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Abstract— Deepfake images are often used to spread false information, manipulate public opinion, and harm 
individuals by creating fake content, making developing deepfake detection technology essential to mitigate 
these potential dangers. This study utilized the MobileNet architecture by applying regularization and 
activation function methods to improve detection accuracy. ReLU (Rectified Linear Unit) enhances the model's 
efficiency and ability to capture non-linear features, while Dropout and L2 regularization help reduce 
overfitting by penalizing large weights, thereby improving generalization. Based on experimental results, the 
MobileNet model optimized with ReLU and Dropout achieved an accuracy of 99.17% in the training phase, 
85.34% in validation, and 70.60% in testing, whereas the MobileNet model optimized with ReLU and L2 showed 
lower accuracy in the training and validation phases compared to Dropout but achieved higher accuracy in 
testing at 72.18%. This study recommends MobileNet with ReLU and L2 due to its better generalization ability 
when testing data (resulting from reduced overfitting). 
 

Keywords: activation function, deepfake, regularization, transfer learning.  
 

Intisari— Citra deepfake sering digunakan untuk penyebaran informasi palsu, manipulasi opini publik, dan 
membahayakan individu melalui pembuatan konten palsu, sehingga teknologi deteksi citra deepfake penting 
dikembangkan untuk mengurangi potensi bahaya tersebut. Penelitian ini menggunakan arsitektur MobileNet 
dengan melakukan penerapan regularization dan metode activation function meningkatkan akurasi deteksi. 
ReLU (Rectified Linear Unit) meningkatkan efisiensi dan kemampuan model dalam menangkap fitur non-
linear, sementara Dropout dan L2 regularization membantu mengurangi overfitting dengan memberikan 
penalti pada bobot yang besar sehingga meningkatkan generalisasi. Berdasarkan hasil eksperimen, model 
MobileNet yang dioptimasi dengan ReLU dan Dropout mendapatkan akurasi pada tahap pelatihan sebesar 
99.17%, tahap validasi sebesar 85.34% dan tahap pengujian sebesar 70.60% sedangkan model MobileNet 
yang dioptimasi dengan ReLU dan L2, akurasi menurun pada tahap pelatihan dan tahap validasi jika 
dibandingkan dengan regularisasi Dropout, namun meningkat pada tahap pengujian sebesar 72.18%. 
Penelitian ini merekomendasikan MobileNet dengan ReLU dan L2 karena kemampuan generalisasi yang lebih 
baik pada data pengujian (akibat pengurangan overfitting). 
 
Kata Kunci: fungsi aktivasi, deepfake, regularisasi, pembelajaran transfer. 

http://creativecommons.org/licenses/by-nc/4.0/
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INTRODUCTION 
 

One of the problems in the modern digital 
world is the rapid development and spread of false 
information through social media platforms, 
enabled by the automated manipulation of images 
and videos using a deep learning-based approach 
called deepfakes [1], [2]. Deep learning techniques 
were applied to perform successive operations to 
extract intrinsic information from the data to be 
manipulated. Deepfake content was made famous 
on social media for its ability to stimulate 
imagination by creating surreal and fantastical 
events, such as presenting David Beckham speaking 
several languages and others. However, the 
potential negative impacts were also highlighted as 
a concern by many researchers worldwide, leading 
to efforts to detect deepfake content effectively 
using various approaches. This research was 
conducted to improve the performance of 
MobileNet, which had been previously used for 
deepfake image detection [3]–[5]. 

Deepfake images, manipulated images, or 
videos created using artificial intelligence were 
recognized as a significant threat to society. 
Deepfake imagery was used to spread false 
information, manipulate public opinion, and harm 
individuals by creating false content, making 
detecting deepfake imagery essential to protect 
against these potential dangers [6]–[10]. Transfer 
learning approaches were applied in several 
previous studies to detect and classify deepfake 
images. A ResNet-18 approach combined with a 
quantum neural network layer was proposed by 
Mishra and Samanta to classify deepfake images 
[11]. Suratkar and Kazi also proposed a new 
framework that utilized transfer learning in 
autoencoder convolutional neural networks (CNNs) 
to detect deepfakes, achieving good generalization 
and effective results [12]. 

Previous studies, such as those by Mishra and 
Samanta, focused on combining ResNet-18 with 
quantum neural networks for deepfake image 
classification [11]. At the same time, Suratkar and 
Kazi utilized transfer learning in autoencoder CNNs 
to detect deepfakes, achieving promising results 
[12]. However, a gap was identified in balancing 
efficiency and performance due to the reliance on 
computationally expensive architectures like 
ResNet-18. This gap was addressed in this study by 
proposing the use of MobileNet. This lightweight yet 
effective model reduced the number of parameters, 
computational costs, and the risk of overfitting 
while maintaining good accuracy. MobileNet was 
further optimized to detect deepfakes generated by 
various technologies, providing a practical solution 

for real-world applications requiring fast and 
accurate detection. 

Regularization mechanisms that combined 
multiple detection methods were proposed and 
were found to enhance detection accuracy further. 
Optimizations for MobileNet were also suggested in 
artificial intelligence to improve its real-time 
performance and resource utilization, making it 
more efficient for deepfake detection [13]–[15]. 
However, the role of regularization and activation 
functions on MobileNet had yet to be explored, 
leaving room for further enhancements in 
classification performance on deepfake datasets. 
Improvements in deepfake detection were obtained 
from previous research by leveraging the MobileNet 
architecture, which was optimized for maintaining 
high accuracy while reducing the number of 
parameters, computation time, and overfitting [16], 
[17].  

The novelty of this research was 
demonstrated by investigating the combined effects 
of regularization and activation functions on the 
MobileNet architecture. This area had yet to be 
thoroughly explored in previous studies [17]–[21]. 
While earlier research focused on optimizing 
MobileNet for real-time performance, resource 
utilization, and overall efficiency, this study 
specifically evaluated the impact of ReLU activation 
with Dropout (experiment 1) and ReLU activation 
with L2 regularization (experiment 2) on 
classification performance for deepfake datasets. 
The study aimed to identify the most effective 
combination for improving accuracy and reducing 
overfitting by analyzing these configurations. This 
approach introduced a new perspective on 
optimizing MobileNet for high-accuracy deepfake 
detection, addressing gaps in existing literature and 
contributing to advancements in the field. 
 

MATERIALS AND METHODS 

This research was conducted through a 
series of steps, beginning with a literature study to 
understand existing deepfake detection techniques, 
followed by dataset preparation to ensure sufficient 
and relevant data for training and testing the 
models. Two experiments were carried out, 
including experiment 1, which utilized MobileNet 
with ReLU and Dropout to enhance feature 
extraction while reducing overfitting, and 
experiment 2, which employed MobileNet with 
ReLU and L2 regularization for improved 
generalization. Finally, the models were evaluated 
to compare their accuracy and effectiveness in 
detecting deepfake images, providing insights into 
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their performance. The research stage can be seen 
in Figure 1. 

 

 

Source: (Research Results, 2024) 
Figure 1. Research methodology 

The first stage involved the development of a 
deepfake image dataset collected from DF-Platter 
[22] , Celeb-DF [22] and Google Images. The dataset 
was categorized into "fake images" and "real 
images." It was divided into three parts: training, 
validation, and testing. In the training dataset, 
70,000 images were labeled as fake and 70,000 as 
real, allowing the model to learn the distinctions 
between manipulated and authentic images. The 
compilation of datasets from DF-Platter, Celeb-DF, 
and Google Images is illustrated in Figure 2. 

 

    
(real) (fake) (real) (fake) 

    
(real) (fake) (real) (fake) 

    

(real) (fake) (real) (fake) 

Source: (Research Results, 2024) 

Figure 2.  Dataset compilation from DF-Platter, 
Celeb-DF and Google Images 

 

In image processing theory, real images were 
described as having consistent lighting, shadows, 
and facial textures that adhered to natural physical 
laws, with fine details such as pores and hair 
appearing clearly. Conversely, deepfake images 
exhibited inconsistencies in lighting, blurry 
textures, and artifacts in specific areas, particularly 
along facial edges. A frequency analysis of deepfake 
images was conducted, and unnatural noise 
patterns or distortions from the synthesis process 
were revealed. 

The dataset for the validation stage was 
composed of 19,600 images for the fake images 
class and 19,600 images for the real images class, 
which were used to evaluate the model's 
performance during the training process. The 
dataset for the testing phase was prepared with 
5,492 images for the fake images class and 5,413 
images for the real class, which were used to 
measure the accuracy and effectiveness of the 
MobileNet model after the completed training 
process.  

The first detection experiment was 
conducted using the MobileNet architecture 
combined with ReLU and Dropout, called 
MobileReLuDr, to improve the model's performance 
in detecting deepfake images. Each component was 
assigned a vital role in improving generalization 
and preventing overfitting. The dropout rate was set 
to 0.2, as defined in model.add(Dropout(0.2)), to 
mitigate overfitting. The learning rate was 
configured at 0.0001 using the Adam optimizer for 
stable and gradual updates. The training was 
performed with a batch size of 32 over 50 epochs, as 
specified in the generator and fit functions. 

The second detection experiment was 
conducted using the MobileNet architecture 
combined with ReLU and L2 Regularization, 
referred to as MobileReLuL2. The strength was set 
to 0.02 and was applied to the Dense layers using 
regularizers.L2(l2=0.02). A learning rate of 0.0001 
was configured with the Adam optimizer, and 
training was performed with a batch size of 32 over 
50 epochs. Weight initialization was leveraged from 
pre-trained MobileNet weights on imaginet to 
enhance feature extraction in the early layers. 

The configuration parameters of the 
MobileNet model were defined with the first layer 
as an input layer producing outputs of shape (100, 
256, 256, 3). The architecture employed a 
MobileNet backbone pre-trained on ImageNet, 
followed by a GlobalAveragePooling2D layer to 
reduce dimensionality while retaining spatial 
features. The classification head was constructed 
with a Dense layer containing 4096 units and ReLU 
activation, another with 1072 units and ReLU 
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activation, and a final Dense layer with two units 
using softmax activation for binary classification. 
These layers were designed to classify input images 
as deepfake or non-deepfake, leveraging robust 
feature extraction and regularization to mitigate 
overfitting. 

 
RESULTS AND DISCUSSION 

 
The first experiment, MobileReLuDr, utilized 

the MobileNet architecture with ReLU and Dropout 
to enhance deepfake image detection by improving 
generalization and preventing overfitting. A 
dropout rate of 0.2 and a learning rate of 0.0001 
with the Adam optimizer ensure stability during 
training. The model is trained with a batch size of 32 
over 50 epochs to achieve optimal performance.  
The result of accuracy and loss for each epoch on the 
MobileNet with ReLU and Dropout model can be 
seen in Figure 3. 

 
(a) 

 
(b) 

Source: (Research Results, 2024) 
Figure 3.  Result of accuracy (a) and loss (b) of 

MobileReLuDr 

 
The MobileReLuDr model performance on 

deepfake datasets was evaluated using the 
confusion matrix, providing insights into accurate 
and incorrect predictions as many 4661 true 
positives (fake detected as fake) and 3038 true 
negatives (real detected as real) were shown. 
Additionally, 2375 false positives (real misclassified 

as fake) and 831 false negatives (fake misclassified 
as real) were observed. The results of confusion 
matrix from experiments using MobileReLuDr can 
be seen in Figure 4. 

 
Source: (Research Results, 2024) 

Figure 4. Confusion Matrix of MobileReLuDr 

 
Based on the values in the confusion matrix, 

other classification evaluation values such as 
accuracy, precision, recall, F1-score can be 
calculated.  The testing phase using MobileReLuDr 
model using deepfake image datasets will be 
analyzed using precision, recall, F1-score values. 
The precision, recall, F1-score values of the 
MobileReLuDr experiment can be seen in Table 1.  
 

Table 1. Precision, recall and f1-score of 
MobileReLuDr 

Data Precision Recall F1-Score Support 
Fake 0.66 0.85 0.74 5492 
Real 0.79 0.56 0.65 5413 
Accuracy   0.71 10905 
Avg. 0.72 0.71 0.70 10905 

Source: (Research Results, 2024) 
 

Based on the experimental results, the 
MobileReLuDr model was found to have a precision 
of 66% for fake images class, meaning 66% of 
images predicted as "fake" were actually fake, while 
a higher accuracy of 79% was achieved for the "real 
images" class. The F1-score for the "fake images" 
class was calculated as 0.74, showing a good balance 
between precision and recall, whereas the F1-score 
for the "real images" class was determined to be 
0.65, highlighting areas for improvement in 
detecting authentic images. 

In the second experiment, MobileReLuL2 
was used, combining the MobileNet architecture 
with ReLU and L2 Regularization, where the L2 
strength was set to 0.02 for Dense layers. The model 
was trained with a learning rate of 0.0001 using the 
Adam optimizer, a batch size of 32, and pretrained 
weights from "imagenet" for feature extraction. 
Training and validation were conducted on a 
deepfake image dataset, with epochs adjusted 
according to the dataset size, and the results were 
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presented graphically. The MobileReLuL2 model 
was found to fit well during testing and validation, 
as shown by the accuracy and loss trends depicted 
in Figure 5. 

 
(a) 

 
(b) 

Source: (Research Results, 2024) 
Figure 5.  Result of accuracy (a) and loss (b) of 

MobileReLuL2 

 
The confusion matrix for the MobileNet 

model with ReLU and L2 regularization was 
analyzed to evaluate the correct and incorrect 
classifications of deepfake datasets. It was shown 
that 4432 fake images were correctly classified as 
fake (true positives) and 3439 real images were 
correctly classified as real (true negatives). 
however, 1974 real images were misclassified as 
fake (false positives), and 1060 fake images were 
misclassified as real (false negatives). The confusion 
matrix was used to provide accurate and predictive 
information regarding the classification 
performance of the model, with its sections 
representing the numbers of true and false 
predictions for each deepfake dataset class. The 
results from the experiments using MobileReLuL2 
were depicted in Figure 6. 

 

Source: (Research Results, 2024) 
Figure 6. Confusion matrix of MobileReLuL2 

 
Based on the values in the confusion matrix, 

other classification evaluation values such as 
accuracy, precision, recall, F1-score can be 
calculated. The testing phase using the MobileNet 
with reLU and L2 model using deepfake image 
datasets will be analyzed using precision, recall, F1-
score. The precision, recall, f1-score values of the 
MobileNet with reLU and L2 experiment can be seen 
in Table 2. 

Table 2. Precision, recall and f1-score of MobileNet 
with reLU and L2 

 
Data Precision Recall F1-Score Support 
Fake 0.69 0.81 0.74 5492 
Real 0.76 0.64 0.69 5413 
Accuracy 

  
0.72 10905 

Avg 0.73 0.72 0.72 10905 

Source: (Research Results, 2024) 
 
The performance of the MobileReLuL2 model 

for deepfake detection was evaluated, and it was 
found to perform well in detecting fake images with 
high recall and precision. Although the "fake 
images" class showed good results, shortcomings 
were observed in detecting real images, as reflected 
in the lower recall and F1-score for the "real 
images" class. Improvements were identified as 
necessary for native image recognition to reduce 
the risk of misclassification. It was suggested that 
future efforts focus on data augmentation 
techniques, hyperparameter tuning, and exploring 
more complex model architectures to enhance the 
model’s performance. 

The precision for the "fake images" class was 
recorded at 69%, indicating that 69% of images 
predicted as fake were actually fake, and the model 
effectively avoided false positives in this category. 
The accuracy for the "real images" class was noted 
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as 76%, demonstrating that the model was more 
accurate in identifying authentic images. High 
precision in both classes was recognized as critical 
for deepfake detection to minimize the likelihood of 
misclassifying real images as fake. 

The recall for the "fake images" class was 
found to be 81%, indicating that 81% of fake images 
in the dataset were correctly identified, 
demonstrating the model's effectiveness in 
detecting manipulated content. However, the recall 
for the "real images" class was lower, at 64%, 
suggesting that many original images were not 
correctly identified, resulting in an increased 
number of false negatives. The F1-score for the 
"fake images" class was 0.74, highlighting a good 
balance between precision and recall, while the F1-
score for the "real images" class was lower at 0.69. 

The performance of the MobileReLuDr and 
MobileReLuL2 models on deepfake datasets was 
compared using their respective confusion 
matrices, providing insights into accurate and 
incorrect predictions. For MobileReLuDr, it was 
observed that 4661 fake images were correctly 
classified as fake (true positives), while 3038 real 
images were correctly classified as real (true 
negatives). However, 2375 real images were 
misclassified as fake (false positives), and 831 fake 
images were misclassified as real (false negatives). 
These results highlighted that the model achieved 
strong performance in detecting fake images but 
struggled with reducing false positives. 

In contrast, the MobileReLuL2 model showed 
that 4432 fake images were correctly classified as 
fake (true positives) and 3439 real images were 
correctly classified as real (true negatives). 
However, 1974 real images were misclassified as 
fake (false positives), and 1060 fake images were 
misclassified as real (false negatives). Compared to 
MobileReLuDr, the MobileReLuL2 model exhibited 
slightly lower performance in detecting fake images 
but showed an improvement in reducing false 
positives, resulting in more accurate classification 
of real images. The comparison results of the 
experiment from this research can be seen in Table 
3. 

 
Table 3. Comparation of experiment result 

Model Train Val Test  
MobileReLuDr 99.17% 85.34% 70.60% 
MobileReLuL2 83.13% 82.81% 72.18% 

Source: (Research Results, 2024) 
 
MobileNet models optimized with ReLU and 

dropout get accuracy at the training stage of 
99.17%, validation stage of 85.34% and testing 
stage of 70.60%. In MobileNet models optimized 
with ReLU and L2, accuracy decreased in the 

training and validation phases, but increased in the 
testing phase by 72.18%. 

From the comparison of the given models, we 
can see the performance of each model based on 
accuracy metrics on three data sets: Train, 
Validation (Val), and Test. The MobileReLuDr model 
showed high accuracy on the training data 
(99.17%), which showed that the model could learn 
the patterns in the training data very well. However, 
the accuracy of the validation data (85.34%) and 
test data (70.60%) showed a significant decrease. 
MobileReLuDr is likely to be overfitted, where the 
model fits the training data well but needs to 
generalize better to the new deepfake image data. 
Dropout is a regulatory technique used to prevent 
overfitting, but it does notisn't effective enough in 
this case. 

The MobileReLuL2 model has lower accuracy 
on the training data (83.13%) than the 
MobileReLuDr model. These results may indicate 
that MobileReLuL2 does not fully capture patterns 
in the training data but could lead to more 
generalized models. The accuracy of MobileReLuL2 
on validation data (82.81%) and test data (72.18%) 
is closer to the accuracy of training, indicating that 
MobileReLuL2 is better at generalizing patterns to 
new data compared to the MobileReLuDr model. 

The best model is the MobileReLuL2 model. 
The next step is implementing the MobileReLuL2 
model file in *.h5 format in the image deepfake 
detector (IF-Detector) application. The 
MobileReLuL2 model is integrated into the 
application to detect deepfakes using Keras. The 
interface design of the IF-Detector application is 
seen in Figure 7. 

 
Source: (Research Results, 2024) 

Figure 7.  Interface of IF-Detector application 
 

In developing an image deepfake detector 
(IF-Detector) application based on the .h5 model, 
Python, TensorFlow and several other supporting 
libraries, such as OpenCV, are needed to handle 
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images.  The data is fed into the deepfake detector 
model in the image box. The data in the image 
format must conform to the model input 
specifications. 

MobileReLuL2 can process image inputs in 
the form of numerical arrays. After input 
processing, the image is fed into the MobileReLuL2 
model to make predictions. The next step is to 
integrate MobileReLuL2 into a .h5 model-based 
image deepfake detector (IF-Detector) application 
using the programming code seen in Figure 8. 

 

 
Source: (Research Results, 2024) 

Figure 8.  Implementation of *h5 into IF-Detector 
application 

 
CONCLUSION 

 
The study was conducted to contribute to the 

field of deepfake detection by demonstrating the 
effectiveness of the MobileNet architecture 
combined with distinct regularization techniques 
and activation functions, specifically through the 
MobileReLuDr and MobileReLuL2 configurations. 
The MobileReLuDr model, which utilized ReLU 
activation and a Dropout rate of 0.2, was shown to 
effectively mitigate overfitting while maintaining 
stability during training with a learning rate of 
0.0001. In contrast, the MobileReLuL2 model was 
designed with ReLU activation and L2 
Regularization with a strength of 0.02, and pre-
trained weights were leveraged to enhance feature 
extraction, resulting in better generalization during 
testing.  

The research findings were highlighted by 
the varying performances of MobileNet models 
optimized with different regularization and 
activation function methods in deepfake image 
classification. MobileReLuL2 was found to 
outperform MobileReLuDr in the testing phase, 
achieving an accuracy of 72.18% compared to 
70.60%, which indicated better generalization to 
unseen data. MobileReLuDr, however, was 

observed to exhibit higher accuracy in the training 
(99.17%) and validation stages (85.34%) due to its 
stronger performance during early stages of 
learning. The MobileNet architecture was 
successfully utilized to maintain a good balance 
between accuracy, computational efficiency, and 
reduced overfitting by incorporating regularization 
techniques. 

While this study successfully developed and 
utilized a deepfake image dataset compiled from 
DF-Platter, Celeb-DF, and Google Images, several 
limitations should be acknowledged. First, the 
dataset size, while extensive for training, may not 
fully represent the diversity of deepfake media, 
particularly across different formats, such as videos 
or lesser-studied deepfake techniques. Additionally, 
overfitting issues, although mitigated using Dropout 
and L2 Regularization, may still affect the 
generalizability of the models to unseen datasets or 
more complex manipulation techniques. Future 
research could focus on expanding the dataset to 
include other types of deepfake media, such as 
videos, and experimenting with additional 
regularization techniques, such as mixup or 
adversarial training, to further reduce overfitting. 
Model enhancements, such as integrating attention 
mechanisms or hybrid architectures, could also be 
explored to improve the detection of subtle 
manipulations in deepfake content. 
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