

VOL. 10. NO. 2 NOVEMBER 2024
.

DOI: 10.33480 /jitk.v10i2.5053

324

AUTOMATION OF THE BERT AND RESNET50 MODEL INFERENCE
CONFIGURATION ANALYSIS PROCESS

Medi Noviana1; Sunny Arief Sudiro2*

Master of Electrical Engineering1

Universitas Gunadarma, Indonesia1
www.gunadarma.ac.id1

medinoviana.mn@gmail.com1

Master of Electrical Engineering2
STMIK Jakarta STI&K, Jakarta, Indonesia2

www.jak-stik.ac.id2
sunny@staff.jak-stik.ac.id2*

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract—Inference is the process of using models to make predictions on new data, performance is measured
based on throughput, latency, GPU memory usage, and GPU power usage. The models used are BERT and
ResNet50. The right configuration can be used to maximise inference. Configuration analysis needs to be done
to find out which configuration is right for model inference. The main challenge in the analysis process lies in
its inherent time-intensive nature and inherent complexity, making it a task that is not simple. The analysis
needs to be made easier by building an automation programme. The automation programme analyses the
BERT model inference configuration by dividing 10 configurations namely bert-large_config_0 to bert-
large_config_9, the result is that the right configuration is bert-large_config_2 resulting in a throughput of 12.8
infer/sec with a latency of 618 ms. While the ResNet50 model is divided into 5 configurations, namely
resnet50_config_0 to resnet50_config_4, the result is that the right configuration is resnet50_config_1 which
produces a throughput of 120.6 infer/sec with a latency of 60.9 ms. The automation programme has the benefit
of facilitating the process of analysing the inference configuration.

Keywords: artificial intelligence, BERT, configuration, inference, ResNet50

Intisari—Inferensi adalah proses penggunaan model untuk membuat prediksi terhadap data baru,
performanya diukur berdasarkan throughput, latency, penggunaan memori GPU, dan penggunaan daya GPU.
Model yang digunakan adalah BERT dan ResNet50. Konfigurasi tepat bisa digunakan untuk memaksimalkan
inferensi. Analisis konfigurasi perlu dilakukan guna mengetahui konfigurasi mana yang tepat untuk inferensi
model. Tantangan utama dalam proses analisis terletak pada sifat bawaannya yang padat waktu dan
kompleksitas yang melekat, menjadikannya tugas yang tidak sederhana. Analisis tersebut perlu dipermudah
dengan cara membangun program otomatisasi. Program otomatisasi melakukan analisis konfigurasi
inferensi model BERT dengan membagi 10 konfigurasi yaitu bert-large_config_0 hingga bert-large_config_9,
hasilnya konfigurasi yang tepat adalah bert-large_config_2 menghasilkan throughput sebesar 12,8 infer/sec
dengan latency 618 ms. Sedangkan pada model ResNet50 dibagi 5 konfigurasi yaitu resnet50_config_0 hingga
resnet50_config_4, hasilnya konfigurasi yang tepat adalah resnet50_config_1 menghasilkan throughput 120,6
infer/sec dengan latency 60,9 ms. Program otomatisasi memiliki manfaat yakni memudahkan proses analisis
konfigurasi inferensi.

Kata Kunci: kecerdasan buatan, BERT, konfigurasi, inferensi, ResNet50

mailto:medinoviana.mn@gmail.com1
mailto:sunny@staff.jak-stik.ac.id

VOL. 10. NO. 2 NOVEMBER 2024.
 .

DOI: 10.33480/jitk.v10i2.5053.

325

INTRODUCTION

Artificial Intelligence (AI) is an information and
communication technology that has emerged in the
last decade. The use of AI is not limited to the
telecommunications industry, but also extends to
the government sectors [1], banking, manufacturing,
agriculture, and even Food Industry [2]. Artificial
intelligence (AI) models are created using programs
or algorithms that are trained with specific data to
make decisions without human intervention. This
definition highlights the fact that AI models are
designed to operate independently of human
decision-making processes [3]. Inference is the
process of using an AI model to make predictions or
decisions based on new data [4]. The BERT and
ResNet50 models are among the AI models used to
detect fake news. They encode sentences in news
content using the BERT model and represent
images in the news content using the ResNet50
model [5]. The BERT and ResNet50 models are
appropriate research materials because they accept
different types of input data. The BERT model takes
text data as input [6], while the ResNet50 model
takes image data as input [7].

To support the success of artificial intelligence,
basic infrastructure in the form of high-specification
computers or servers capable of carrying out tasks
quickly is required [8]. Such infrastructure may
impact the performance of the inference process [9].
The performance measures are based on the
parameters throughput (infer/sec) which is the
total number of requests completed during BERT or
ResNet50 model inference and latency (ms) which
is the total time from the request received by the
server until the response is sent during AI model
inference [10]. The inference performance is
supported by the amount of memory (MB) and
power (W) utilised by the GPU [11]. The
performance of inference is constrained by the
computing specifications of the computer/server
[12]. To maximize performance, it is important to
use the appropriate configuration for the inference
process on computers/servers with limited
computing specifications [13]. NVIDIA is a major
provider of GPUs and has developed open-source
software called NVIDIA Triton Inference Server to
enhance the inference performance of AI models
using GPUs [14].

The Triton Inference Server is optimised for
performance through proper configuration. To
maximize results, an analysis must be conducted to
determine the appropriate configuration for BERT
and ResNet50 model inference through Triton
Inference Server. The analysis should be automated
to simplify and expedite the process [15]. The

automation program aids researchers in conducting
exact configuration analysis in BERT and ResNet50
model inference, facilitating multiple stages with a
single run. It produces a graph indicating
performance results, aiding in determining the
appropriate configuration.

MATERIALS AND METHODS

The program automation research of

configuration analysis process in BERT and
ResNet50 model inference is carried out in several
stages. Figure 1. shows the general stages of the
research.

Source: (Research Result, 2023)

Figure 1. Research Stages.

The research stagesfrom Figure 1 carried out are:
1. Research preparation, the research utilized

BERT and ResNet50 AI models and the NVIDIA
Inference Server for inference, ensuring the
necessary research materials were prepared.

2. Building an automation program, an automation
program consists of four stages: generating a
Docker image, executing an inference server,
measuring inference performance, and creating
data visualizations based on the results.

3. Result and discussion, the text discusses the
testing of an automation program on BERT and
ResNet50 models, detailing the creation of the
program, its size, successful run characteristics,
and execution time.
The first stage is research preparation. The AI

model was obtained by exporting files through the
Python programming language. The Python file can
be freely downloaded from the Internet. The Python
file for exporting the BERT model is different from
the ResNet50 model. Next, the configuration files for
the BERT and ResNet50 models were prepared. The
structure of the contents of the configuration file
was determined by the NVIDIA Triton Inference
Server, so that it only needs to be adapted to the
model used and the required circumstances. The
name of the configuration file that NVIDIA Triton
Inference Server can read is config.pbtxt. It is also
necessary to create a repository structure to store
model files and configuration files. The repository is
needed because the NVIDIA Triton Inference Server

VOL. 10. NO. 2 NOVEMBER 2024
.

DOI: 10.33480 /jitk.v10i2.5053

326

will read the repository to perform inference on the
model based on the configuration file. Figure 2.
shows a model repository containing model files
and configuration files. The repository is read by
Triton to run the inference server.

The inference server used is the NVIDIA Triton
inference server. The first thing to do is to pull the
Docker image of NVIDIA Triton from the official
NVIDIA web site. After that, Triton can be run
through Docker using the Triton image that was
pulled. The Triton inference server that is run will
read the model repository that has been created.

Source: (Research Result, 2023)
Figure 2. Model Repository

The next stage is to build an automation

program. The Python-based automation program,
wrapper.py, is designed for inference configuration
analysis on BERT and ResNet50 models, and is
available as a .py file. Figure 3. shows the flow of the
automation program for configuration analysis of
BERT and ResNet50 inference models using Triton
Inference Server.

Source: (Research Result, 2023)

Figure 3. Inference Configuration Analysis
Automation Program Workflow

The flow of the program from figure 3 is:

1. Model selection, the automation program can
perform inference configuration analysis on one
of the models, namely BERT and ResNet50. If
you choose the BERT model, the next process
will be related to the BERT model, if you choose
the ResNet50 model, the next process will be
related to the ResNet50 model, if you do not
choose from the two models, the process will not
do anything or finish immediately.

2. Creating a docker image, The NVIDIA model
analyzer is used for configuration analysis on
BERT or ResNet50 models. The tool is a Docker
image that needs modifications to suit the
analysis material, creating a Dockerfile for each
model, ensuring automatic execution.

3. Run the inference server, the program will
automatically run BERT and ResNet50 model
inference because NVIDIA Triton is multi-model,
i.e. it can perform inference on several different
models. The automation program includes an
inference server using Triton Inference Server,
which infers BERT and ResNet50 models using
Docker. The model analyser is used to profile
inference configuration and simulate
configurations, measuring inference
performance and server-side performance of the
GPU. The NVIDIA Geforce GTX 1070Ti GPU is
used, and the network uses ethernet LAN.

4. Run the model analyser, The program
automatically runs configuration analysis on
BERT or ResNet50 model inference using a
Docker image. The model analyzer profiles
inference configurations, dividing them into
multiple configurations for simulated inference.
Performance measurement data is stored in CSV
files, containing both inference measurement
and server-side data.

5. Visualising the analysis data, The automation
program visualizes configuration analysis
results for BERT or ResNet50 inference models,
including throughput, latency, GPU memory
usage, and power usage, using linear graphs.
This data visualization aids in analyzing the
correct configuration for inference performance.

The data visualisation feature was developed
separately from the main program using Python,
creating two files for BERT model inference data
and ResNet50 model inference data. Pandas and
Matplotlib libraries were used to process data from
CSV files and map it into graphs. Figure 4. shows the
workflow of the data visualisation feature built
using the Python programming language.

VOL. 10. NO. 2 NOVEMBER 2024.
 .

DOI: 10.33480/jitk.v10i2.5053.

327

Source: (Research Result, 2023)
Figure 4. Program Workflow to Create Data

Visualisation.

The flow of the data visualisation generation
program is:

1. Read Python libraries, calling libraries needs to
be done at the beginning of the program because
the rest of the program code can only run if the
libraries have been defined.

2. CSV file data, CSV files that have been obtained
from the results of configuration analysis by the
model analyser need to be read using the Pandas
library so that data are obtained.

3. Merge 2 CSV files, the two CSV files are merged
with the provisions of the merge index using the
"Model Config Path" column which contains the
names of configurations after the profiling
process of the model analyser.

4. Dataset resulting from merging 2 CSV files, the
result of the merge process produces one dataset
containing data from two CSV files. The merge
process needs to be done in order to be able to
make the process of making data visualisation in
the form of graphs.

5. Data grouping, the dataset still contains units of
data so it is necessary to group the data based on
the index. As a result, one configuration has a
data group containing measurement data.

6. Create data graphs, data visualisation is made in
the form of data graphs. The resulting graph is a
line graph with the parameters being the
measurement results of throughput, latency, the
amount of GPU memory usage, and the amount
of GPU power usage.

Features that have been created such as creating
docker images, running inference servers, running
model analysers, and creating data visualisation
programs are repackaged in one program using the
Python programming language so that all these
features can be run automatically with just one run.

RESULTS AND DISCUSSION

The research developed an automation

program for analyzing BERT and ResNet50 model
inference configurations, which was discussed in
detail, along with the visual analysis of the results.

The automation program includes four
features: Docker image creation, inference server
operation, model analyzer operation, and data
visualization from BERT and ResNet50 model
inference configurations. The 2.3 KB file size
separates data visualization from the main
program, allowing Triton to be used for the process.

Measuring the speed of the running
automation program is done by calculating the total
time needed to run the functions. The method used
to calculate the length of time when the automation
program runs is using Python's cProfile library.
Figure 5. shows the results of measuring the length
of time the automation program runs on the BERT
model inference configuration analysis built using
the Python programming language. The 12
functions executed with the total time required to
run the function is 1074.387 seconds or 17.9
minutes.

Source: (Research Result, 2023)

Figure 5. Total Time Automation Program for
Analysis BERT Model Inference Configuration

VOL. 10. NO. 2 NOVEMBER 2024
.

DOI: 10.33480 /jitk.v10i2.5053

328

Source: (Research Result, 2023)

Figure 6. Total Time Automation Program for
Analysis Resnet50 Model Inference Configuration

Figure 6. shows the results of measuring the

time taken for the automation program to run for
the ResNet50 model inference configuration
analysis built using the Python programming
language. The functions executed are the same as
the BERT model, which is 12 with the total time
required to run the functions is 252.774 seconds or
4.2 minutes.

The test of the automation program for BERT
and ResNet50 model inference configuration
analysis is run using NVIDIA Geforce GTX 1070Ti
GPU processing. The program will run in 4 stages,
namely, creating a docker image, running the
inference server, running the model analyser, and
creating data visualisation.
1. The first stage, namely the creation of a Docker

image, is done in just 0.1 seconds for the BERT
model and the ResNet50 model, because there
are not many commands in the Dockerfile so that
the image build process can be completed very
quickly.

2. The second stage is to run the inference server
in background process and only display the
Docker container ID. The process needs to be run
in a background because the Triton Inference
Server will continue to be active waiting for
input from the client so it needs to end the
process first in order to run the next stage.

3. The third stage is to run the model analyser for
each model inference configuration. This stage is
run using the Docker image that was created in
the first stage. This stage profiled the
configurations used for BERT and ResNet50
model inference, and simulated the profiled
configurations to measure inference
performance.

4. The fourth stage is to create data visualisation.
The data used is the inference performance
measurement data that has been done in the
third stage. The resulting visualisation is 4
graphs for each model, namely visualisation of
throughput, visualisation of latency,
visualisation of GPU memory usage, and
visualisation of GPU power usage.
The configuration for BERT model inference is

divided into 11 configurations, including the default
configuration. The division was done during the
profiling process. Each configuration produces
different measured values. The difference in value is
taken into consideration to choose which
configuration is appropriate for BERT model
inference.

Figure 7. shows the results of throughput
measurements on the BERT model inference
configuration.

Source: (Research Result, 2023)
Figure 7. Throughput Measurement Results on

BERT Model Inference Configuration

The bert-large_config_2 configuration is the
configuration that produces the highest throughput
for BERT model inference. The throughput value in
bert-large_config_2 at concurrency 2, 4, 6, and 8 is
the same or stable at a higher number than other
configurations. Concurrency 1 in the bert-
large_config_2 configuration is 11.9 infer/sec, and
concurrency 2 to concurrency 8 is 12.8 infer/sec.

The bert-large_config_1 configuration is the
configuration that produces the lowest throughput
value. Concurrency 1 and concurrency 2 are worth
11.9 infer/sec, concurrency 4 is worth 11.5
infer/sec, concurrency 6 and concurrency 8 are
worth 11.3 infer/sec.

Figure 8. shows the results of the latency
measurement against concurrency in the BERT
model inference configuration.

VOL. 10. NO. 2 NOVEMBER 2024.
 .

DOI: 10.33480/jitk.v10i2.5053.

329

Source: (Research Result, 2023)
Figure 8. Latency Measurement Results on BERT

Model Inference Configuration

The configuration that produces the lowest

latency for BERT model inference is the bert-
large_config_2 configuration. Concurrency 1 is 85
ms, concurrency 2 is 156 ms, concurrency 4 is 309
ms, concurrency 6 is 464 ms, and concurrency 8 is
618 ms.

The configuration that produces the
highest latency for BERT model inference is the
bert-large_config_9 configuration. The latency value
in the bert-large_config_9 configuration is
concurrency 1 worth 85 ms, concurrency 2 worth
157 ms, concurrency 4 worth 348 ms, concurrency
6 worth 757 ms, and concurrency 8 worth 1041 ms.

Figure 9. shows the results of measuring
GPU memory usage against concurrency in the
BERT model inference configuration.

Source: (Research Result, 2023)

Figure 9. Measurement Results of GPU Memory
Usage on BERT Model Inference Configuration

The configuration that results in the lowest

GPU memory usage is the configuration bert-
large_config_default and bert-large_config_0. The
value of the GPU storage usage in the configurations
bert-large_config_default and bert-large_config_0
from concurrency 1 to concurrency 8 is 3399 MB.

The configuration that produces the
highest GPU memory usage is the bert-
large_config_9 configuration. The value of GPU
memory usage in the bert-large_config_9
configuration is concurrency 1 and concurrency 2
worth 7616 MB, concurrency 4 worth 7939 MB,
concurrency 6 worth 8262 MB, and concurrency 8
worth 8397 MB.

Figure 10. shows the results of measuring
GPU power usage against concurrency in the BERT
model inference configuration.

Source: (Research Result, 2023)
Figure 10. GPU Power Usage Measurement Results

on BERT Model Inference Configuration

The configuration that produces the lowest
GPU power usage is bert-large_config_2. The value
of GPU power usage in the bert-large_config_2
configuration is concurrency 1 worth 178 W,
concurrency 2 worth 166 W, concurrency 4 worth
168 W, concurrency 6 worth 167 W, and
concurrency 8 worth 178 W.

The bert-large_config_0 configuration
results in high GPU power usage. The value of GPU
power usage in the bert-large_config_0
configuration is concurrency 1 worth 174 W,
concurrency 2 worth 157 W, concurrency 4 worth
180 W, concurrency 6 worth 181 W, and
concurrency 8 worth 179 W.

Source: (Research Result, 2023)

Figure 11. Throughput Measurement Results on
ResNet50 Model Inference Configuration

VOL. 10. NO. 2 NOVEMBER 2024
.

DOI: 10.33480 /jitk.v10i2.5053

330

The configuration for ResNet50 model
inference is divided into 6 configurations, including
the default configuration. The division was done
during the profiling process in stage 3 of the
automation program. Each configuration was
simulated to measure throughput and other
parameters. Each configuration produces different
measured values. The difference in values is taken
into consideration to choose which configuration is
appropriate for ResNet50 model inference.

Figure 11. shows the throughput
measurement results for the ResNet50 model
inference configuration. The configuration that
produces the highest throughput is the
resnet50_config_1 configuration. The throughput
value in the resnet50_config_1 configuration is
concurrency 1 worth 120.6 infer/sec, concurrency 2
worth 149.3 infer/sec, concurrency 4 worth 145.9
infer/sec, concurrency 6 worth 147.3 infer/sec, and
concurrency 8 worth 146.6 infer/sec.

The configuration that produces the lowest
throughput is the resnet50_config_default
configuration. The throughput value in the
resnet50_config_default configuration is
concurrency 1 worth 121.6 infer/sec, concurrency 2
worth 127.9 infer/sec, concurrency 4 worth 127.6
infer/sec, concurrency 6 and concurrency 8 worth
127.3 infer/sec.

Figure 12. shows the results of the latency
measurement against concurrency in the ResNet50
model inference configuration.

Source: (Research Result, 2023)

Figure 12. Latency Measurement Results on
ResNet50 Model Inference Configuration

The configuration that produces the lowest

latency for ResNet50 model inference is the
resnet50_config_1 configuration. The latency values
in the resnet50_config_1 configuration is
concurrency 1 worth 9 ms, concurrency 2 worth
17.5 ms, concurrency 4 worth 33.1 ms, concurrency
6 worth 45.9 ms, and concurrency 8 worth 60.9 ms.
The configuration that produces the highest latency

for ResNet50 model inference is the
resnet50_config_4 configuration. The latency values
in the resnet50_config_4 configuration is
concurrency 1 worth 9 ms, concurrency 2 worth
18.4 ms, concurrency 4 worth 38.5 ms, concurrency
6 worth 67.7 ms, and concurrency 8 worth 71.5 ms.
The results of measuring GPU memory usage
against concurrency in the ResNet50 model
inference configuration was shown in Figure 13.
Perpendicular graph on the Concurrency axis,
meaning that all configurations use GPU memory
with the same value from concurrency 1 to
concurrency 8. The configurations that produce the
lowest GPU memory usage are the
resnet50_config_0, resnet50_config_1,
resnet50_config_2, and resnet50_config_default
configurations. The GPU memory usage in these
configurations is 7402.9 MB. The resnet50_config_3
and resnet50_config_4 configurations produce the
highest GPU memory usage for ResNet50 model
inference at 7780.4 MB.

Source: (Research Result, 2023)

Figure 13. GPU Memory Usage Measurement
Results on ResNet50 Model Inference

Configuration

Source: (Research Result, 2023)
Figure 14. GPU Power Usage Measurement Results

on ResNet50 Model Inference Configuration

VOL. 10. NO. 2 NOVEMBER 2024.
 .

DOI: 10.33480/jitk.v10i2.5053.

331

Figure 14. shows the results of measuring
GPU power usage against concurrency in the
ResNet50 model inference configuration. The
configuration that produces the lowest GPU power
usage is the resnet50_config_0 configuration. The
value of GPU power usage in the resnet50_config_0
configuration is concurrency 1 worth 118.9 W,
concurrency 2 worth 96.3 W, concurrency 4 worth
98.4 W, concurrency 6 worth 95.2 W, and
concurrency 8 worth 97.8 W.

The resnet50_config_3 configuration is a
configuration that produces the highest GPU power
usage. The value of GPU power usage in the
resnet50_config_3 configuration is concurrency 1
worth 115.1 W, concurrency 2 worth 103.7 W,
concurrency 4 worth 104.3 W, concurrency 6 worth
103.9 W, and concurrency 8 worth 104 W.

CONCLUSION

The automation program was built using

the Python programming language. The form of the
automation program is a file with the .py extension,
the file name is wrapper.py, and the file size is 1.58
KB. The features of the automation program are
modifying the docker image, running the inference
server, running the model analyser, and creating
visualizations of configuration analysis data for
BERT and ResNet50 model inference. The total time
required to run the automation program on the
BERT model was 17.9 minutes, and the total time
required to run the automation program on the
ResNet50 model was 4.2 minutes.

The appropriate configuration for BERT
model inference is the bert-large_config_2
configuration with a throughput of 12.8 infer/sec,
latency of 618.2 ms at the end of concurrency, GPU
memory usage of 4800.4 MB, and GPU power usage
of 166.7 W. The appropriate configuration for
ResNet50 model inference is the resnet50_config_1
configuration with a throughput of 149.3 infer/sec,
latency of 60.9 ms at the end of concurrency, GPU
memory usage of 7402.9 MB, and GPU power usage
of 90.4 W. The research focuses on AI model
inference using NVIDIA Triton, using simulation
tests on the Triton Inference Server. Parameters
include latency, throughput, total GPU memory
consumption, and GPU power consumption. Line
graphs are displayed, automatic programs are built
using Python, and BERT and ResNet50 models are
used for analysis.

The research on AI model inference is
limited and needs further development to improve
program results and configuration analysis. Future
considerations include replacing AI models with
other models, adding AI models, altering

concurrency, batch, or GPU cores in the inference
configuration file, and using additional libraries or
data visualization software.

REFERENCE

[1] Supriyadi Irawan Endang, & Asih Banyu
Dianing. "Implementasi Artificial
Inteleligence (AI) di Bidang Administrasi
Publik pada Era Revolusi Industri 4.0,"
Jurnal RASI, vol. 2, no. 2, pp. 12–22. January
2021, doi: doi:10.52496/rasi.v2i2.62,

[2] N. N. Misra et al., "IoT, Big Data, and
Artificial Intelligence in Agriculture and
Food Industry," IEEE Internet of Things
Journal, vol. 9, pp. 6305–6324, May 2022,
doi: 10.1109/JIOT.2020.2998584.

[3] Nugroho Sasongko, "Strategi Nasional
Kecerdasan Artifisial Indonesia Strategi
Nasional Kecerdasan Artifisia," Badan
Pengkajian dan Penerapan Teknologi, July
2020.

[4] Sergio P. Perez et al., "Training and
inference of large language models using 8-
bit floating point", available online at:
https://arxiv.org/pdf/2309.17224, 2023.

[5] Long Ying, Hui Yu, Jinguang Wang, Yongze
Ji, and Shengsheng Qian, "Multi-Level
Multi-Modal Cross-Attention Network for
Fake News Detection," IEEE Access, vol. 9,
pp. 132363–132373, 2021, doi:
10.1109/ACCESS.2021.3114093

[6] Subakti Alvin, Murfi Hendri, & Hariadi
Nora. The performance of BERT as data
representation of text clustering. Journal of
Big Data, 9. February 2022,
doi:10.1186/s40537-022-00564-9.

[7] Kirandeep, Ramanpreet Kaur, and Vijay
Dhir, "Image Recognition using ResNet50,"
European Chemical Bulletin, vol. 12, pp.
7533-7538, July 2023.

[8] Hanqiu Chen, Yahya Alhinai, Yihan Jiang,
Eunjee Na, and Cong Hao, "Bottleneck
Analysis of Dynamic Graph Neural Network
Inference on CPU and GPU," in 2022 IEEE
International Symposium on Workload
Characterization (IISWC), pp. 130-145,
November 2022,
10.1109/IISWC55918.2022.00021.

[9] Chunrong Yao et al., "Evaluating and
analyzing the energy efficiency of CNN
inference on high‐performance GPU,"
Concurrency and Computation: Practice and
Experience, vol. 33, no. 6, pp. e6067,

VOL. 10. NO. 2 NOVEMBER 2024
.

DOI: 10.33480 /jitk.v10i2.5053

332

October 2020, doi:
https://doi.org/10.1002/cpe.6064.

[10] Erqian Tang, Svetlana Minakova, and Todor
Stefanov, "Energy-Efficient and High-
Throughput CNN Inference on Embedded
CPUs-GPUs MPSoCs," in Embedded
Computer Systems: Architectures, Modeling,
and Simulation.: Springer International
Publishing, pp. 127–143, 2022, doi:
https://doi.org/10.1007/978-3-031-
04580-6_9.

[11] Seungbeom Choi, Sunho Lee, Yeonjae Kim,
Jongse Park, Youngjin Kwon, Jaehyuk Huh:,
"Multi-model Machine Learning Inference
Serving with GPU Spatial Partitioning,"
CoRR abs/2109.01611, 2021.

[12] Ali Jahanshahi, Hadi Zamani Sabzi, Chester
Lau, and Daniel Wong, "Gpu-Nest:
Characterizing Energy Efficiency of Multi-
Gpu Inference Servers," IEEE Computer
Architecture Letters, vol. 19, pp. 139–142,
July 2020, doi:
10.1109/LCA.2020.3023723

[13] Hanif Abdullah Muhammad, & Shafique
Muhammad. Cross-Layer Optimizations for
Efficient Deep Learning Inference at the
Edge. Embedded Machine Learning for
Cyber-Physical, IoT, and Edge Computing,".
Springer Nature Switzerland, (225–248)
doi:10.1007/978-3-031-39932-9_9,
October 2023.

[14] Jiacong Fang, Qiong Liu, and Jingzheng Li,
"A Deployment Scheme of YOLOv5 with

Inference Optimizations Based on the
Triton Inference Server," in 2021 IEEE 6th
International Conference on Cloud
Computing and Big Data Analytics
(ICCCBDA), April 2021.

[15] Hohman Fred, Wang Chaoqun, Lee
Jinmook, Görtler Jochen, Moritz Dominik,
Bigham Jeffrey, Zhang Xiaoyi, "Talaria:
Interactively Optimizing Machine Learning
Models for Efficient Inference. CHI." In
Proceedings of the CHI Conference on
Human Factors in Computing Systems, pp. 1-
19, 2024.

