PENGEMBANGAN CHATBOT TELEGRAM FAQ LAYANAN ICT MENGGUNAKAN ALGORITMA RANDOM FOREST DAN METODE WORD2VEC

Penulis

  • Muhammad Arif Setiyawan Universitas Bina Sarana Informatika
  • Erina Divaa Kenoya Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.33480/inti.v20i1.5766

Kata Kunci:

Chatbots, ICT Services, Random Forest Algorithms, Word2Vec

Abstrak

In today's digital era, chatbots have become an essential tool for businesses to improve interaction with customers. A responsive and efficient chatbot can help customer service agents be happier, improve customer satisfaction, and resolve issues faster. The study aims to create a  Telegram-based chatbot that uses  the Random Forest algorithm  and the Word2Vec method  to answer questions about ICT services. The development was carried out by collecting a dataset of  questions and answers from FAQs (Frequently Asked Questions) of ICT services. Then,  the Random Forest algorithm  is used to classify the questions. In addition, the Word2Vec method  is used to create vector representations of words in questions and answers. This improves  the chatbot's ability  to understand complex questions. The test results show that  the chatbot gets an accuracy of 91.28%, a precision of 93.56%, a recall of 91.28% and  an F1-Score of 91.42% and can provide relevant and accurate answers to user questions. Therefore, the development of  this chatbot using  the Random Forest algorithm  and the Word2Vec method can be an effective solution to improve customer service in the field of ICT services

Unduhan

Data unduhan belum tersedia.

Referensi

Af’idah, D. I., Dairoh, D., Handayani, S. F., & Pratiwi, R. W. (2021). Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 156–161. https://doi.org/10.30591/jpit.v6i3.3016

Alvi Hasanah, N., Nanik Suciati, & Diana Purwitasari. (2021). Pemantauan Perhatian Publik terhadap Pandemi COVID-19 melalui Klasifikasi Teks dengan Deep Learning. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 193–202. https://doi.org/10.29207/resti.v5i1.2927

Andhika, L. D., Cahyani, D. R., Saputra, D., Herawati, T., Khoiruddinsyah, M., & Saputra, D. D. (2023). Analisis Sentimen Kosumen KFC Berdasarkan Pendekatan Naive Bayes dan Ada Boost Berbasis Data Twitter. Jurnal INSAN - Journal of Information System Management Innovation, 3(1), 55–61. https://doi.org/10.31294/jinsan.v3i1.2219

Angeline, G., Wibawa, A. P., & Pujianto, U. (2022). Klasifikasi Dialek Bahasa Jawa Menggunakan Metode Naives Bayes. Jurnal Mnemonic, 5(2), 103–110. https://doi.org/10.36040/mnemonic.v5i2.4748

Ciptady, K., Harahap, M., Jonvin, J., Ndruru, Y., & Ibadurrahman, I. (2022). Prediksi Kualitas Kopi Dengan Algoritma Random Forest Melalui Pendekatan Data Science. Data Sciences Indonesia (DSI), 2(1). https://doi.org/10.47709/dsi.v2i1.1708

Dewi, A. R., Diana, S., Fakhrezi, M. A., Awang, N., Ma’arif, H., & Saputra, D. D. (2023). Sentimen Analisis Terhadap Puan Maharani Sebagai Kandidat Calon Presiden 2024 Berdasarkan Opini Twitter Menggunakan Metode Naive Bayes Dan Adaboost. JSiI (Jurnal Sistem Informasi), 10(1), 75–80. https://doi.org/10.30656/jsii.v10i1.5785

Herlambang, H. P., Saputra, F., Prasetiyo, M. H., Puspitasari, D., & Nurlaela, D. (2023). Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor. Jurnal INSAN - Journal of Information System Management Innovation, 3(1), 21–28. https://doi.org/10.31294/jinsan.v3i1.2097

Joergensen E Munthe, C., Astuti Hasibuan, N., & Hutabarat, H. (2022). Penerapan Algoritma Text Mining Dan TF-RF Dalam Menentukan Promo Produk Pada Marketplace. Resolusi : Rekayasa Teknik Informatika Dan Informasi, 2(3), 110–115. https://doi.org/10.30865/resolusi.v2i3.309

Khoiriyah, R., & Afriati, D. (2022). Analisis Proses Bisnis Dan Layanan Penerbit Buku Online Andamari Creative. Jurnal Simasi: Jurnal Ilmiah Sistem Informasi, 2(1), 13–21.

Narendra, L. W. (2022). Topic Modeling in Conversational Dialogs for Naming Intent Labels Using LDA. JTECS : Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem Dan Komputer, 2(1), 65. https://doi.org/10.32503/jtecs.v2i1.1820

Pratiwi, R. W., H, S. F., Dairoh, D., Af’idah, D. I., A, Q. R., & F, A. G. (2021). Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM). Journal of Informatics, Information System, Software Engineering and Applications (INISTA), 4(1), 40–46. https://doi.org/10.20895/inista.v4i1.387

Puspita, A., & Kalifia, A. D. (2024). Gudang Jurnal Multidisiplin Ilmu Analisi Depresi Selama Pandemi Covid-19 Menggunakan Algoritma Random Forest. 2, 336–338.

Putra, F., Tahiyat, H. F., Ihsan, R. M., Rahmaddeni, R., & Efrizoni, L. (2024). Penerapan Algoritma K-Nearest Neighbor Menggunakan Wrapper Sebagai Preprocessing untuk Penentuan Keterangan Berat Badan Manusia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 273–281. https://doi.org/10.57152/malcom.v4i1.1085

Sinambela, D. P., Naparin, H., Zulfadhilah, M., & Hidayah, N. (2023). Implementasi Algoritma Decision Tree dan Random Forest dalam Prediksi Perdarahan Pascasalin. Jurnal Informasi Dan Teknologi, 5(3), 58–64. https://doi.org/10.60083/jidt.v5i3.393

Tuasamu, Z., M. Lewaru, N. A. I., Idris, M. R., Syafaat, A. B. N., Faradilla, F., Fadlan, M., Nadiva, P., & Efendi, R. (2023). Analisis Sistem Informasi Akuntansi Siklus Pendapatan Menggunakan DFD Dan Flowchart Pada Bisnis Porobico. Jurnal Bisnis Manajemen, 1(2), 495–510.

##submission.downloads##

Diterbitkan

2025-09-18

Cara Mengutip

Setiyawan, M. A., & Kenoya, E. D. (2025). PENGEMBANGAN CHATBOT TELEGRAM FAQ LAYANAN ICT MENGGUNAKAN ALGORITMA RANDOM FOREST DAN METODE WORD2VEC. INTI Nusa Mandiri, 20(1), 150–162. https://doi.org/10.33480/inti.v20i1.5766