
 

VOL. 9. NO. 1 AUGUST 2023. 
 . 

DOI: 10.33480/jitk.v9i1.4191. 
 

 

1 

PREDICTION PERFORMANCE OF AIRPORT TRAFFIC USING BILSTM 
AND CNN-BI-LSTM MODELS 

 
Willy Riyadi1*; Jasmir2 

 
Sistem Komputer 1,2 

Universitas Dinamika Bangsa 
https://unama.ac.id/ 

wriyadi5@gmail.com1*, ijay_jasmir@yahoo.com2  
 

(*) Corresponding Author  
 

Abstract— The COVID-19 pandemic has had a significant and enduring impact on the aviation industry, 
necessitating the accurate prediction of airport traffic. This study compares the predictive accuracy of biLSTM 
(Bidirectional Long Short-Term Memory) and CNN-biLSTM (Convolutional Neural Network-Bidirectional 
Long Short-Term Memory) models using various optimization techniques such as RMSProp, Stochastic 
Gradient Descent (SGD), Adam, Nadam, and Adamax. The evaluation is based on Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE) indices. In the United States, the biLSTM model utilizing the 
Nadam optimizer achieved an MAPE score of 9.76%. On the other hand, the CNN-biLSTM model utilizing the 
Nadam optimizer demonstrated a slightly improved MAPE score of 9.62%. For Australia, the biLSTM model 
using the Nadam optimizer obtained an MAPE score of 31.52%. However, the CNN-biLSTM model employing 
the RMSprop optimizer had a marginally higher MAPE score of 33.33%. In Chile, the biLSTM model using the 
Adam optimizer obtained an MAPE score of 44.04%. Conversely, the CNN-biLSTM model using the RMSprop 
optimizer had a slightly higher MAPE score of 44.09%. Lastly, in Canada, the biLSTM model using the Nadam 
optimizer achieved a comparatively low MAPE score of 14.99%. Similarly, the CNN-biLSTM model utilizing the 
Adam optimizer demonstrated a slightly better MAPE score of 14.75%. These results highlight that the choice 
of optimization technique, model architecture, and balanced dataset can significantly influence the prediction 
accuracy of airport traffic. 
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Intisari— Pandemi COVID-19 telah memiliki dampak signifikan dan berkelanjutan pada industri 
penerbangan, yang membutuhkan prediksi yang akurat terhadap lalu lintas bandara. Penelitian ini 
membandingkan akurasi prediksi dari model biLSTM (Bidirectional Long Short-Term Memory) dan CNN-
biLSTM (Convolutional Neural Network-Bidirectional Long Short-Term Memory) dengan menggunakan 
berbagai teknik optimasi seperti RMSProp, Stochastic Gradient Descent (SGD), Adam, Nadam, dan Adamax. 
Evaluasi dilakukan berdasarkan indeks Mean Absolute Error (MAE) dan Mean Absolute Percentage Error 
(MAPE). Di Amerika Serikat, model biLSTM yang menggunakan optimasi Nadam berhasil mencapai skor 
MAPE sebesar 9,76%. Di sisi lain, model CNN-biLSTM yang menggunakan optimasi Nadam menunjukkan 
peningkatan skor MAPE yang sedikit lebih baik yaitu 9,62%. Untuk Australia, model biLSTM yang 
menggunakan optimasi Nadam memperoleh skor MAPE sebesar 31,52%. Namun, model CNN-biLSTM yang 
menggunakan optimasi RMSProp memiliki skor MAPE yang sedikit lebih tinggi yaitu 33,33%. Di Chili, model 
biLSTM yang menggunakan optimasi Adam memperoleh skor MAPE sebesar 44,04%. Sebaliknya, model CNN-
biLSTM yang menggunakan optimasi RMSProp memiliki skor MAPE yang sedikit lebih tinggi yaitu 44,09%. 
Terakhir, di Kanada, model biLSTM yang menggunakan optimasi Nadam mencapai skor MAPE yang relatif 
rendah yaitu 14,99%. Demikian pula, model CNN-biLSTM yang menggunakan optimasi Adam menunjukkan 
skor MAPE yang sedikit lebih baik yaitu 14,75%. Hasil-hasil ini menyoroti bahwa pilihan teknik optimasi, 
arsitektur model, dan dataset yang seimbang dapat secara signifikan mempengaruhi akurasi prediksi 
terhadap lalu lintas bandara. 
 
Kata Kunci: Lalu lintas Bandara, biLSTM, CNN-biLSTM, Covid19, Prediksi. 
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INTRODUCTION 
 

Airports play a vital role in the transportation 
industry by serving as crucial terminals for aircraft 
takeoff, landing, and passenger transfer [1].  
However, the COVID-19 pandemic in 2020 had a 
profound impact on the aviation sector. During the 
peak period from March to June, there was a 
significant decrease in passenger numbers, and 
approximately 17,000 aircraft fleets were non-
operational [2].  Fluctuations in air traffic are a 
common occurrence in the aviation industry [3], 
and these fluctuations vary over time, making them 
suitable for analysis as Time Series data [4]. 

Over the past few decades, the air transport 
industry has been focusing on traffic forecasting 
methodologies. While formal studies and academic 
research on this topic have emerged relatively 
recently (around three decades ago) [5], various 
forecasting techniques have been developed to 
analyze Time Series data. These techniques include 
statistical methods, computational intelligence, or a 
combination of both [6],[7]. The primary objective 
of Time Series data analysis is to utilize historical 
observations to develop accurate models that 
reflect the underlying structure of the series [8]. 
These models enable the prediction and 
classification of future events [9]. 

In recent years, deep learning methods and 
techniques, particularly bidirectional Long short-
term memory (biLSTM) and Convolutional Neural 
Network (CNN), have gained significant attention in 
academic research [10]. These methods have been 
successfully applied to real-world prediction 
problems, including the analysis of Time Series data. 
In particular, biLSTM and CNN models have 
emerged as popular and effective approaches for 
predicting traffic flow [11].  

To utilize these models, the data undergoes 
preprocessing before being inputted into the CNN 
model to extract spatial features. However, CNNs 
alone lack the ability to capture sequential 
correlations in the data. To address this limitation, 
the biLSTM model, which propagates signals both 
forward and backward in time, is employed. This 
allows the biLSTM model to excel in tasks that 
require sequential modeling, outperforming 
traditional LSTM models to extract temporal 
features that contribute to predicting performance 
[12]. 

Several previous studies have focused on 
analyzing and predicting various aspects of airports. 
For instance, [13] conducted a study on aircraft 
track anomaly detection using the Multidimensional 
Outlier Descriptor (MOD) and the Bidirectional 

Long-Short Time Memory network (Bi-LSTM). This 
research demonstrated improved accuracy and 
recall in anomaly detection. In another study by 
[14], a multi-time window convolutional neural 
network-Bidirectional Long Short-Term Memory 
(CNN-BiLSTM) neural network was proposed for 
active hazard identification of APU in civil aircraft. 
This model exhibited the best identification 
accuracy and F1 values, as well as effective 
identification performance for imbalanced data 
samples.  

Furthermore, [15] combined the CNN-BiLSTM 
model to forecast short-term traffic flow on 
highways, demonstrating enhanced prediction 
accuracy compared to other models. Another study 
by [16], focused on traffic states prediction in air 
transportation systems. By utilizing auto-regressive 
integrated moving average (ARIMA) and 
Bidirectional long short-term memory (LSTM), this 
approach achieved the best accuracy measurement 
for long-term prediction of ETA given departure 
time, with an accuracy rate of 92% and a mean 
absolute error (MAE) of 6.09 minutes. 

This paper presents our primary contributions, 
which involve a comparative analysis of the 
performance of biLSTM and CNN-biLSTM models 
for predicting airport traffic. We explore the use of 
different optimizers, including RMSProp, Stochastic 
Gradient Descent (SGD), Adam, Nadam, and 
Adamax, to assess their impact on the models' 
predictive capabilities. The analysis focuses on 
airport traffic Time Series data obtained from 
various regions, namely the USA, Canada, Chile, and 
Australia. 

To evaluate the performance of the models, we 
employ a range of evaluation indices. These indices 
serve to compare our models with previous 
approaches, specifically autoregressive moving 
average (ARMA), LSTM and CNN-LSTM models. The 
evaluation indices used include Mean Absolute 
Error (MAE) and Mean Absolute Percentage Error 
(MAPE). Through these evaluations, we aim to 
determine the effectiveness and accuracy of the 
biLSTM and CNN-biLSTM models in predicting 
airport traffic, providing valuable insights for future 
studies in this field. 

 
MATERIALS AND METHODS 

This research involved a series of systematic stages, 
encompassing data collection, data preprocessing, 
data partitioning into train and test sets, data 
modeling using biLSTM and CNN-biLSTM, 
parameter tuning, prediction results, and 
performance evaluation using metrics such as Mean 
Absolute Error (MAE) and Mean Absolute 
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Percentage Error (MAPE). The process and 
outcomes of these stages are illustrated in Figure 1. 

Figure 1. Research Stages 

A. Dataset 

In this research, we make use of a collection of 
data that covers a period from March 16, 2020, to 
December 12, 2020. This dataset is easily available 
on Kaggle [17]. The dataset consists of a single 
numerical characteristic that can be rearranged or 
modified in its arrangement. The dataset consisted 
of a single numerical attribute that could be 
transposed, comprising a total of 7247 data points 
for 'PercentOfBaseline' with daily aggregation. 
These data points were collected from various 
airports in the United States, Canada, Chile, and 
Australia refer to Table 1 for a detailed information.  
 

Table 1. Airport name and location 
Airport Name City, Country 

Boston Logan International Boston, USA 
Calgary International Calgary, Canada 
Charlotte Douglas International Charlotte, USA 
Chicago O’Hare International Chicago, USA 
Dallas/Fort Worth International Grapevine, USA 
Daniel K. Inouye International Honolulu, USA 
Denver International Denver, USA 
Detroit Metropolitan Wayne 
County 

Romulus, USA 

Edmonton International Leduc County, Canada 
Halifax International Halifax, Canada 
Hamilton International Hamilton, Canada 
Hartsfield-Jackson Atlanta 
International 

College Park, USA 

John F. Kennedy International New York, USA 
Kingsford Smith Sydney, Australia 
LaGuardia New York, USA 
Los Angeles International Los Angeles, USA 
McCarran International Paradise, USA 
Miami International Miami Springs, USA 
Montreal Mirabel Mirabel, Canada 
Montreal Trudeau Quebec, Canada 
Newark Liberty International Newark, USA 
San Francisco International South San Francisco, 

USA 
Santiago International Airport Santiago, Chile 
Seattle-Tacoma International SeaTac, USA 
Toronto Pearson Mississauga, Canada 
Vancouver International Richmond, Canada 
Washington Dulles International Floris, USA 
Winnipeg International Winnipeg, Canada 

B. Data Preprocessing 

To ensure the relevance and accuracy of the 
analysis, we employed a filtering process to 
eliminate irrelevant data. This process allowed us to 
focus solely on the relevant parameters, including 
'Date,' 'AirportName,' 'PercentOfBaseline,' 'City,' 
'State,' and 'Country.' 

In order to standardize the data and maintain 
the relative relationships between different 
features, we applied the MinMaxScaler to rescale 
the 'PercentOfBaseline' data. This scaling process 
transforms the attribute values or variables into a 
specified range, typically between 0 and 1. By doing 
so, we ensure that the data values for each attribute 
are standardized and consistent across the dataset 
[18]. This scaling process is represented by 
equation (1), where the MinMaxScaler adjusts the 
values accordingly:  

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 ...........................................................  (1) 

 
C. Train/Test Split 

To facilitate calculations and address the issue of 
imbalanced distribution of airport data across 
different countries, we devised a solution. We 
created an average airport baseline for each country 
on a daily basis. This was achieved by utilizing the 
Pandas dataframe.groupby().mean() function. By 
applying this function, we were able to group the 
dataset based on countries and calculate the mean 
value of the airport data for each day. 

This approach provided us with a more 
representative and balanced measure for the 
airport data of each country, enabling easier 
analysis and comparison across different locations. 
To create this average baseline, we divided the 
dataset into an 80/20 ratio. Then, we specifically 
applied the mean function to the countries of the 
USA, Canada, Chile, and Australia. As a result, we 
calculated the average baseline values for these 
countries, which are presented in Table 2: 

 
Table 2. Train/Test Split 

Country 
Training 

(80%) 
Testing 
(20%) 

Total 
(100%) 

United States of 
America 

210 52 262 

Chile 191 47 238 
Canada 210 52 262 
Australia 206 51 257 

 
D. Data Modeling 

The Bi-directional LSTM (BiLSTM) is a type of 
neural network that has been used for solving 
classification or regression problems. It is designed 
to handle long-term dependencies in data by 
incorporating LSTM (Long Short-Term Memory) 

Dataset

Data 
Preprocessing

• Data Filtering
• MinMaxScaler

Train/Test 
Split

Data 
Modeling

• biLSTM
• CNN-
biLSTM

Parameter 
Tuning with

• RMSprop
• SGD

• Adam
• Nadam
• Adamax

Performance 
Metric

• MAE
• MAPE
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units. Our BiLSTM Model Parameter settings are 
presented in Table 3. 

Table 3. CNN-BiLSTM Model Parameter Settings 
Model Parameter Value 

biLSTM unit 64 
biLSTM activation function ReLu 
biLSTM return_sequences True 
Dropout 0.2 
biLSTM unit 32 
biLSTM activation function ReLu 
biLSTM return_sequences False 
Dense units 1 

 
BiLSTM network takes advantage of future 

information by including two sets of LSTM layers: 
one that processes the data in a forward direction 
and another that processes it in a backward 
direction [19]. To prevent the model from 
overfitting, a dropout layer is employed. In the final 
stage of the network, a fully connected layer is used 
to leverage the spatial correlation patterns that 
have been extracted from the previous layers. These 
patterns capture relationships between the input 
data and are used to predict future values. This 
enables the model to make accurate estimations 
about upcoming outcomes. Figure 2, illustrates the 
architecture of our biLSTM network used in this 
research based on our model parameter settings: 

 
Figure 2. Our Flow Diagram LSTM Model  

 
The CNN-biLSTM model combines the 

strengths of a Conv1d block and a biLSTM block to 
effectively process input data [20]. Our CNN-
BiLSTM Model Parameter settings are presented in 
Table 4: 

Table 4. CNN-BiLSTM Model Parameter Settings 

Model Parameter Value 
Conv1d filters 64 
Conv1d kernel_size 3 
Conv1d activation function ReLu 
Conv1d padding casual 
MaxPooling1d pool_size 3 
MaxPooling1d strides 1 
MaxPooling1d padding Same 
Dropout 0.2 
biLSTM unit 64 
biLSTM activation function ReLu 
biLSTM return_sequences True 
biLSTM unit 32 
biLSTM activation function ReLu 
biLSTM return_sequences False 
Dense units 1 

The Conv1d block is utilized to extract complex 
characteristics from the input matrix by applying a 
one-dimensional convolutional operation. The 
MaxPooling1D layer is employed to reduce the size 
of the one-dimensional input data. It does this by 
selecting the maximum value within a window of 
data as a representative value.  

The biLSTM block plays a crucial role in 
understanding the temporal dependencies between 
variables. It processes the input data in both the 
forward and backward directions, enabling it to 
comprehend the context from both past and future 
perspectives. This bidirectional approach helps the 
model capture and learn the relationships and 
dependencies within the data more effectively. To 
address the issue of overfitting, a Dropout layer is 
utilized.  In the final stage, a fully connected layer is 
used to make predictions based on the spatial 
correlation patterns that have been extracted by the 
preceding layers.  

This layer takes advantage of the relationships 
between different parts of the input data to predict 
future values accurately. Figure 3 represents the 
architecture of our CNN-biLSTM model based on 
our model parameter settings to process the data 
and make informed estimations about the future 
values in a time series. 

 
Figure 3. Our Flow Diagram CNN-biLSTM Model 

 
E. Performance Metric 

 In order to evaluate and compare the 
performances of the implemented methods, 
Equation (2) is used to calculate Mean Absolute 
Error (MAE) from a sample of 𝑁 data points. It 
provides a measure of the average magnitude of the 
prediction errors, regardless of their direction. 
Assume 𝑦𝑖  and are �̂�𝑖  variables of paired 
observations that express the same phenomenon.  

𝑀𝐴𝐸 =
1

𝑁
∑  𝑁

𝑖=1 |𝑦𝑖 − �̂�| ..................................................... (2) 

Equation (3) is used to calculate the Mean Absolute 
Percentage Error (MAPE). This metric takes into 
account the relative magnitude of the errors and 
provides an indication of the accuracy in percentage 
terms. Where 𝑦𝑖  is the actual airport baseline value 
and �̂�𝑖  is the predicted value 𝑁. 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑  𝑛

𝑖=1 |
𝑦𝑖−�̂�𝑖

𝑦𝑖
| ............................................... (3) 
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RESULTS AND DISCUSSION 
 

In this study, we performed an analysis utilizing 
biLSTM (Bidirectional Long Short-Term Memory) 
and CNN-biLSTM (Convolutional Neural Network-
Bidirectional Long Short-Term Memory) models to 
predict the airport's percentage of baseline. We 
applied the model parameter settings, as described 
earlier, along with a fixed number of epochs set to 
60 and a batch size of 64. To evaluate the 
performance of the models, we employed two 
metrics: Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE). 

In the CNN-biLSTM model, we introduced a 
specific modification by adding extra Conv1d and 
MaxPooling layers to the existing biLSTM model. 
Figure 4 provides a visual representation of the 
CNN-biLSTM model structure for USA. 

 

Figure 4. CNN-BiLSTM model structure 
 

Table 5 presents a comprehensive summary of 
the performance metric scores obtained for 
different countries, specifically the USA, Canada, 
Chile, and Australia. Throughout the analysis, we 
employed various optimization techniques, namely 
RMSProp, Stochastic Gradient Descent (SGD), Adam, 
Nadam, and Adamax, to train the biLSTM and CNN-
biLSTM models. The models were trained using 
Google Colaboratory, a cloud-based development 
platform. By comparing the scores achieved with 
these optimization techniques, we can assess the 
effectiveness of the models in predicting the airport 
percentage of baseline for each country. 

Table 5. Performance in different optimizer 

Country Model Optimizer MAE MAPE 

United States 
of America 

biLSTM 

RMSprop 0.0564 0.1014 
SGD 0.0691 0.1229 
Adam 0.0562 0.1017 
Nadam 0.0535 0.0976 
Adamax 0.0554 0.0992 

CNN-
biLSTM 

RMSprop 0.0541 0.0971 
SGD 0.0678 0.1199 
Adam 0.0532 0.0976 
Nadam 0.0521 0.0962 
Adamax 0.0546 0.0989 

Australia 

biLSTM 

RMSprop 0.0722 0.3252 
SGD 0.1400 0.4721 
Adam 0.0699 0.3154 
Nadam 0.0721 0.3152 
Adamax 0.0725 0.3224 

CNN-
biLSTM 

RMSprop 0.0786 0.3330 
SGD 0.1253 0.4547 

Adam 0.0780 0.3358 
Nadam 0.0804 0.3371 
Adamax 0.0796 0.3411 

Chile 

biLSTM 

RMSprop 0.0890 0.4371 
SGD 0.1113 0.5223 
Adam 0.0869 0.4404 
Nadam 0.0886 0.4421 
Adamax 0.0872 0.4473 

CNN-
biLSTM 

RMSprop 0.0872 0.4409 
SGD 0.1188 0.5496 
Adam 0.0884 0.4469 
Nadam 0.0895 0.4455 
Adamax 0.0879 0.4495 

Canada 

biLSTM 

RMSprop 0.0978 0.1506 
SGD 0.0991 0.1539 
Adam 0.0998 0.1529 
Nadam 0.0970 0.1499 
Adamax 0.0993 0.1506 

CNN-
biLSTM 

RMSprop 0.0977 0.1480 
SGD 0.0996 0.1552 
Adam 0.0976 0.1475 
Nadam 0.1022 0.1505 
Adamax 0.1017 0.1512 

 
Table 5 illustrates the performance of different 

optimization techniques for biLSTM and CNN-
biLSTM models across various countries. In the 
United States, both the biLSTM and CNN-biLSTM 
models exhibited superior performance when 
trained with the Nadam optimizer, surpassing the 
results achieved with other optimizers. For 
Australia, the biLSTM model yielded better 
predictions using the Nadam optimizer, while the 
CNN-biLSTM model showed improved performance 
with the RMSprop optimizer. In Chile, after 
parameter tuning, the biLSTM model coupled with 
the Adam optimizer, and the CNN-biLSTM model 
utilizing the RMSprop optimizer, delivered the best 
results. In Canada, the biLSTM model demonstrated 
better performance with the Nadam optimizer, 
while the CNN-biLSTM model showed enhanced 
results with the Adam optimizer. 

To provide a visual representation of these 
results, figures 5 until figure 8 present the 
prediction outcomes of the best optimizers for the 
biLSTM and CNN-biLSTM models in estimating the 
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airport percentage of baseline. The red line 
represents the actual airport percentage of baseline, 
while the blue line depicts the predictions 
generated by the biLSTM model. The green line 
illustrates the predictions made by the CNN-biLSTM 
model. By examining these graphical 
representations, we can evaluate the accuracy and 
effectiveness of the chosen optimizers in predicting 
the airport percentages of baseline. 
 

 
Figure 5. Best Prediction result in USA 

Figure 6. Best Prediction result in Australia 

 
Figure 7. Best Prediction result in Chile 

 

 
Figure 8. Best Prediction result in Canada 

 
CONCLUSION 

 
Due to the imbalanced dataset and the limited 

availability of data spanning only about 10 months, 
the prediction performance varied across different 
countries, namely the USA, Canada, Chile, and 
Australia. In the United States, the biLSTM model 
utilizing the Nadam optimizer achieved a Mean 
Absolute Error (MAE) score of 0.0535 and a Mean 
Absolute Percentage Error (MAPE) score of 0.0976 
(9.76%). Conversely, the CNN-biLSTM model 
utilizing the Nadam optimizer achieved a slightly 
higher MAE score of 0.0521 and a slightly improved 
MAPE score of 0.0962 (9.62%). 

For Australia, the biLSTM model employing the 
Nadam optimizer obtained a MAE score of 0.0721 
and an MAPE score of 0.3152 (31.52%). In contrast, 
the CNN-biLSTM model utilizing the RMSprop 
optimizer exhibited a slightly higher MAE score of 
0.0786 and a marginally higher MAPE score of 
0.3330 (33.33%). 

In the case of Chile, the biLSTM model using the 
Adam optimizer achieved a MAE score of 0.0869 
and an MAPE score of 0.4404 (44.04%). Conversely, 
the CNN-biLSTM model employing the RMSprop 
optimizer showed a slightly higher MAE score of 
0.0872 and a slightly higher MAPE score of 0.4409 
(44.09%). 

In Canada, the biLSTM model trained with the 
Nadam optimizer obtained a MAE score of 0.0970 
and an impressively low MAPE score of 0.1499 
(14.99%). Similarly, the CNN-biLSTM model 
utilizing the Adam optimizer demonstrated a 
slightly higher MAE score of 0.0976 and a slightly 
better MAPE score of 0.1475 (14.75%). 

To enhance the accuracy of future predictions, 
it is recommended to conduct further research by 
incorporating a balanced dataset specific to each 
country. This approach can help address the issue of 
data imbalance and potentially lead to improved 
prediction results. 
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