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Abstract— In this research, a quantum computational approach was employed to enhance the Adaline and 
Hebbian algorithms. A comparative analysis of these algorithms was conducted, focusing on their performance, 
specifically the accuracy of test outcomes. The investigation was carried out utilizing a hepatitis prediction 
dataset comprising data related to individuals diagnosed with hepatitis, with observations on whether they 
were alive or deceased. The dataset encompassed 19 distinctive symptoms, with 18 symptoms utilized for 
hepatitis pattern recognition and ten symptoms employed as simulated test data for the Adaline and Hebbian 
algorithms integrated with quantum computation methodologies. The findings of the study revealed 
advancements in the Adaline and Hebbian algorithms, as influenced by the integration of a quantum 
computational framework. Notably, the simulation testing outcomes exhibited a remarkable accuracy rate of 
100% for both the Adaline and Hebbian algorithms. Consequently, the results underscore the comparable 
performance of the two algorithms, highlighting their identical accuracy levels. 

Keywords: Adaline, Hebbian, Pattern Recognition, Quantum Bit, Quantum Computing. 

Intisari— Dalam penelitian ini, pendekatan komputasi kuantum digunakan untuk meningkatkan algoritma 
Adaline dan Hebbian. Analisis komparatif terhadap algoritme ini dilakukan, dengan fokus pada kinerjanya, 
khususnya keakuratan hasil tes. Investigasi dilakukan dengan menggunakan kumpulan data prediksi hepatitis 
yang terdiri dari data yang terkait dengan individu yang didiagnosis dengan hepatitis, dengan pengamatan 
apakah mereka masih hidup atau sudah meninggal. Dataset ini mencakup 19 gejala yang berbeda, dengan 18 
gejala yang digunakan untuk pengenalan pola hepatitis dan sepuluh gejala yang digunakan sebagai data uji 
simulasi untuk algoritma Adaline dan Hebbian yang diintegrasikan dengan metodologi perhitungan kuantum. 
Temuan dari penelitian ini mengungkapkan kemajuan dalam algoritma Adaline dan Hebbian, yang 
dipengaruhi oleh integrasi kerangka kerja komputasi kuantum. Khususnya, hasil pengujian simulasi 
menunjukkan tingkat akurasi yang luar biasa yaitu 100% untuk algoritma Adaline dan Hebbian. Hasilnya, 
hasil tersebut menggarisbawahi kinerja yang sebanding dari kedua algoritma tersebut, yang menyoroti 
tingkat akurasi yang sama. 

Kata Kunci: Adaline, Hebbian, Pengenalan Pola, Bit Kuantum, Komputasi Kuantum. 
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INTRODUCTION 
 

Contemporary conventional computing 
operates by manipulating binary bits, 
representing information as either 0 or 1. The 
collective action of millions of these bits enables 
the rapid processing and presentation of data, a 
familiar experience on devices like smartphones, 
laptops, and cloud servers. In contrast, quantum 
computers leverage principles from quantum 
mechanics to process information. At the core of 
this quantum computing paradigm are qubits, 
which, unlike classical bits limited to 0 or 1 (or 
their probabilistic blend), can exist in a 
superposition—a complex combination of states 
weighted by their respective values [1]. 

Emerging quantum computational 
technology harnesses quantum phenomena to 
expedite algorithms significantly, often achieving 
exponential acceleration compared to their 
classical counterparts. Within the framework of 
quantum computing, particles exhibit 
superposition as qubits, analogous to classical 
bits, with the potential to form entangled states. 
For instance, the representation of |11000110> 
demonstrates the utilization of qubits. 
Furthermore, qubits can assume a superposition 
state, as denoted in the equation [2] [3]. 

There are many studies on the Adaline 
algorithm, including research that uses the 
ADALINE neural network to detect harmonics in 
shunt active power filters. This method is 
intended to improve the efficiency and accuracy 
of harmonic detection in power systems. By 
implementing ADALINE neural network 
technology, this research has contributed to 
developing better technology to overcome 
harmonic problems in power systems[4]. 

This paper introduces a novel prototype 
for an enhanced smart home controller, which 
incorporates a neural network-based algorithm 
to facilitate decision-making and actions based 
on current conditions. Diverging from prior 
approaches, this design harnesses IoT (Internet 
of Things) technology alongside a neural 
network-based algorithm to refine controller 
functionality. Given the diverse array of sensors, 
actuators, smart appliances, and mobile 
terminals typically present in a smart home, 
internet connectivity is imperative to enable 
communication and service provision for 
occupants. The development of the proposed 
controller involves several stages, including the 
implementation of the ADALINE (Adaptive 
Linear) neural network method, prototype 
design, and validation via mean average 
percentage error (MAPE) calculation. This 
prototype amalgamates the functionalities of 

multiple household appliances into a single 
application controllable via smartphone. 
ADALINE serves as the algorithm for output 
prediction when the controller operates in 
automatic mode. While the accuracy attained 
may not currently meet expectations, further 
testing on larger datasets is anticipated to yield 
improved results. The findings presented in this 
paper aim to foster the adoption of smart 
technology in more Indonesian households [5]. 

Quantum computing stands among the 
burgeoning technologies, with various 
communities and research institutions striving 
to translate theoretical advancements into 
tangible applications. Concurrently, Artificial 
Intelligence (AI) represents another rapidly 
evolving domain, gaining stability over time. The 
primary focus of this paper is to assess the 
influence of quantum computing research on the 
development of AI applications. To achieve this 
objective, computational methodologies are 
employed, enabling a conclusive analysis of the 
escalating impact of quantum computing 
research on specific AI applications. 
Furthermore, this paper explores the potential 
implications of quantum computing within the 
realm of artificial intelligence [6]. 

This review paper offers an original 
examination of quantum computing's potential 
contributions to healthcare systems, focusing on 
its capacity to transform compute-intensive 
healthcare activities like drug discovery, 
personalized medicine, DNA sequencing, medical 
imaging, and operational optimization. By 
thoroughly analyzing existing literature, we have 
constructed categorizations spanning various 
aspects, including background and enabling 
technologies, applications, prerequisites, 
architectures, security considerations, 
unresolved issues, and future research 
trajectories. This comprehensive approach 
provides a panoramic overview of quantum 
computing's role in healthcare. Our review aims 
to assist both novice and seasoned researchers in 
quantum computing and healthcare, facilitating 
their comprehension of the current research 
landscape, identification of potential 
opportunities and obstacles, and informed 
decision-making in the development of new 
architectures and applications for quantum 
computing within healthcare settings [7]. 

We introduce a novel quantum algorithm 
designed for data classification, drawing upon 
the nearest-neighbor learning approach. Our 
classification process unfolds in two key phases: 
initially, data within identical classes are 
segmented into smaller clusters, facilitated by 
sublabels that aid in delineating boundaries 
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between data points bearing different labels. 
Subsequently, we devise a quantum circuit for 
classification, incorporating multi-control gates. 
Notably, our algorithm stands out for its ease of 
implementation and efficiency in predicting 
labels for test data. To underscore the efficacy of 
our approach, we employ it to construct a phase 
transition diagram for the metal-insulator 
transition of VO2. Despite utilizing limited 
experimental data for training, VO2, a 
prototypical strongly correlated electron 
material, our algorithm demonstrates promising 
results. This transition between metallic and 
insulating phases has garnered significant 
interest in condensed matter physics. 
Furthermore, we validate our algorithm through 
experiments involving the classification of 
randomly generated data and the classification of 
entanglement for various Werner states. Notably, 
our algorithm successfully handles scenarios 
where training sets cannot be partitioned by a 
single curve, necessitating the use of multiple 
curves for perfect separation. These initial 
findings highlight the substantial potential of our 
approach for addressing diverse classification 
problems, particularly in delineating different 
phases in materials[8]. 

This study introduces a novel approach for 
efficient harmonic detection to enable real-time 
generation of the reference current supplied to a 
shunt active power filter. Utilizing the ADALINE 
neural network, our proposed method consists of 
a single layer comprising 101 nodes responsible 
for generating coefficients, known as weights, for 
the reference current model. This innovation 
effectively addresses the limitations of existing 
technology, such as the instantaneous power 
theory (PQ). We implemented the proposed 
method on the TMS320F28335 DSP board and 
evaluated its performance against MATLAB with 
Simulink in a hardware-in-loop (HIL) setup. Our 
method demonstrates excellent performance by 
generating precise reference current rapidly 
with minimal computational complexity. 
Additionally, it efficiently mitigates individual 
harmonic currents, resulting in a significant 
reduction in the percentage of total harmonic 
distortion (%THD) in the current, aligning with 
IEEE standards, while maintaining power factor 
unity. [9]. 

This research discusses the evolution and 
combination of Hebbian learning rules to 
increase generalization by reducing the number 
of regulations. This research focuses on 
developing an effective learning strategy for 
neural networks by integrating various Hebbian 
learning rules into a smaller number but with 
better generalization capabilities. This approach 

has important implications in the development of 
artificial intelligence, especially in understanding 
how to improve the learning capabilities of 
neural networks in handling complex and varied 
information. Thus, this research can significantly 
contribute to the fields of artificial intelligence 
and cognitive science[10]. 

This research develops synaptic plasticity 
rules that consider the strong Allee effect applied 
in an unsupervised learning environment. This 
aims to increase our understanding of how such 
authorities can improve automatic learning and 
adaptation capabilities in neural networks or 
other artificial intelligence systems. This 
research has the potential to provide valuable 
insight into how the Allee effect can be exploited 
in unsupervised learning environments, which 
could have a significant impact on the fields of 
artificial intelligence and cognitive science[11]. 

Research discusses learning rules for 
quantum neural networks inspired by Hebbian 
learning. This research aims to develop a 
learning method that suits the characteristics of 
quantum neural networks by utilizing Hebbian 
learning principles, which have been proven 
effective in classical neural networks. By 
integrating Hebbian learning concepts into 
quantum neural networks, this research may 
contribute to understanding how classical 
learning principles can be applied in quantum 
computing. The implications of this research 
could be related to developing more 
sophisticated and practical applications of 
quantum neural networks in various fields, 
including computing and artificial 
intelligence[12]. 

Research analyzes the feedforward 
compensation of piezoelectric actuators using 
artificial neural networks with conventional PID 
and single-neuron PID controllers based on 
Hebb's learning rule. This research aims to 
develop an effective compensation method to 
improve the performance of piezoelectric 
actuators by using artificial neural networks and 
the mentioned PID controller. By integrating 
Hebb's learning principles into a PID controller, 
this research has provided a better 
understanding of how to leverage artificial 
intelligence to improve the performance of 
piezoelectric actuator control systems. The 
implications of this research relate to developing 
more sophisticated and efficient control 
technologies in various applications, including 
precision techniques in fields such as robotics, 
automation, and mechatronics technology[13]. 

Based on Hebb's learning rule, research 
focuses on single-neuron adaptive hysteretic 
compensation of piezoelectric actuators. This 
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research aims to develop an effective method to 
overcome the hysteretic problem in piezoelectric 
actuators by applying Hebb's learning principles 
at the single neuron level. By using Hebb's 
learning principles for actuator hysteretic 
compensation, this research contributed to our 
understanding of optimizing piezoelectric 
actuators' performance through artificial 
intelligence techniques. The implications of this 
research can be related to developing more 
sophisticated and efficient control technologies, 
especially in applications that require high 
accuracy and fast responsiveness, such as 
precision, sensory and industrial automation 
technologies[14]. 

This research uses an artificial neural 
network with the Hebb algorithm to optimize 
employee ability assessment. This research aims 
to develop an efficient method for transmitting 
employee abilities by applying Hebb's learning 
principles to artificial neural networks. By 
utilizing Hebb's algorithm in the assessment 
process, this research has provided valuable 
insight into how artificial intelligence can be 
applied in human resource management 
environments to increase accuracy and efficiency 
in assessing employee capabilities. The 
implications of this research relate to more 
sophisticated and efficient development 
assessment methods in human resource 
management, which can positively impact 
organizational human resource development 
and strategic planning[15]. 

This research focuses on the ability of local 
plasticity rules to learn deep representations 
using independent contrastive predictions. This 
research aims to develop a practical learning 
approach for building complex data 
representations by applying local plasticity rules 
and contrastive prediction. By exploiting local 
plasticity rules and contrastive prediction, this 
research has provided a better understanding of 
optimizing representation learning in the context 
of artificial intelligence. The implications of this 
research could be related to developing more 
sophisticated and efficient machine learning 
techniques, especially in applications that 
require a deep understanding of complex data 
representation, such as natural language 
processing, computer vision, and big data 
processing[16]. 

This research compares stacking 
modeling and the Cannistraci-Hebb adaptive 
automata network in predicting links in complex 
networks. This research aims to compare the 
performance of the two methods in predicting 
links in complex networks, focusing on the 
accuracy and efficiency of each approach. 

Through this comparison, this research provides 
valuable insight into the strengths and 
weaknesses of each method in dealing with link 
prediction problems in complex networks. The 
implications of this research can provide 
direction for developing more effective and 
accurate prediction methods in the context of 
complex network analysis, which can be helpful 
in various applications, such as social analysis, 
biological networks, and information 
systems[17]. 

This research discusses RS-HeRR, a neuro-
fuzzy system based on rough set-based Hebbian 
rule reduction. This system was developed to 
improve the ability of neuro-fuzzy systems to 
handle complex problems through the 
application of Hebbian rule reduction and the 
concept of rough sets. Through this approach, 
this research has made an essential contribution 
to developing intelligent systems that are more 
adaptive and responsive in handling complex 
and uncertain data. Combining the principles of 
Hebbian rule reduction and rough sets into a 
neuro-fuzzy system, this research has important 
implications in various applications that require 
complex data analysis, including in artificial 
intelligence, data analysis, and information 
systems[18]. 

This research discusses multi-context 
blind source separation using error-governed 
Hebbian rules. This approach may be developed 
to enable more accurate and efficient source 
separation in scenarios where the source is 
unknown or not directly accessible. This 
research has contributed to our understanding of 
effectively separating seeds in various complex 
and uncertain contexts using error-governed 
Hebbian rules. The implications of this research 
can be applied in multiple applications, including 
signal processing, audio processing, and data 
analysis involving the search or identification of 
hidden sources[19]. 

This research discusses meta-learning 
through Hebbian plasticity in random networks. 
Using this approach, this research aims to 
explore the ability of random networks to 
perform meta-learning via Hebbian plasticity 
mechanisms. Through the use of Hebbian 
plasticity, this research provides insight into how 
to increase network adaptability in the face of 
different tasks and learning environments. The 
implications of this research could be related to 
the development of more adaptive and 
responsive machine learning techniques, 
especially in the context of artificial intelligence 
and automated learning[20]. 

This study's main problem is finding other 
alternatives to the Adaline and Hebbian algorithms 
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by comparing the two algorithms using a quantum 
computation approach. Quantum computing in 
operation uses bits 1 or 0 or a combination of both 
with the hope that the algorithm's performance will 
increase. The main problem in this study is to find 
other alternatives to the Adaline and Hebbian 
algorithms by comparing the two algorithms using 
a quantum computation approach. Quantum 
computing in operation uses bits 1 or 0 or a 
combination of both with the hope that the 
algorithm's performance will increase. 

 
MATERIALS AND METHODS 

 
Here are the research stages that have been 

conducted, as shown in Figure 1. Research stages:  

 
Source: (Research Results, 2024) 

Figure 1.Research Stage 

The following is an explanation of figure 1 regarding 
the research stage: 

a. Data Collection:  
The study involves the compilation of data on 
hepatitis symptoms, focusing on the binary 
outcomes of survival or fatality. Sourced from 
Kaggle, the dataset encompasses 155 entries, 
featuring 19 attributes and a singular target 
variable denoting survival status. Prior to the 
data transformation phase, meticulous data 
cleansing procedures are employed to 
eliminate any erroneous or invalid entries. 
Specifically, the test subset comprises 10 data 
points alongside 18 distinct symptoms 
associated with hepatitis. 

b. Data Transformation:  
This phase primarily involves the conversion 
of the hepatitis prediction dataset into binary 
representations (1 or 0) for streamlined 
processing. 

c. Quantum Bit Transformation:  
Subsequently, the binary data undergoes a 
transformation into quantum bits, paving the 
way for the application of the Adaline 
algorithm. 

d. Algorithm Implementation:  
This stage entails two key processes. The initial 

step revolves around the implementation of 
the Adaline algorithm using quantum 
computing techniques, followed by the 
subsequent deployment of the Hebbian 
algorithm also leveraging quantum computing 
methodologies. 

e. Assessment: 
The study culminates in the development and 
assessment of the Adaline and Hebbian 
algorithms. Researchers conduct a 
comprehensive evaluation by comparing the 
performance of the two algorithms, 
emphasizing the accuracy of the test outcomes. 

The data set employed in this investigation 
concerns the prognosis of hepatic conditions among 
individuals, categorizing them based on their vitality 
status (i.e., survival or fatality). The data 
encompassed a comprehensive representation of 19 
distinctive symptoms. Among these, 18 signs were 
utilized specifically to recognize patterns associated 
with hepatitis, while 10 data points were employed 
for further analysis. 

To transform the data, specific rules were 
applied. These included criteria based on various 
symptoms such as age, steroid usage, antivirus 
medication, fatigue, malaise, anorexia, liver size, liver 
firmness, palpable spleen, presence of spider nevi, 
ascites, and varices.  

Moreover, parameters like bilirubin levels, 
alkaline phosphatase, serum glutamic oxaloacetic 
transaminase (SGOT) levels, albumin concentrations, 
and prothrombin time were considered in the data 
transformation process. The ultimate objective was to 
establish a clear distinction between patients deemed 
'live' (0) and those marked as 'die' (1). Here is table 1 
representing the rules for data transformation. 

Table 1. The rules for data transformation 
No Symptoms Condition Weight 

1 Age 
0-21 years 0 

Greater than 46 
years 

1 

2 Steroid 
Normal 0 

Abnormal 1 
3 Antivirus False 1 
  True 0 

4 Fatigue True 1 
  False 0 

5 Malaise True 1 
  False 0 

6 Anorexia No 1 
  True 0 

7 Liver big False 0 
  True 1 

8 Liver firm True 1 
  False 0 

9 
Spleen 

palpable 
False 0 

  True 1 
10 Spiders False 0 

  True 1 
11 Ascites True 1 

  False 0 

Data Collection

Data Transformation

Quantum Bit Transformation

Algorithm Implementation

Assessment
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No Symptoms Condition Weight 
12 Varices True 1 

  False 0 
13 Bilirubin Normal (0.4) 0 

  Abnormal 1 

14 Alkphosphate 
Normal (20-240 

IU/L) 
0 

  Abnormal 1 

15 Sgot 
Normal (5-40 

micro per liter) 
0 

  Abnormal 1 

16 Albumin 
Normal Adult (3.8-

5.1 gr/dl) 
0 

  

Abnormal,  Normal 
Children (4.0-5.8 

gr/dl), Normal 
Infant (4.4-5.4 

gr/dl) 

1 

17 
Protime 
Women 

(46-50 grams) 0 

 Protime Men (60 grams) 1 
18 Target Live 0 

  Die 1 

Source: (Research Results, 2024) 
 

The following is the formula for the 
development of Adaline and Hebbian's algorithm 
with quantum computing: 

Adaline algorithm formula with quantum 
computing: 

1. Determine the value of weight (wi), bias (b), 
learning rate (α), and tolerance limits 
according to circumstances. The learning 
rate is between 0.1 and 1 => 0 < α ≤ 1). 

2. As long as max ∆wi > tolerance limit, then: 
a. Calculate net=    

∑ |𝑋𝑖 >. |
𝑖

𝑊𝑗𝑖 > + 𝑏 

(1) 
b. Calculate y with:   

y = net 
 (2) 

c. Perform weight correction if y ≠ t : 

wi (new) = wi (old) + ∆w 
b(new) = b (old) + ∆b 

  (3) 
where : 

∆ w = α. (|t>-|y>). <xi| 
∆ b = α . (|t>-|y>) 

   (4) 
d. Repeat steps a to c if the maximum value 

of ∆wi is still greater than the tolerance 
value (entering the next epoch). 

e. This process stops when the maximum 
∆wiv is less than or equal to the tolerance 
limit. 
 

3. For pattern recognition, perform net 
calculations with the new w1 , w2 , and bias 

weights. 
4. Calculate the training output with the 

threshold activation function. 
 
Hebbian algorithm formula with quantum 

computing: 
1. Initialize weight (wi) and bias (b). 
2. For all s and t input vectors and target units, do: 

a. Set input unit activation xi=si (i=1,...,n). 
b. Output unit activation set: y=t, where t is 

activated by bipolar 

t =  𝑓 (𝑡) =  {
  1,
−1,

  
𝑥 ≥ 0
𝑥 < 0

 

 (5) 
3. Fix the weights regarding the equation w new 

=w old + ∆w (i=1,...,n) with the equation 

∆w = |xi>. y 
(6) 

4. Correct the bias regarding the equation new b = 
old b + y. 

 
5. Calculate the net with the equation 

𝑦 = ∑ |𝑤𝑖 >. < 𝑥𝑖 + 𝑏 

    (7) 
 Activate y with bipolar activation. 

y = 𝑓(𝑦) = {
  1,
−1,

  
𝑥 ≥ 0
𝑥 < 0

 

(8) 
If y=t then stop. 

 
 

RESULTS AND DISCUSSION 
 

The research finding is a development of 
Adaline and Hebbian's algorithm with a quantum 
computation approach.  This research focuses on 
the development of the Adaline and Hebbian 
algorithms using quantum computing techniques. 
For the Adaline algorithm with quantum computing, 
the following steps are undertaken: Initially, 
determine the weight (wi), bias (b), learning rate 
(α), and tolerance limits under specific 
circumstances, with α falling within the range of 0.1 
and 1 (0 < α ≤ 1). Proceed to iterate the subsequent 
steps until the maximum weight change (∆wi) 
surpasses the tolerance limit: (A) Calculate net 
input using Equation (1). (B) Compute output (y) 
using Equation (2). (C) Adjust weights and bias 
based on Equation (3) if y does not match the target 
value (t). Continue repeating steps A to C if the 
maximum ∆wi remains above the tolerance value, 
advancing to the next epoch. Terminate the process 
when the maximum weight change (∆wiv) falls 
below or equals the tolerance limit. Additionally, for 
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pattern recognition, compute the clean input 
utilizing the updated weights and bias, and 
determine the training output utilizing the 
threshold activation function. 

Regarding the Hebbian algorithm with 
quantum computing, the procedure unfolds as 
follows: Initially, initialize the weight (wi) and bias 
(b). Then, iterate over the entire input vector (s) and 
target units (t), with the following sub-steps: (A) Set 
the input unit activation (xi) to the corresponding 
value (si). (B) Determine the output unit activation 
(y) according to Equation (5), where t adopts 
bipolar notation. Proceed to update the weights 
using Equation (6), accounting for input-output 
correlation, and adjust the bias as per Equation (4). 
Compute the net input utilizing Equation (7) and 
activate the output (y) through bipolar activation, 
defined by Equation (8). Finally, if the output 
matches the target (y=t), cease the process. 

The simulation results of Adaline's 
algorithm testing with quantum computation show 
100% accuracy with epoch 1. The following are the 
results of testing the epoch-1 data: 

Table 1. First Data Adaline Epoch-1 Test Results 

Target
(t) 

y=n
et 

First New 
Weight(w

,b) Data 

Target
(t) 

Y=n
et 

First New 
Weight(w
,b) Data 

b=0 b=-1 b=0 b=-1 

[
1
0

] [
1
0

] 
W
1 

-14 [
1
0

] [
1
0

] 
W1
0 

 
-
14 

[
1
0

] [
1
0

] W
2 

0 [
1
0

] [
1
0

] W1
1 

-
14 

[
1
0

] [
1
0

] W
3 

0 [
1
0

] [
1
0

] W1
2 

-
14 

[
1
0

] [
1
0

] W
4 

-14 [
1
0

] [
1
0

] W1
3 

0 

[
1
0

] [
1
0

] W
5 

-14 [
1
0

] [
1
0

] W1
4 

-
14 

[
1
0

] [
1
0

] W
6 

-14 [
1
0

] [
1
0

] W1
5 

-
14 

[
1
0

] [
1
0

] W
7 

0 [
1
0

] [
1
0

] W1
6 

-
14 

[
1
0

] [
1
0

] W
8 

-14 [
1
0

] [
1
0

] W1
7 

-
14 

[
1
0

] [
1
0

] W
9 

-14 [
1
0

] [
1
0

] W1
8 

-
14 

Source: (Research Results, 2024) 
 
Table 2. Second Data Adaline Epoch-1 Test Results 

Targ
et(t) 

y= 
net 

New 
Weight(w,b
) Second 
Data 

Tar
get(
t) 

Y= 
net 

New 
Weight(w,
b) Second 
Data 

 
b=0 

b=-1 b=0 b=-1 

[
1
0

] [
1
0

] W1 -1.6 [
1
0

] [
1
0

] 
W1
0 

-1.6 

[
1
0

] [
1
0

] W2 
-1.6 [

1
0

] [
1
0

] W1
1 

-1.6 

[
1
0

] [
1
0

] W3 
-1.6 [

1
0

] [
1
0

] W1
2 

-1.6 

[
1
0

] [
1
0

] W4 
-1.6 [

1
0

] [
1
0

] W1
3 

0 

Targ
et(t) 

y= 
net 

New 
Weight(w,b
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The simulation results of testing the 

Hebbian algorithm with quantum computing show 
100% accuracy with epoch 1. Following are the 
results of testing the epoch-1 data: 

Table 3. First Data Hebbian Epoch-1 Test Results 
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Table 4. Second Data Hebbian Epoch-1 Test Results 
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The research findings signify a significant 

progression in the Adaline and Hebbian algorithms 
facilitated by the implementation of quantum 
computation methodology. The simulation results 
illustrate that when subjected to quantum 
computation, Adaline's algorithm achieves a 
remarkable 100% accuracy rate within a single 
epoch. Following this, the outcomes of testing the 
data from epoch 1 are detailed. Similarly, the 
simulation outcomes for evaluating the Hebbian 
algorithm using quantum computing depict a 
perfect 100% accuracy rate in epoch 1. 
Subsequently, the subsequent section elaborates on 
the findings obtained from testing the data of epoch 
1. 

CONCLUSION 
 
         The researchers achieved a significant 
breakthrough by effectively leveraging quantum 
computing to advance the Adaline and Hebbian 
algorithms. Notably, the experimental results 
revealed that both the Adaline and Hebbian 
algorithms exhibit comparable levels of accuracy, 
demonstrating their proficiency in effectively 
recognizing patterns within datasets. This research 
marks a pivotal contribution to the field, 
introducing a novel dimension through the 
utilization of quantum computing in the 
development of the Adaline and Hebbian 

algorithms. 
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