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Abstract— Heart disease is a severe health condition characterized by dysfunctions in the heart and blood 
vessels, which can be fatal if not properly managed. Early detection and prediction of heart disease are crucial 
for understanding the prevalence and determining patients' quality of life. In this study, quantum computing 
is applied to enhance the performance of the K-Medoids method. A comparative analysis of these methods is 
conducted, focusing on their performance. The investigation utilizes a dataset of heart disease patient medical 
records. This dataset includes various attributes used to predict heart disease patterns. The dataset is tested 
using both the classical and K-Medoids methods with a quantum computing approach, employing Manhattan 
distance calculations. This study's findings reveal that applying quantum computing to the K-Medoids method 
results in clustering accuracy stability of 85%, equivalent to the classical method. Although there is no increase 
in accuracy, the quantum computing approach demonstrates potential improvements in data processing 
efficiency. These results highlight that the K-Medoids method with a quantum computing approach can 
contribute significantly to faster and more efficient medical data analysis. However, further research is needed 
for optimization and testing on more extensive and more diverse datasets. 

 
Keywords: data mining, clustering, K-Medoids, manhattan distance, quantum computing, qubit. 
 
Intisari— Penyakit jantung adalah suatu kondisi kesehatan parah yang ditandai dengan disfungsi jantung 
dan pembuluh darah, yang dapat berakibat fatal jika tidak ditangani dengan baik. Deteksi dini dan prediksi 
penyakit jantung sangat penting untuk memahami prevalensi dan mengetahui kualitas hidup pasien. Dalam 
penelitian ini, komputasi kuantum diterapkan untuk meningkatkan kinerja metode K-Medoids. Analisis 
komparatif terhadap metode-metode ini dilakukan, dengan fokus pada kinerjanya. Penyelidikannya 
memanfaatkan dataset rekam medis pasien penyakit jantung. Kumpulan data ini mencakup berbagai atribut 
yang digunakan untuk memprediksi pola penyakit jantung. Dataset diuji menggunakan metode klasik dan K-
Medoids dengan pendekatan komputasi kuantum, menggunakan perhitungan jarak Manhattan. Temuan 
penelitian ini mengungkapkan bahwa penerapan komputasi kuantum pada metode K-Medoids menghasilkan 
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stabilitas akurasi clustering sebesar 85%, setara dengan metode klasik. Meskipun tidak ada peningkatan 
akurasi, pendekatan komputasi kuantum menunjukkan potensi peningkatan efisiensi pemrosesan data. Hasil 
ini menyoroti bahwa metode K-Medoids dengan pendekatan komputasi kuantum dapat berkontribusi secara 
signifikan terhadap analisis data medis yang lebih cepat dan efisien. Namun, diperlukan penelitian lebih lanjut 
untuk optimasi dan pengujian pada dataset yang lebih luas dan beragam. 
 
Kata Kunci: data mining, clustering, K-Medoids, jarak manhattan, komputasi kuantum, qubit. 
 

INTRODUCTION 
 
Heart disease is one of the leading causes of 

death worldwide [1][2][3].  According to the World 
Health Organization (WHO), cardiovascular 
diseases cause approximately 17,9 million deaths 
each year, accounting for about 31% of all global 
deaths [4][5][6]. Early identification and 
appropriate management are crucial to reducing 
mortality rates and improving the quality of life for 
patients. In recent decades, advancements in 
computing technology have significantly 
contributed to diagnosing and predicting heart 
disease through analyzing large and complex 
medical datasets. Clustering methods such as k-
medoids have been widely used in medical data 
analysis to identify patterns and anomalies relevant 
to specific health conditions [7][8]. The k-medoids 
algorithm selects a number of medoids as cluster 
centers and groups data based on the nearest 
distance to these medoids. The main advantage of k-
medoids over k-means is their robustness to 
outliers, often present in medical data. 

Data mining is the process of discovering 
patterns and knowledge from large datasets 
[9][10][11]. In the medical context, data mining is 
used to extract valuable information from patient 
data, which includes diagnoses, treatments, and 
health outcomes [12][13]. Data mining techniques 
such as clustering, classification, and association are 
used to analyze medical data to improve clinical 
decisions and treatment outcomes. Clustering is one 
of the data mining techniques used to group data 
into homogeneous clusters [14].  Clustering 
algorithms work by identifying patterns in data and 
grouping data with similar characteristics. In heart 
disease analysis, clustering can identify groups of 
patients with similar risks, allowing for more 
precise and personalized interventions.  

The k-medoid clustering method is a variant 
of k-means that is more robust to outliers [15][16]. 
The k-medoids algorithm selects several medoids or 
representative cluster centers and then clusters 
data based on the nearest distance to these 
medoids. Unlike k-means, which use the mean as 
cluster centers, k-medoids select actual data points 
as medoids, making them more robust against 
outliers and noise in the data. The k-medoids 

algorithm begins with an initial random selection of 
medoids. It then iterates through two main steps: 
cluster assignment and medoid update. Each data 
point is assigned to its nearest medoid in the cluster 
assignment step. In the medoid update step, new 
medoids are selected for each cluster by minimizing 
the distance between data points within the cluster 
and the medoid. This process is repeated until 
convergence, where the medoids have no significant 
change. 

Manhattan distance, also known as L1 norm 
or taxicab distance, is one method for measuring the 
distance between two points in Euclidean space 
[17]. Manhattan distance between two points is 
calculated by summing the absolute differences of 
their coordinates [18]. In the context of two 
dimensions, the Manhattan distance between two 
points (x1, y1) and (x2, y2) is calculated as: 

 
𝑑 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|             (1) 

 
This formula sums the absolute differences of their 
x-coordinates and y-coordinates. 

Manhattan distance is often used in clustering 
due to its simplicity and its ability to handle high-
dimensional data or features that are not 
comparable. In analyzing heart disease, using 
Manhattan distance can provide more interpretable 
and robust results in clustering patient data based 
on diverse clinical features.  

Several related studies have explored using 
the K-Medoids algorithm in various medical 
applications. For instance, a study titled 
"Interpretation and Visualization of Clustering 
Results Using K-Medoids for Identifying the Spread 
of COVID-19 Virus"[19] demonstrates K-Medoids' 
effectiveness in clustering COVID-19 spread data in 
Indonesia. This research employs the K-Medoids 
method to identify virus spread patterns based on 
population density and geographical area 
attributes. The interpretation of clustering results 
revealed that areas with high population density 
and smaller geographical areas tend to have higher 
COVID-19 cases. Visualizing and interpreting 
clustering results helps gain a deeper 
understanding of virus spread and can support 
more effective prevention strategies. Another study, 
titled "Comparison of Distance Measure in K-
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Medoids Clustering for Grouping ISPA 
Diseases”[20] utilized the K-Medoids algorithm to 
classify the spread of ISPA (Acute Respiratory Tract 
Infection) in the region. By comparing two distance 
measurement methods, Euclidean Distance and 
Chebyshev Distance, the study revealed that 
Euclidean Distance provided more optimal results 
with a Davies Bouldin Index (DBI) value of 0.088, 
compared to Chebyshev Distance, which had a DBI 
value of 0.116. The clustering results were divided 
into three groups: low, medium, and high, offering 
critical insights for local authorities to prioritize the 
handling of ISPA cases in Karawang District. Both 
studies affirm that the K-Medoids method is 
effective in clustering analysis for various diseases 
and health conditions. The implementation of 
visualization and interpretation of clustering 
results also play a crucial role in conveying 
information to stakeholders more understandably 
and beneficially. These studies provide a vital 
foundation for further research, including exploring 
the application of quantum computing in enhancing 
the efficiency and accuracy of the K-Medoids 
method for medical data analysis. 

The main referenced study in this research is 
titled "Analysis of Cardiovascular Influence in 
Covid-19 Cases on Obesity Using the K-Medoids 
Method"[21]. The study aimed to analyze COVID-19 
patients suffering from obesity, non-obesity, and 
patients experiencing both obesity and 
cardiovascular conditions. It utilized the K-Medoids 
method to classify and understand the comparisons 
and influences among attributes in the COVID-19 
patient dataset. The research findings indicated that 
K-medoids effectively cluster data based on patient 
health conditions. Within the dataset, 62.62% of 
patients were not infected with COVID-19, while 
37.38% were infected. Furthermore, 74.54% of the 
sample consisted of non-obese patients, whereas 
25.46% were obese patients—only 0.57% of the 
sample suffered from both obesity and 
cardiovascular conditions simultaneously. The 
study revealed that attributes such as pneumonia 
and hypertension significantly influenced the 
obesity patient cluster, with respective impact 
levels of 150.15% and 172.04%. For non-obese 
patients, gender and hypertension attributes 
showed influence levels of 39.50% and 106.61%, 
respectively. Among obese patients also suffering 
from cardiovascular conditions, gender and 
pneumonia attributes had influences of 159.07% 
and 300%, respectively. 

This research is beneficial as a reference 
because it shows how the K-Medoid method can 
identify and group patients based on various health 
conditions. However, this research has yet to apply 

a quantum computing approach in its analysis. This 
study provides a solid basis for further 
development. Although the classical k-medoids 
algorithm is effective in many cases, its main 
challenge is computational efficiency, mainly when 
applied to large and complex datasets [22].  The 
iterative process in k-medoids requires significant 
computational time, which can be a hindrance in 
real-time applications such as medical diagnosis 
[23][24][25]. Additionally, the need to reduce data 
dimensions and handle outliers remains a challenge 
that needs to be addressed to improve prediction 
reliability. 

This study proposes using quantum K-
medoids to overcome the limitations of the classical 
K-medoids method. By leveraging principles of 
quantum computing, quantum K-Medoids aim to 
reduce the computational time required for 
clustering processes. This algorithm utilizes qubits 
to represent data and applies quantum operations 
to optimize the selection of medoids and cluster 
assignments more efficiently. The main difference 
between this study and the primary reference is the 
practical application of quantum K-medoids in 
predicting heart disease. Few studies have applied 
this algorithm to real medical cases such as heart 
disease prediction. This research fills that gap by 
implementing and evaluating quantum K-Medoids 
using relevant heart disease datasets. 

The uniqueness of this study lies in the 
practical application of quantum K-medoids for 
predicting heart disease and comparing its 
performance with classical K-medoids. This study 
represents one of the first evaluations of the 
effectiveness and efficiency of quantum K-medoids 
in a medical context, providing empirical evidence 
supporting the potential of quantum computing to 
enhance disease diagnosis and prediction. 
Additionally, the research introduces a new method 
for handling outliers and reducing data dimensions 
using quantum techniques. 

 
MATERIALS AND METHODS 

 
This study was conducted to analyze the 

comparative optimization techniques between 
classical k-medoids and quantum k-medoids in 
predicting heart disease based on medical data. The 
predictive results from this data help obtain 
comparative analysis information on the 
optimization techniques of classical k-medoids and 
quantum k-medoids models. 
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Research Stages 
 

 
Source: (Research Results, 2024) 

Figure 1. Research Stages 
 

1. Method of Collecting Data 
In researching to obtain data and information, the 
methods used in the data collection process are as 
follows: Using open source data taken from the 
kaggle.com site. You can explore these resources to 
create a research series with relevant data. Data 
from the Kaggle.com site. 

 
2. Data Transformation 
In this phase, the collected dataset is transformed 
into a binary representation (1 or 0) to facilitate 
further processing. This process involves 
normalizing or encoding categorical variables into 
binary variables to use the data in clustering 
methods. 

 
3. Quantum Bit Transformation 
Once the data is converted into a binary 
representation, the next step is to convert it into 
quantum bits (qubits). Qubits are the basic 
information units of quantum computing that allow 
information to be stored and manipulated 
quantumly. This transformation enables the K-
Medoids algorithm to be used in quantum 
computing environments. 

 
4. K-Medoids Method with Quantum Computing 
The K-Medoids method using quantum computing 
refers to implementing the K-Medoids algorithm in 
a quantum computing environment. The 

Manhattan distance is still used to calculate 
distances. 
 
5. Results 
At this stage, the data clustering results were 
analyzed using the conventional K-Medoids method 
and the quantum computing-based K-Medoids 
method. This analysis provides a deeper 
understanding of the data structure and patterns of 
the identified two clustering algorithms. 
 
6. Evaluation 
This evaluation stage includes assessing the 
performance of the classical K-Medoids method and 
quantum computing-based K-Medoids in predicting 
heart disease. Evaluations are carried out using 
metrics such as accuracy to measure the model's 
ability to predict cardiovascular health conditions 
from patient datasets. 
Medical record data for heart disease patients is 
processed through a rule-based transformation 
process to achieve a standard representation: the 
data is transformed into qubits with values 0, 1, or 
both simultaneously. The notation used is Dirac 
notation, namely bra "<" and ket ">." 
Dirac notation, also known as bra-ket notation, is an 
efficient and elegant way to write and manipulate 
vectors in Hilbert space, which is a vector space 
frequently used in quantum mechanics. Physicist 
Paul Dirac created this notation. In Dirac notation, 
the state vector is expressed as ket “>” or bra “<. " 
Ket is a vector in Hilbert space that is used to 
describe the system's quantum state. 
Example: ∣0>| and ∣1>| is the ground state of a qubit. 
The bra is the dual vector of ket. If ∣>| is ket, then |<∣ 
is bra, which is the Hermitian conjugate (transpose 
conjugate) of ∣>|. 
Example: If ∣>| is ket, then |<∣ is the appropriate bra. 
 

This quantum computing approach shows 
the potential to increase data processing efficiency. 
Heart disease prediction data transformation is 
carried out based on the rules in Table 1: 
 

Table 1. Transformation Condition 
No Attribute Rules 
1. BMI Not normal = 1. 

If 18.5- 24.9 (normal) = 0. 
2. Smoke Yes = 1. 

No = 0. 
3. Alcohol Drinking Yes = 1. 

No = 0. 
4. Strokes Yes = 1. 

No = 0. 
5. Physical Health 0-15 (Not good) = 1 . 

16-30 (Good) = 0. 
6. Mental Health 0-15 (Not good) = 1. 

16-30 (Good) = 0. 
7. Age  >=55 = 1. 
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No Attribute Rules 
<55 = 0. 

8. Diabetic Yes = 1. 
No = 0. 

9. Physical Activity Yes = 0. 
No = 1. 

10. Sleep Time 7-8 Hours (Normal) = 0. 
Otherwise 1. 

11. Asthma Yes = 1.  
No = 0. 

12. Kidney Disease Yes = 1.  
No = 0. 

13. Skin Cancer Yes = 1.  
No = 0. 

14. Heart Disease Yes = 1.  
No = 0. 

Source: (Research Results, 2024) 
 

These rules ensure that heart disease 
medical record data is standardized and can be used 
effectively for analysis and further processing in a 
uniform format. The coding results in the form of 
binary code can be seen in Table 2 below: 

 
Table 2. Heart Disease Medical Record Dataset  
No. X1 X2 X3 X4 X5 X6 X7 ... T 
1 1 1 0 0 1 0 1 ... 0 
2 0 0 0 1 1 1 1 ... 0 
3 1 1 0 0 0 0 1 ... 0 
4 0 0 0 0 1 1 1 ... 0 
5 0 0 0 0 0 1 0 ... 0 
6 1 1 0 0 1 1 1 ... 1 
7 0 0 0 0 1 1 1 ... 0 
8 1 1 0 0 1 1 1 ... 0 
9 1 0 0 0 1 1 1 ... 0 

10 1 0 0 0 1 1 1 ... 0 
11 1 1 0 0 0 1 1 ... 1 
12 1 1 0 0 1 1 1 ... 0 
13 1 1 0 0 1 1 1 ... 0 
14 1 0 0 0 1 1 1 ... 0 
15 1 1 0 0 1 0 1 ... 0 
16 1 0 0 0 1 1 0 ... 0 
17 1 0 0 0 1 1 1 ... 0 
18 0 1 0 0 1 0 1 ... 0 
19 1 1 0 0 1 1 1 ... 0 
... ... ... ... ... ... ... ... ... ... 

500 1 1 0 0 1 1 1 ... 0 

 Source: (Research Results, 2024) 
 

For example, the sample is taken from 
dataset number 1, the binary code 
11001011011010. Table 3 explains the first 
description of the data transformation. 

 
Table 3. Description First Data Transformation 

No. Attribute Rules 
1. BMI Not Normal (<18.5 and >24.9). 
2. Smoke Yes. 
3. Alcohol 

Drinking 
No. 

4. Strokes No = 0. 
5. Physical Health Not Good (<=15). 
6. Mental Health Good (>15). 
7. Age  >=55 years. 
8. Diabetic Yes . 

No. Attribute Rules 
9. Physical 

Activity 
Yes (Good). 

10. Sleep Time Not Normal (<7 hours and >8 
hours). 

11. Asthma Yes. 
12. Kidney Disease No. 
13. Skin Cancer Yes. 
14. Heart Disease 

(Target) 
No. 

Source: (Research Results, 2024) 
 

The data in Table 1 above is converted into 
qubit form as in Table 4 below: 

 
Table 4. Qubit Data for Heart Disease Medical 

Records 
No. X1 X2 X3 X4 X5 X6 X7 … T 
1 [

0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
1
0

] [
0
1

] … [
1
0

] 

2 [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

3 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] … [
1
0

] 

4 [
1
0

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

5 [
1
0

] [
1
0

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
1
0

] … [
1
0

] 

6 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
0
1

] 

7 [
1
0

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

8 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

9 [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

10 [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

11 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] … [
0
1

] 

12 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

13 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

14 [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

15 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
1
0

] [
0
1

] … [
1
0

] 

16 [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
1
0

] … [
1
0

] 

17 [
0
1

] [
1
0

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

18 [
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
1
0

] [
0
1

] … [
1
0

] 

19 [
0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

… … … … … … … … … … 
500 [

0
1

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

] [
0
1

] … [
1
0

] 

 Source: (Research Results, 2024) 
 

Below is an example of developing K-Medoid 
with quantum computing using Manhattan distance 
calculations. The steps for the K-Medoids algorithm 
using Manhattan Distance are as follows: 

 
1. Initialization Step 
Randomly select k medoids from the data as initial 
cluster centers. These k medoids can be chosen 
randomly from the data or by a particular 
initialization strategy. 
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2. Assignment Steps 
Determine the Manhattan distance between each 
data point and each medoid. After that, place each 
data point into the cluster with the medoid with the 
closest Manhattan distance. This process ensures 
that each data point is grouped based on its 
proximity to a particular medoid. 
 
𝑑(𝑎𝑥, 𝑏𝑦) = ∑ ||𝑎𝑎𝑧 > − |𝑏𝑏𝑧 >|𝑛

𝑧=1                    (2) 

 
3. Update Steps 
Select a non-medoid data point for each cluster as a 
new medoid candidate. Calculate the total 
Manhattan distance from all data points in the 
cluster to each candidate medoid. Select the 
candidate medoid with the lowest total distance as 
the new medoid for the cluster. Repeat this process 
for each cluster. 
 

RESULTS AND DISCUSSION 
 
The results of this research involve 

developing the K-Medoids clustering model into a 
K-Medoids method with a quantum computing 
approach using Manhattan distance calculations. In 
this process, the attribute  and medoid values are 
converted into quantum computing forms. This 
study clustered medical record data for heart 
disease using the conventional K-Medoids method 
and K-Medoids with Manhattan Distance 
calculations. 

The test results show no change in the 
clustering accuracy, which remains stable at 85%. 
Simulation results indicate that the K-Medoids 
algorithm, both in conventional form and with a 
quantum computing approach, achieves 85% 
accuracy after two epochs. The following are the 
results of data testing from epoch-1 in the Table 5 to 
epoch-2 in the Table 6: 
1. Epoch 1: [74 %] 
2. Epoch 2: [85 %] 

These findings suggest that although 
quantum computing approaches do not significantly 
improve clustering accuracy, there remains 
potential for increased processing efficiency and 
speed that can be further explored. 

 
Table 5. K-Medoids Epoch-1 Test Results 

C1 C2 
Shortest 
Distance 

Cluster 
Data 
Real 

Description 

5 6 5 1 0 TRUE 
3 4 3 1 0 TRUE 
4 7 4 1 0 TRUE 
5 4 4 2 0 FALSE 
4 7 4 1 0 TRUE 
4 3 3 2 1 TRUE 
5 6 5 1 0 TRUE 
4 5 4 1 0 TRUE 

C1 C2 
Shortest 
Distance 

Cluster 
Data 
Real 

Description 

4 5 4 1 0 TRUE 
2 5 2 1 0 TRUE 
5 6 5 1 1 FALSE 
3 4 3 1 0 TRUE 
1 4 1 1 0 TRUE 
2 3 2 1 0 TRUE 
5 4 4 2 0 FALSE 
3 6 3 1 0 TRUE 
3 4 3 1 0 TRUE 
4 5 4 1 0 TRUE 
4 5 4 1 0 TRUE 
… … … … … … 
4 3 3 2 0 FALSE 

Total of 
Shortest 1363 Accuracy 74% 
Distance 

Source: (Research Results, 2024) 
 

Table 6. K-Medoids Epoch-2 Test Results 

C1 C2 
Shortest 
Distance 

Cluster 
Data 
Real 

Description 

7 5 5 2 0 FALSE 
1 5 1 1 0 TRUE 
6 4 4 2 0 FALSE 
3 5 3 1 0 TRUE 
2 4 2 1 0 TRUE 
4 6 4 1 1 FALSE 
3 5 3 1 0 TRUE 
6 8 6 1 0 TRUE 
4 8 4 1 0 TRUE 
2 6 2 1 0 TRUE 
7 7 7 1 1 FALSE 
3 5 3 1 0 TRUE 
3 5 3 1 0 TRUE 
2 6 2 1 0 TRUE 
5 5 5 1 0 TRUE 
3 7 3 1 0 TRUE 
3 7 3 1 0 TRUE 
2 2 2 1 0 TRUE 
6 8 6 1 0 TRUE 
… … … … … … 
4 6 4 1 0 TRUE 

Total of 
Shortest 1491 Accuracy 85% 
Distance 

Source: (Research Results, 2024) 
 

The simulation results of testing the K-
Medoids algorithm with quantum computing show 
an accuracy of 85% after two epochs. The following 
is a manual calculation of K-Medoids with epoch-2 
quantum computing using the first data sample: 
 
Medoids for epoch-4 are data 101 and 102, namely: 

1) [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
0
1

], [
0
1

], [
0
1

], [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
1
0

]. 

2) [
1
0

], [
0
1

], [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
0
1

], [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
1
0

], [
0
1

]. 

 
Next is to find C1 and C2: 
1. Output C1 = 𝑑(𝑎𝑥 , 𝑏𝑦) = ∑ ||𝑎𝑎𝑧 >𝑛

𝑧=1

− |𝑏𝑏𝑧 >| 
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=ABS([
0
1

] − [
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
1
0

] − [
1
0

])+ABS([
0
1

] − [
0
1

])+ABS([
1
0

] −

[
0
1

])+ABS([
0
1

] − [
0
1

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
0
1

] − [
1
0

])  

 
ABS (absolute) Description: 
ABS (1-1) = ABS (0) = 0 
ABS (0-1) = ABS (-1) = 1 
ABS (1-0) = ABS (1) = 1 
ABS (0-0) = ABS (0) = 0 
 

=[
1
1

]+[
1
1

]+[
0
0

]+[
0
0

]+[
0
0

]+[
1
1

]+[
0
0

]+[
1
1

]+[
0
0

]+[
1
1

]+[
1
1

]+

[
0
0

]+[
1
1

]=[
7
7

] 

 
2. Output C2 = 𝑑(𝑎𝑥 , 𝑏𝑦) = ∑ ||𝑎𝑎𝑧 > − |𝑏𝑏𝑧 >|𝑛

𝑧=1  

=ABS([
0
1

] − [
1
0

])+ABS([
0
1

] − [
0
1

])+ABS([
1
0

] −

[
1
0

])+ABS([
1
0

] − [
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
0
1

] − [
0
1

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
0
1

] − [
1
0

])+ABS([
1
0

] −

[
1
0

])+ABS([
0
1

] − [
0
1

]) 

 

=[
1
1

]+[
0
0

]+[
0
0

]+[
0
0

]+[
1
1

]+[
0
0

]+[
0
0

]+[
1
1

]+[
0
0

]+[
1
1

]+[
1
1

]+

[
0
0

]+[
0
0

]=[
5
5

] 

 
Next is to calculate the Decimal C1 and Decimal C2 
values: 
 

1. Output Decimal C1 = √𝐶1 𝑡𝑜𝑝 𝑟𝑜𝑤2+C1 bottom 

row2. 

=√72 + 72=√49 + 49=√98=√9.899 
 

2. Output Decimal C2 = √𝐶2 𝑡𝑜𝑝 𝑟𝑜𝑤2+C2 bottom 

row2. 

=√52 + 52=√25 + 25=√50=√7.071 
 

Furthermore, it can be concluded that the 
closest distance between decimal C1 and decimal C2 
is decimal C2 = 7.071. If the closest distance = 
Decimal C1, the result is 1; if the closest distance ≠ 
is Decimal C1, the result is 2. 

To determine the Description results, the 
conditions are explained in Table 7: 
 
 
 

Table 7. Conditions Description 
Result Target Description 

1 0 True 
2 1 True 
1 2 False 
2 0 False 
1 1 False 

Source: (Research Results, 2024) 
 

Table 8 is the test result of the K-Medoids 
algorithm with quantum computing from epoch-1 
and Table 9 is the test result of the K-Medoids 
algorithm with quantum computing from epoch-2: 
 

Table 8. K-Medoids with Quantum Computing 
Epoch-1 Test Results 

 
C
1 
 

C
2 

C1 
(Deci
mal) 

C2 
(Deci
mal) 

Shorte
st 
Distanc
e 

Clu
ste
r 

Dat
a 
Real 

Descri
ption 

[
5
5

] [
6
6

] 
 

7.071 
 

8.485 
 

7.071 
 

1 
 

0 
 
True 

[
3
3

] [
4
4

] 
 

4.243 
 

5.657 
 

4.243 
 

1 
 

0 
 
True 

[
4
4

] [
7
7

] 
 

5.657 
 

9.899 
 

5.657 
 

1 
 

0 
 
True 

[
5
5

] [
4
4

] 
 

7.071 
 

5.657 
 

5.657 
 

2 
 

0 
 
False 

[
4
4

] [
7
7

] 
 

5.657 
 

9.899 
 

5.657 
 

1 
 

0 
 
True 

[
4
4

] [
3
3

] 
 

5.657 
 

4.243 
 

4.243 
 

2 
 

1 
 
True 

[
5
5

] [
6
6

] 
 

7.071 
 

8.485 
 

7.071 
 

1 
 

0 
 
True 

[
4
4

] [
5
5

] 
 

5.657 
 

7.071 
 

5.657 
 

1 
 

0 
 
True 

[
4
4

] [
5
5

] 
 

5.657 
 

7.071 
 

5.657 
 

1 
 

0 
 
True 

[
2
2

] [
5
5

] 
 

2.828 
 

7.071 
 

2.828 
 

1 
 

0 
 
True 

[
5
5

] [
6
6

] 
 

7.071 
 

8.485 
 

7.071 
 

1 
 

1 
 
False 

[
3
3

] [
4
4

] 
 

4.243 
 

5.657 
 

4.243 
 

1 
 

0 
 
True 

[
1
1

] [
4
4

] 
 

1.414 
 

5.657 
 

1.414 
 

1 
 

0 
 
True 

[
2
2

] [
3
3

] 
 

2.828 
 

4.243 
 

2.828 
 

1 
 

0 
 
True 

[
5
5

] [
4
4

] 
 

7.071 
 

5.657 
 

5.657 
 

2 
 

0 
 
False 

[
3
3

] [
6
6

] 
 

4.243 
 

8.485 
 

4.243 
 

1 
 

0 
 
True 

[
3
3

] [
4
4

] 
 

4.243 
 

5.657 
 

4.243 
 

1 
 

0 
 
True 

[
4
4

] [
5
5

] 
 

5.657 
 

7.071 
 

5.657 
 

1 
 

0 
 
True 

[
4
4

] [
5
5

] 
 

5.657 
 

7.071 
 

5.657 
 

1 
 

0 
 
True 

… 
 

… … … … … … … 

[
4
4

] [
3
3

] 5.657 4.243 4.243 2 0 False 

 
Total of Shortest 

Distance 

1927.
573 

Accuracy 74 % 

Source: (Research Results, 2024) 
 



 

VOL. 10. NO. 3 FEBRUARY 2025 
. 

DOI: 10.33480 /jitk.v10i3.5637 
 

 

 

476 

Table 9. K-Medoids with Quantum Computing 
Epoch-2 Test Results 

 
C
1 
 

C
2 

C1 
(Deci
mal) 

C2 
(Deci
mal) 

Short
est 
Dista
nce 

Clus
ter 

Da
ta 
Re
al 

Descrip
tion 

[
7
7

] [
5
5

] 
 

9.899 
 

7.071 
 

7.071 
 

2 
 

0 
 
False 

[
1
1

] [
5
5

] 
 

1.414 
 

7.071 
 

1.414 
 

1 
 

0 
 
True 

[
6
6

] [
4
4

] 
 

8.485 
 

5.657 
 

5.657 
 

2 
 

0 
 
False 

[
3
3

] [
5
5

] 
 

4.243 
 

7.071 
 

4.243 
 

1 
 

0 
 
True 

[
2
2

] [
4
4

] 
 

2.828 
 

5.657 
 

2.828 
 

1 
 

0 
 
True 

[
4
4

] [
6
6

] 
 

5.657 
 

8.485 
 

5.657 
 

1 
 

1 
 
False 

[
3
3

] [
5
5

] 
 

4.243 
 

7.071 
 

4.243 
 

1 
 

0 
 
True 

[
6
6

] [
8
8

] 
 

8.485 
 

11.31
4 

 
8.485 

 
1 

 
0 

 
True 

[
4
4

] [
8
8

] 
 

5.657 
 

11.31
4 

 
5.657 

 
1 

 
0 

 
True 

[
2
2

] [
6
6

] 
 

2.828 
 

8.485 
 

2.828 
 

1 
 

0 
 
True 

[
7
7

] [
7
7

] 
 

9.899 
 

9.899 
 

9.899 
 

1 
 

1 
 
False 

[
3
3

] [
5
5

] 
 

4.243 
 

7.071 
 

4.243 
 

1 
 

0 
 
True 

[
3
3

] [
5
5

] 
 

4.243 
 

7.071 
 

4.243 
 

1 
 

0 
 
True 

[
2
2

] [
6
6

] 
 

2.828 
 

8.485 
 

2.828 
 

1 
 

0 
 
True 

[
5
5

] [
5
5

] 
 

7.071 
 

7.071 
 

7.071 
 

1 
 

0 
 
True 

[
3
3

] [
7
7

] 
 

4.243 
 

9.899 
 

4.243 
 

1 
 

0 
 
True 

[
3
3

] [
7
7

] 
 

4.243 
 

9.899 
 

4.243 
 

1 
 

0 
 
True 

[
2
2

] [
2
2

] 
 

2.828 
 

2.828 
 

2.828 
 

1 
 

0 
 
True 

[
6
6

] [
8
8

] 
 

8.485 
 

11.31
4 

 
8.485 

 
1 

 
0 

 
True 

… 
 

… … … … … … … 

[
4
4

] [
6
6

] 5.657 8.485 5.657 1 0 True 

 
Total of Shortest Distance 

 

2108.
592 

Accuracy 85 % 

Source: (Research Results, 2024) 
 

The findings of this research show significant 
progress in the K-Medoids method, namely the 
application of quantum computing using Manhattan 
distance calculations. Simulation results show that 
the K-Medoids method based on quantum 
computing reaches an accuracy level of 85% after 
two epochs. The test results show no change in the 
K-Medoids with the application of quantum 
computing compared to the classical K-Medoids 
method, which also achieved 85% accuracy. 
 

CONCLUSION 
 

This research explores the application of 
quantum computing in the K-Medoids clustering 
method using Manhattan distance calculations for 
heart disease prediction. The results indicate a 
stable accuracy of 85% for both quantum and 
classical implementations of the K-Medoids 
algorithm. While no significant improvement in 
accuracy was observed, the quantum approach 
presents potential advantages in data processing 
efficiency, particularly for larger and more complex 
datasets. However, this claim requires further 
validation through detailed comparisons of 
algorithm complexity and runtime performance 
between quantum and classical methods. The 
transformation of medical record data into qubits 
using Dirac notation successfully provided a 
standard and consistent data representation. 
Future work should focus on optimizing the 
quantum algorithm and testing it on a wider variety 
of medical datasets to assess the generalizability of 
the findings. Although the improvements in 
efficiency have not been fully demonstrated, the 
quantum computing-based K-Medoids method 
holds promise for enhancing the speed of medical 
data analysis, marking a step forward in the 
integration of quantum technologies within 
healthcare. 
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