in Figure 5. 

 

 
Source: (Atila [22], 2021) 

Figure 5. EfficientNetB3 Architecture Used in Bell 
Pepper Leaf Classification 

 
All three models were trained using identical 

training parameters to ensure an objective 
performance comparison: 20 epochs, a batch size of 
32, a learning rate of 0.0001, the Adamax optimizer, 
and the categorical cross-entropy loss function. In 
addition, the ModelCheckpoint callback was utilized 
to store the optimal model weights according to 
validation accuracy. 

 
Ensemble Soft Voting 

After the three models generate class 
probability outputs, a soft voting ensemble strategy 
is applied to combine the predicted probabilities 
from each model. In the soft voting approach, the 
probability outputs from each individual model are 
averaged, and the class with the highest aggregated 
probability is chosen as the final prediction. This 
ensemble strategy aims to enhance model stability 
and classification accuracy compared to individual 
models [23]. 

 
Evaluation Result 

Model performance was assessed using four 
key metrics: accuracy, precision, recall, and F1-
score to ensure a comprehensive evaluation. 
Accuracy reflects the overall correctness of the 
classification, whereas precision and recall measure 
the model’s effectiveness in accurately 
distinguishing between healthy and diseased 
leaves. The F1-score was selected as an important 
metric because it balances precision and recall, 
making it particularly suitable for datasets that may 
exhibit class imbalance. The evaluation was 
conducted on a test dataset that had not been used 
during the training or validation phases, ensuring 
that the results accurately reflect the model’s ability 
to classify bell pepper leaf images. 
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RESULTS AND DISCUSSION 
 
Performance of Individual Models 

The training and validation loss curves of the 
CNN model show a steady decrease as the number 
of epochs increase, indicating that the model is 
effectively learning feature representations from 
bell pepper leaf images. Although a slight increase 
in validation loss is observed during the early 
training stages, the loss subsequently decreases and 
stabilizes toward the final epochs. This behavior 
suggests that the CNN model does not suffer from 
significant overfitting. Furthermore, the training 
and validation accuracy curves show an increasing 
trend with closely aligned values, reflecting stable 
classification performance and good generalization 
on the validation dataset. The curves depicting 
training and validation accuracy and loss for the 
CNN model are shown in Figure 6. 

 

 
Source: (Research Results, 2025) 

Figure 6. Training and Validation Accuracy and 
Loss Curves for The CNN Model 

 
In Figure 6, at the final training epoch, the 

model achieved a training accuracy of 
approximately 97% with a training loss of 0.10, 
while the validation accuracy reached 
approximately 97% with a validation loss of 0.09. 
The close alignment between training and 
validation performance indicates a stable learning 
process and suggests that the model does not suffer 
from significant overfitting. 

Furthermore, the training and validation loss 
curves of the VGG16 model show a substantial 
reduction in training loss to near-zero values, 
indicating that the model effectively learns feature 
representations from bell pepper leaf images. The 
validation loss remains relatively stable with minor 
fluctuations, suggesting the absence of significant 
overfitting and good generalization capability. 
Consistent with this trend, the training and 
validation accuracy curves exhibit a rapid and 
steady increase, with high and closely aligned 
accuracy values. These results indicate that the 
VGG16 model achieves stable and strong 
classification performance. The training and 

validation loss and accuracy curves for the VGG16 
model are presented in Figure 7. 

 

 
Source: (Research Results, 2025) 

Figure 7. Training and Validation Accuracy and 
Loss Curves for The VGG16 Model 

 
In Figure 7, at the final training epoch, the 

VGG16 model achieved a training accuracy of 
approximately 100% with a training loss close to 
0.00, while the validation accuracy reached 
approximately 99% with a validation loss of around 
0.08. The relatively close alignment between 
training and validation performance indicates 
stable convergence and suggests that the model 
does not experience significant overfitting under 
the given experimental setup. 

The training and validation loss curves of the 
EfficientNetB3 model exhibit a significant and 
consistent decline as the number of epochs 
increases for both training and validation data. The 
parallel reduction in these loss curves indicates that 
the model effectively learns feature representations 
from bell pepper leaf images without exhibiting 
significant overfitting. In addition, the training and 
validation accuracy curves show a rapid increase 
toward near-maximum values, with the validation 
accuracy closely following the training trend. The 
close alignment between training and validation 
accuracy suggests that EfficientNetB3 achieves 
strong classification performance and good 
generalization on the validation dataset. The 
training and validation loss and accuracy curves for 
the EfficientNetB3 model are presented in Figure 8. 

 

 
Source: (Research Results, 2025) 

Figure 8. Training and Validation Accuracy and 
Loss Curves for The EfficientNetB3 Model 
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In Figure 8, at the final training epoch, the 
EfficientNetB3 model achieved a training accuracy 
of approximately 100% with a training loss close to 
0.01, while the validation accuracy also reached 
approximately 100% with a validation loss of 
around 0.02. The close alignment between training 
and validation accuracy, along with consistently low 
loss values, indicates stable convergence and 
suggests that the model learns discriminative 
features effectively without exhibiting significant 
overfitting under the experimental conditions. 

Overall, the combination of decreasing loss 
values and increasing accuracy across the training 
and validation datasets indicates that the adopted 
model architectures effectively learn feature 
representations from bell pepper leaf images. The 
absence of substantial discrepancies between 
training and validation performance suggests that 
the models do not suffer from overfitting, indicating 
their readiness for further evaluation on the test 
dataset. 

 
Comparison of Model Performance 

A performance comparison among the 
conventional CNN, VGG16, and EfficientNetB3 
models based on the test dataset is presented in 
Table 1. This comparison aims to evaluate the 
effectiveness of each architecture in classifying bell 
pepper leaf images and to assess the impact of 
transfer learning on classification performance. 

 
Table 1. Model Performance Comparison 

Model Accuracy Precision Recall F1-
Score 

Conventional 
CNN 

0.9776 0.98 0.98 0.98 

VGG16 0.9872 0.99 0.99 0.99 
EfficientNetB3 1.0000 1.00 1.00 1.00 

Source: (Research Results, 2025) 
 
Based on the performance comparison 

presented in Table 1, EfficientNetB3 achieved the 
highest performance, attaining perfect scores of 
1.00 for accuracy, precision, recall, and F1-score. 
The VGG16 model ranked second with an accuracy 
of 98.72%, followed by the conventional CNN with 
an accuracy of 97.76%. The superior performance 
of EfficientNetB3 can be attributed to its efficient 
feature extraction capability through the compound 
scaling approach, which enables the model to learn 
richer and more representative leaf image features 
[24]. In contrast, the conventional CNN employs a 
simpler architecture, resulting in more limited 
feature learning capacity compared to transfer 
learning–based models. 

In addition, the evaluation was performed 
using standard performance metrics and a 

confusion matrix. The confusion matrix presented 
in Figure 9 corresponds to the best-performing 
model, EfficientNetB3, and illustrates its optimal 
classification performance. 

 

 
Source: (Research Results, 2025) 

Figure 9. Best Confusion Matrix Model 
(EfficientNetB3) on Test Dataset 

 
The confusion matrix presented in Figure 10 

indicates that the EfficientNetB3 model achieves 
high classification performance with minimal 
misclassification for both bacterial spot and healthy 
leaf classes. These results are consistent with the 
high accuracy, precision, and recall values obtained, 
and they highlight the model’s strong potential for 
application in automatic leaf disease classification 
systems. 

 
Ensemble Soft Voting Evaluation 

To enhance prediction stability and 
reliability, this study applies a soft voting ensemble 
method by combining the output probabilities of all 
individual models. The ensemble is performed after 
each model has been trained and evaluated 
independently. The results of the soft voting 
ensemble evaluation are presented in Table 2. 

 
Table 2. Ensemble Soft Voting Evaluation Results 
Model Accuracy Precision Recall F1-

Score 
Ensemble Soft 
Voting 

0.9968 1.00 1.00 1.00 

Source: (Research Results, 2025) 
 
Based on the evaluation results presented in 

Table 2, the soft voting ensemble model achieved an 
overall accuracy of 99.68%, with macro-averaged 
and weighted-averaged precision, recall, and F1-
score values close to or equal to 1.00. Although the 
ensemble accuracy is slightly lower than that of the 
standalone EfficientNetB3 model, the ensemble 
approach helps mitigate potential bias and 
prediction errors associated with individual 
models. These results indicate that the ensemble 
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method not only maintains high overall accuracy 
but also provides more balanced performance 
across both classes. Consequently, the soft voting 
ensemble effectively integrates the strengths of 
each base model to deliver more stable and reliable 
predictions than a single model. Moreover, the 
confusion matrix corresponding to the soft voting 
ensemble evaluation is presented in Figure 10. 

 

 
Source: (Research Results, 2025) 

Figure 10. Confusion Matrix of Soft Voting 
Ensemble Results 

 
Based on the confusion matrix presented in 

Figure 10, the soft voting ensemble method 
demonstrates high classification performance in 
distinguishing healthy pepper leaves from those 
affected by bacterial spot. Out of 162 test images in 
the bacterial spot class, 161 were correctly 
classified, while only one image was misclassified as 
a healthy leaf. In contrast, all 150 images in the 
healthy class were correctly classified without any 
misclassification. 

The dominance of values along the main 
diagonal indicates that the soft voting ensemble 
effectively reduces classification errors and 
achieves clearer class separation. By combining the 
prediction probabilities from multiple base models, 
this approach yields more stable and robust 
classification decisions across variations in the test 
data, thereby enhancing the reliability of the bell 
pepper leaf disease classification system. 
 
Discussion 

The results of this study indicate that 
applying transfer learning with the VGG16 and 
EfficientNetB3 architectures provides better 
classification performance than conventional CNNs. 
This finding is consistent with previous work [25], 
which reports that CNN models initialized with 
ImageNet-pretrained weights exhibit stronger and 
more stable feature extraction capabilities for plant 
disease classification tasks compared to models 
trained from scratch. 

In addition, the implementation of the soft 
voting ensemble in this study improves prediction 
stability and reliability compared to using a single 
model. This observation aligns with ensemble 
learning theory, which suggests that combining 
multiple models with diverse learning 
characteristics can reduce bias and variance, 
leading to more stable and robust predictions. 
Ensemble methods have consistently demonstrated 
superior performance over individual models 
across various classification problems. [26]. 

However, the very high performance 
achieved in this study—including accuracy, 
precision, recall, and F1-score values that approach 
or reach perfect scores for the EfficientNetB3 and 
soft voting ensemble models—should be 
interpreted with caution. Such ideal performance 
may indicate potential overfitting or reflect the 
relatively controlled and limited nature of the 
dataset, as this study only utilized two classes 
(Healthy and Bacterial Spot) from a publicly 
available Kaggle dataset. Moreover, model 
evaluation was conducted using a single dataset 
without cross-validation or external dataset testing; 
therefore, the generalization capability of the 
proposed models under more diverse real-world 
conditions has not yet been fully validated. 

Furthermore, this study did not incorporate 
model interpretability techniques, such as Grad-
CAM, to visualize the image regions contributing to 
the model’s decision-making process. The scope of 
the research was also limited to three deep learning 
architectures, without comparison to other widely 
used architectures such as ResNet or DenseNet, nor 
to conventional machine learning methods as 
baseline models. In addition, computational cost, 
inference time, and the feasibility of deploying the 
proposed system on resource-constrained devices 
commonly used by farmers were not discussed in 
detail. Therefore, future research is recommended 
to employ larger and more diverse datasets, 
perform cross-dataset or external validation, 
integrate interpretability techniques, and consider 
computational efficiency and real-world 
deployment aspects to ensure the robustness and 
generalizability of the proposed approach. 

 
CONCLUSION 

 
This study demonstrates that the application 

of deep learning methods for pepper leaf 
classification achieves strong performance, 
particularly when transfer learning–based models 
are employed. The experimental results show that 
EfficientNetB3 outperforms the conventional CNN 
and VGG16 models, achieving very high accuracy, 
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precision, recall, and F1-score values on the test 
dataset. In addition, the comparative analysis 
indicates that the use of pretrained weights enables 
more effective and stable feature learning, 
especially when dealing with datasets containing a 
limited number of classes.  

Furthermore, the application of the soft 
voting ensemble method enhances the reliability of 
the classification system by integrating the 
complementary strengths of each base model. This 
approach yields more stable predictions across 
variations in the test data and reduces classification 
errors commonly observed in single-model 
approaches. Based on the overall experimental 
results, it can be concluded that the combination of 
transfer learning–based CNN architectures and a 
soft voting ensemble provides an effective solution 
for image-based bell pepper leaf classification. 

For future research, the proposed approach 
can be extended by incorporating larger and more 
diverse datasets with multiple disease classes to 
improve generalization performance. Further 
evaluation using external or cross-dataset 
validation is recommended to assess robustness 
under real-world conditions. In addition, future 
studies may integrate model interpretability 
techniques and explore efficient deployment 
strategies to support practical implementation in 
agricultural environments. 
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