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Abstract—Inference is the process of using models to make predictions on new data, performance is measured 
based on throughput, latency, GPU memory usage, and GPU power usage. The models used are BERT and 
ResNet50. The right configuration can be used to maximise inference. Configuration analysis needs to be done 
to find out which configuration is right for model inference. The main challenge in the analysis process lies in 
its inherent time-intensive nature and inherent complexity, making it a task that is not simple. The analysis 
needs to be made easier by building an automation programme. The automation programme analyses the 
BERT model inference configuration by dividing 10 configurations namely bert-large_config_0 to bert-
large_config_9, the result is that the right configuration is bert-large_config_2 resulting in a throughput of 12.8 
infer/sec with a latency of 618 ms. While the ResNet50 model is divided into 5 configurations, namely 
resnet50_config_0 to resnet50_config_4, the result is that the right configuration is resnet50_config_1 which 
produces a throughput of 120.6 infer/sec with a latency of 60.9 ms. The automation programme has the benefit 
of facilitating the process of analysing the inference configuration. 

 
Keywords: artificial intelligence, BERT, configuration, inference, ResNet50 

 
Intisari—Inferensi adalah proses penggunaan model untuk membuat prediksi terhadap data baru, 
performanya diukur berdasarkan throughput, latency, penggunaan memori GPU, dan penggunaan daya GPU. 
Model yang digunakan adalah BERT dan ResNet50. Konfigurasi tepat bisa digunakan untuk memaksimalkan 
inferensi. Analisis konfigurasi perlu dilakukan guna mengetahui konfigurasi mana yang tepat untuk inferensi 
model. Tantangan utama dalam proses analisis terletak pada sifat bawaannya yang padat waktu dan 
kompleksitas yang melekat, menjadikannya tugas yang tidak sederhana. Analisis tersebut perlu dipermudah 
dengan cara membangun program otomatisasi. Program otomatisasi melakukan analisis konfigurasi 
inferensi model BERT dengan membagi 10 konfigurasi yaitu bert-large_config_0 hingga bert-large_config_9, 
hasilnya konfigurasi yang tepat adalah bert-large_config_2 menghasilkan throughput sebesar 12,8 infer/sec 
dengan latency 618 ms. Sedangkan pada model ResNet50 dibagi 5 konfigurasi yaitu resnet50_config_0 hingga 
resnet50_config_4, hasilnya konfigurasi yang tepat adalah resnet50_config_1 menghasilkan throughput 120,6 
infer/sec dengan latency 60,9 ms. Program otomatisasi memiliki manfaat yakni memudahkan proses analisis 
konfigurasi inferensi. 
 
Kata Kunci: kecerdasan buatan, BERT, konfigurasi, inferensi, ResNet50 
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INTRODUCTION 
 

Artificial Intelligence (AI) is an information and 
communication technology that has emerged in the 
last decade. The use of AI is not limited to the 
telecommunications industry, but also extends to 
the government sectors [1], banking, manufacturing, 
agriculture, and even Food Industry [2]. Artificial 
intelligence (AI) models are created using programs 
or algorithms that are trained with specific data to 
make decisions without human intervention. This 
definition highlights the fact that AI models are 
designed to operate independently of human 
decision-making processes [3]. Inference is the 
process of using an AI model to make predictions or 
decisions based on new data [4]. The BERT and 
ResNet50 models are among the AI models used to 
detect fake news. They encode sentences in news 
content using the BERT model and represent 
images in the news content using the ResNet50 
model [5]. The BERT and ResNet50 models are 
appropriate research materials because they accept 
different types of input data. The BERT model takes 
text data as input [6], while the ResNet50 model 
takes image data as input [7].  

To support the success of artificial intelligence, 
basic infrastructure in the form of high-specification 
computers or servers capable of carrying out tasks 
quickly is required [8]. Such infrastructure may 
impact the performance of the inference process [9]. 
The performance measures are based on the 
parameters throughput (infer/sec) which is the 
total number of requests completed during BERT or 
ResNet50 model inference and latency (ms) which 
is the total time from the request received by the 
server until the response is sent during AI model 
inference [10]. The inference performance is 
supported by the amount of memory (MB) and 
power (W) utilised by the GPU [11]. The 
performance of inference is constrained by the 
computing specifications of the computer/server 
[12]. To maximize performance, it is important to 
use the appropriate configuration for the inference 
process on computers/servers with limited 
computing specifications [13]. NVIDIA is a major 
provider of GPUs and has developed open-source 
software called NVIDIA Triton Inference Server to 
enhance the inference performance of AI models 
using GPUs [14].  

The Triton Inference Server is optimised for 
performance through proper configuration. To 
maximize results, an analysis must be conducted to 
determine the appropriate configuration for BERT 
and ResNet50 model inference through Triton 
Inference Server. The analysis should be automated 
to simplify and expedite the process [15]. The 

automation program aids researchers in conducting 
exact configuration analysis in BERT and ResNet50 
model inference, facilitating multiple stages with a 
single run. It produces a graph indicating 
performance results, aiding in determining the 
appropriate configuration. 

 
MATERIALS AND METHODS 

 
The program automation research of 

configuration analysis process in BERT and 
ResNet50 model inference is carried out in several 
stages. Figure 1. shows the general stages of the 
research. 

 
Source: (Research Result, 2023) 

Figure 1. Research Stages.   
 
The research stagesfrom Figure 1 carried out are: 
1. Research preparation, the research utilized 

BERT and ResNet50 AI models and the NVIDIA 
Inference Server for inference, ensuring the 
necessary research materials were prepared. 

2. Building an automation program, an automation 
program consists of four stages: generating a 
Docker image, executing an inference server, 
measuring inference performance, and creating 
data visualizations based on the results. 

3. Result and discussion, the text discusses the 
testing of an automation program on BERT and 
ResNet50 models, detailing the creation of the 
program, its size, successful run characteristics, 
and execution time. 
The first stage is research preparation. The AI 

model was obtained by exporting files through the 
Python programming language. The Python file can 
be freely downloaded from the Internet. The Python 
file for exporting the BERT model is different from 
the ResNet50 model. Next, the configuration files for 
the BERT and ResNet50 models were prepared. The 
structure of the contents of the configuration file 
was determined by the NVIDIA Triton Inference 
Server, so that it only needs to be adapted to the 
model used and the required circumstances. The 
name of the configuration file that NVIDIA Triton 
Inference Server can read is config.pbtxt. It is also 
necessary to create a repository structure to store 
model files and configuration files. The repository is 
needed because the NVIDIA Triton Inference Server 
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will read the repository to perform inference on the 
model based on the configuration file. Figure 2. 
shows a model repository containing model files 
and configuration files. The repository is read by 
Triton to run the inference server. 

The inference server used is the NVIDIA Triton 
inference server. The first thing to do is to pull the 
Docker image of NVIDIA Triton from the official 
NVIDIA web site. After that, Triton can be run 
through Docker using the Triton image that was 
pulled. The Triton inference server that is run will 
read the model repository that has been created. 

 

Source: (Research Result, 2023) 
Figure 2. Model Repository 

 
The next stage is to build an automation 

program. The Python-based automation program, 
wrapper.py, is designed for inference configuration 
analysis on BERT and ResNet50 models, and is 
available as a .py file. Figure 3. shows the flow of the 
automation program for configuration analysis of 
BERT and ResNet50 inference models using Triton 
Inference Server.  

 
Source: (Research Result, 2023) 

Figure 3. Inference Configuration Analysis 
Automation Program Workflow 

 

The flow of the program from figure 3 is: 

1. Model selection, the automation program can 
perform inference configuration analysis on one 
of the models, namely BERT and ResNet50. If 
you choose the BERT model, the next process 
will be related to the BERT model, if you choose 
the ResNet50 model, the next process will be 
related to the ResNet50 model, if you do not 
choose from the two models, the process will not 
do anything or finish immediately. 

2. Creating a docker image, The NVIDIA model 
analyzer is used for configuration analysis on 
BERT or ResNet50 models. The tool is a Docker 
image that needs modifications to suit the 
analysis material, creating a Dockerfile for each 
model, ensuring automatic execution. 

3. Run the inference server, the program will 
automatically run BERT and ResNet50 model 
inference because NVIDIA Triton is multi-model, 
i.e. it can perform inference on several different 
models. The automation program includes an 
inference server using Triton Inference Server, 
which infers BERT and ResNet50 models using 
Docker. The model analyser is used to profile 
inference configuration and simulate 
configurations, measuring inference 
performance and server-side performance of the 
GPU. The NVIDIA Geforce GTX 1070Ti GPU is 
used, and the network uses ethernet LAN. 

4. Run the model analyser, The program 
automatically runs configuration analysis on 
BERT or ResNet50 model inference using a 
Docker image. The model analyzer profiles 
inference configurations, dividing them into 
multiple configurations for simulated inference. 
Performance measurement data is stored in CSV 
files, containing both inference measurement 
and server-side data. 

5. Visualising the analysis data, The automation 
program visualizes configuration analysis 
results for BERT or ResNet50 inference models, 
including throughput, latency, GPU memory 
usage, and power usage, using linear graphs. 
This data visualization aids in analyzing the 
correct configuration for inference performance. 

The data visualisation feature was developed 
separately from the main program using Python, 
creating two files for BERT model inference data 
and ResNet50 model inference data. Pandas and 
Matplotlib libraries were used to process data from 
CSV files and map it into graphs. Figure 4. shows the 
workflow of the data visualisation feature built 
using the Python programming language. 
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Source: (Research Result, 2023) 
Figure 4. Program Workflow to Create Data 

Visualisation. 
 

The flow of the data visualisation generation 
program is: 

1. Read Python libraries, calling libraries needs to 
be done at the beginning of the program because 
the rest of the program code can only run if the 
libraries have been defined.  

2. CSV file data, CSV files that have been obtained 
from the results of configuration analysis by the 
model analyser need to be read using the Pandas 
library so that data are obtained. 

3. Merge 2 CSV files, the two CSV files are merged 
with the provisions of the merge index using the 
"Model Config Path" column which contains the 
names of configurations after the profiling 
process of the model analyser. 

4. Dataset resulting from merging 2 CSV files, the 
result of the merge process produces one dataset 
containing data from two CSV files. The merge 
process needs to be done in order to be able to 
make the process of making data visualisation in 
the form of graphs. 

5. Data grouping, the dataset still contains units of 
data so it is necessary to group the data based on 
the index. As a result, one configuration has a 
data group containing measurement data. 

6. Create data graphs, data visualisation is made in 
the form of data graphs. The resulting graph is a 
line graph with the parameters being the 
measurement results of throughput, latency, the 
amount of GPU memory usage, and the amount 
of GPU power usage. 

Features that have been created such as creating 
docker images, running inference servers, running 
model analysers, and creating data visualisation 
programs are repackaged in one program using the 
Python programming language so that all these 
features can be run automatically with just one run. 
 

RESULTS AND DISCUSSION 
 
The research developed an automation 

program for analyzing BERT and ResNet50 model 
inference configurations, which was discussed in 
detail, along with the visual analysis of the results. 

The automation program includes four 
features: Docker image creation, inference server 
operation, model analyzer operation, and data 
visualization from BERT and ResNet50 model 
inference configurations. The 2.3 KB file size 
separates data visualization from the main 
program, allowing Triton to be used for the process. 

Measuring the speed of the running 
automation program is done by calculating the total 
time needed to run the functions. The method used 
to calculate the length of time when the automation 
program runs is using Python's cProfile library. 
Figure 5. shows the results of measuring the length 
of time the automation program runs on the BERT 
model inference configuration analysis built using 
the Python programming language. The 12 
functions executed with the total time required to 
run the function is 1074.387 seconds or 17.9 
minutes. 

  
Source: (Research Result, 2023) 

Figure 5. Total Time Automation Program for  
Analysis BERT Model Inference Configuration 
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Source: (Research Result, 2023) 

Figure 6. Total Time Automation Program for 
Analysis Resnet50 Model Inference Configuration 

 
Figure 6. shows the results of measuring the 

time taken for the automation program to run for 
the ResNet50 model inference configuration 
analysis built using the Python programming 
language. The functions executed are the same as 
the BERT model, which is 12 with the total time 
required to run the functions is 252.774 seconds or 
4.2 minutes.  

The test of the automation program for BERT 
and ResNet50 model inference configuration 
analysis is run using NVIDIA Geforce GTX 1070Ti 
GPU processing. The program will run in 4 stages, 
namely, creating a docker image, running the 
inference server, running the model analyser, and 
creating data visualisation.  
1. The first stage, namely the creation of a Docker 

image, is done in just 0.1 seconds for the BERT 
model and the ResNet50 model, because there 
are not many commands in the Dockerfile so that 
the image build process can be completed very 
quickly.  

2. The second stage is to run the inference server 
in background process and only display the 
Docker container ID. The process needs to be run 
in a background because the Triton Inference 
Server will continue to be active waiting for 
input from the client so it needs to end the 
process first in order to run the next stage.  

3. The third stage is to run the model analyser for 
each model inference configuration. This stage is 
run using the Docker image that was created in 
the first stage. This stage profiled the 
configurations used for BERT and ResNet50 
model inference, and simulated the profiled 
configurations to measure inference 
performance. 

4. The fourth stage is to create data visualisation. 
The data used is the inference performance 
measurement data that has been done in the 
third stage. The resulting visualisation is 4 
graphs for each model, namely visualisation of 
throughput, visualisation of latency, 
visualisation of GPU memory usage, and 
visualisation of GPU power usage. 
The configuration for BERT model inference is 

divided into 11 configurations, including the default 
configuration. The division was done during the 
profiling process. Each configuration produces 
different measured values. The difference in value is 
taken into consideration to choose which 
configuration is appropriate for BERT model 
inference.  

Figure 7. shows the results of throughput 
measurements on the BERT model inference 
configuration. 

 

Source: (Research Result, 2023) 
Figure 7. Throughput Measurement Results on 

BERT Model Inference Configuration 

The bert-large_config_2 configuration is the 
configuration that produces the highest throughput 
for BERT model inference. The throughput value in 
bert-large_config_2 at concurrency 2, 4, 6, and 8 is 
the same or stable at a higher number than other 
configurations. Concurrency 1 in the bert-
large_config_2 configuration is 11.9 infer/sec, and 
concurrency 2 to concurrency 8 is 12.8 infer/sec. 

The bert-large_config_1 configuration is the 
configuration that produces the lowest throughput 
value. Concurrency 1 and concurrency 2 are worth 
11.9 infer/sec, concurrency 4 is worth 11.5 
infer/sec, concurrency 6 and concurrency 8 are 
worth 11.3 infer/sec. 

Figure 8. shows the results of the latency 
measurement against concurrency in the BERT 
model inference configuration. 
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Source: (Research Result, 2023) 
Figure 8. Latency Measurement Results on BERT 

Model Inference Configuration 
 
The configuration that produces the lowest 

latency for BERT model inference is the bert-
large_config_2 configuration. Concurrency 1 is 85 
ms, concurrency 2 is 156 ms, concurrency 4 is 309 
ms, concurrency 6 is 464 ms, and concurrency 8 is 
618 ms. 

The configuration that produces the 
highest latency for BERT model inference is the 
bert-large_config_9 configuration. The latency value 
in the bert-large_config_9 configuration is 
concurrency 1 worth 85 ms, concurrency 2 worth 
157 ms, concurrency 4 worth 348 ms, concurrency 
6 worth 757 ms, and concurrency 8 worth 1041 ms. 

Figure 9. shows the results of measuring 
GPU memory usage against concurrency in the 
BERT model inference configuration. 

 
Source: (Research Result, 2023) 

Figure 9. Measurement Results of GPU Memory 
Usage on BERT Model Inference Configuration 

 
The configuration that results in the lowest 

GPU memory usage is the configuration bert-
large_config_default and bert-large_config_0. The 
value of the GPU storage usage in the configurations 
bert-large_config_default and bert-large_config_0 
from concurrency 1 to concurrency 8 is 3399 MB. 

The configuration that produces the 
highest GPU memory usage is the bert-
large_config_9 configuration. The value of GPU 
memory usage in the bert-large_config_9 
configuration is concurrency 1 and concurrency 2 
worth 7616 MB, concurrency 4 worth 7939 MB, 
concurrency 6 worth 8262 MB, and concurrency 8 
worth 8397 MB.  

Figure 10. shows the results of measuring 
GPU power usage against concurrency in the BERT 
model inference configuration. 

 
Source: (Research Result, 2023) 
Figure 10. GPU Power Usage Measurement Results 

on BERT Model Inference Configuration 
 

The configuration that produces the lowest 
GPU power usage is bert-large_config_2. The value 
of GPU power usage in the bert-large_config_2 
configuration is concurrency 1 worth 178 W, 
concurrency 2 worth 166 W, concurrency 4 worth 
168 W, concurrency 6 worth 167 W, and 
concurrency 8 worth 178 W.  

The bert-large_config_0 configuration 
results in high GPU power usage. The value of GPU 
power usage in the bert-large_config_0 
configuration is concurrency 1 worth 174 W, 
concurrency 2 worth 157 W, concurrency 4 worth 
180 W, concurrency 6 worth 181 W, and 
concurrency 8 worth 179 W. 

 
Source: (Research Result, 2023) 

Figure 11. Throughput Measurement Results on 
ResNet50 Model Inference Configuration 
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The configuration for ResNet50 model 
inference is divided into 6 configurations, including 
the default configuration. The division was done 
during the profiling process in stage 3 of the 
automation program. Each configuration was 
simulated to measure throughput and other 
parameters. Each configuration produces different 
measured values. The difference in values is taken 
into consideration to choose which configuration is 
appropriate for ResNet50 model inference. 

Figure 11. shows the throughput 
measurement results for the ResNet50 model 
inference configuration. The configuration that 
produces the highest throughput is the 
resnet50_config_1 configuration. The throughput 
value in the resnet50_config_1 configuration is 
concurrency 1 worth 120.6 infer/sec, concurrency 2 
worth 149.3 infer/sec, concurrency 4 worth 145.9 
infer/sec, concurrency 6 worth 147.3 infer/sec, and 
concurrency 8 worth 146.6 infer/sec. 

The configuration that produces the lowest 
throughput is the resnet50_config_default 
configuration. The throughput value in the 
resnet50_config_default configuration is 
concurrency 1 worth 121.6 infer/sec, concurrency 2 
worth 127.9 infer/sec, concurrency 4 worth 127.6 
infer/sec, concurrency 6 and concurrency 8 worth 
127.3 infer/sec. 

Figure 12. shows the results of the latency 
measurement against concurrency in the ResNet50 
model inference configuration. 

 
Source: (Research Result, 2023) 

Figure 12. Latency Measurement Results on 
ResNet50 Model Inference Configuration 

 
The configuration that produces the lowest 

latency for ResNet50 model inference is the 
resnet50_config_1 configuration. The latency values 
in the resnet50_config_1 configuration is 
concurrency 1 worth 9 ms, concurrency 2 worth 
17.5 ms, concurrency 4 worth 33.1 ms, concurrency 
6 worth 45.9 ms, and concurrency 8 worth 60.9 ms. 
The configuration that produces the highest latency 

for ResNet50 model inference is the 
resnet50_config_4 configuration. The latency values 
in the resnet50_config_4 configuration is 
concurrency 1 worth 9 ms, concurrency 2 worth 
18.4 ms, concurrency 4 worth 38.5 ms, concurrency 
6 worth 67.7 ms, and concurrency 8 worth 71.5 ms. 
The results of measuring GPU memory usage 
against concurrency in the ResNet50 model 
inference configuration was shown in Figure 13. 
Perpendicular graph on the Concurrency axis, 
meaning that all configurations use GPU memory 
with the same value from concurrency 1 to 
concurrency 8. The configurations that produce the 
lowest GPU memory usage are the 
resnet50_config_0, resnet50_config_1, 
resnet50_config_2, and resnet50_config_default 
configurations. The GPU memory usage in these 
configurations is 7402.9 MB. The resnet50_config_3 
and resnet50_config_4 configurations produce the 
highest GPU memory usage for ResNet50 model 
inference at 7780.4 MB. 

 
Source: (Research Result, 2023) 

Figure 13. GPU Memory Usage Measurement 
Results on ResNet50 Model Inference 

Configuration 
 

 
Source: (Research Result, 2023) 
Figure 14. GPU Power Usage Measurement Results 

on ResNet50 Model Inference Configuration 
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Figure 14. shows the results of measuring 
GPU power usage against concurrency in the 
ResNet50 model inference configuration. The 
configuration that produces the lowest GPU power 
usage is the resnet50_config_0 configuration. The 
value of GPU power usage in the resnet50_config_0 
configuration is concurrency 1 worth 118.9 W, 
concurrency 2 worth 96.3 W, concurrency 4 worth 
98.4 W, concurrency 6 worth 95.2 W, and 
concurrency 8 worth 97.8 W. 

The resnet50_config_3 configuration is a 
configuration that produces the highest GPU power 
usage. The value of GPU power usage in the 
resnet50_config_3 configuration is concurrency 1 
worth 115.1 W, concurrency 2 worth 103.7 W, 
concurrency 4 worth 104.3 W, concurrency 6 worth 
103.9 W, and concurrency 8 worth 104 W. 

 
CONCLUSION 

 
The automation program was built using 

the Python programming language. The form of the 
automation program is a file with the .py extension, 
the file name is wrapper.py, and the file size is 1.58 
KB. The features of the automation program are 
modifying the docker image, running the inference 
server, running the model analyser, and creating 
visualizations of configuration analysis data for 
BERT and ResNet50 model inference. The total time 
required to run the automation program on the 
BERT model was 17.9 minutes, and the total time 
required to run the automation program on the 
ResNet50 model was 4.2 minutes.  

The appropriate configuration for BERT 
model inference is the bert-large_config_2 
configuration with a throughput of 12.8 infer/sec, 
latency of 618.2 ms at the end of concurrency, GPU 
memory usage of 4800.4 MB, and GPU power usage 
of 166.7 W. The appropriate configuration for 
ResNet50 model inference is the resnet50_config_1 
configuration with a throughput of 149.3 infer/sec, 
latency of 60.9 ms at the end of concurrency, GPU 
memory usage of 7402.9 MB, and GPU power usage 
of 90.4 W. The research focuses on AI model 
inference using NVIDIA Triton, using simulation 
tests on the Triton Inference Server. Parameters 
include latency, throughput, total GPU memory 
consumption, and GPU power consumption. Line 
graphs are displayed, automatic programs are built 
using Python, and BERT and ResNet50 models are 
used for analysis. 

The research on AI model inference is 
limited and needs further development to improve 
program results and configuration analysis. Future 
considerations include replacing AI models with 
other models, adding AI models, altering 

concurrency, batch, or GPU cores in the inference 
configuration file, and using additional libraries or 
data visualization software. 
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