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Abstract—The dengue virus experiences rapid mutation and genetic variability, posing challenges in 
developing effective antiviral therapies. This study explores the prediction of binding affinities between 
potential antiviral drug inhibitors and the NS2B-NS3 protease of the dengue virus using machine learning 
models. Molecular docking simulations were conducted with AutoDock Vina to generate interaction data 
between viral proteins and ligands. The generated datasets were used to train several machine learning 
models, including Random Forest Regressor (RF Regressor), Support Vector Regression (SVR), and Extreme 
Gradient Boosting Regressor (XGBoost Regressor). The RF Regressor model demonstrated the highest accuracy 
in predicting binding affinities, measured through Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and Pearson Correlation Coefficient (R). However, the XGBoost Regressor and SVR models showed 
better generalization in practical scenarios. This study highlights the potential of machine learning to optimize 
the drug discovery process and provides significant insights into antiviral drug development for dengue fever. 
 
Keywords: binding affinities, dengue virus, machine learning, molecular docking, NS2B-NS3 protease.  
 
Intisari—Virus dengue mengalami mutasi cepat dan variabilitas genetik, yang menimbulkan tantangan 
dalam pengembangan terapi antivirus yang efektif. Penelitian ini mengeksplorasi prediksi afinitas pengikatan 
antara inhibitor obat antiviral potensial dan protease NS2B-NS3 virus dengue menggunakan model 
pembelajaran mesin. Simulasi docking molekuler dilakukan dengan AutoDock Vina untuk menghasilkan data 
interaksi antara protein virus dan ligan. Dataset yang dihasilkan digunakan untuk melatih beberapa model 
pembelajaran mesin, termasuk Random Forest Regressor (RF Regressor), Support Vector Regression (SVR), 
dan Extreme Gradient Boosting Regressor (XGBoost Regressor). Model RF Regressor menunjukkan akurasi 
tertinggi dalam memprediksi afinitas pengikatan, diukur dengan Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), dan Pearson Correlation Coefficient (R). Namun, model XGBoost Regressor dan SVR 
menunjukkan generalisasi yang lebih baik dalam skenario praktis. Penelitian ini menyoroti potensi 
pembelajaran mesin untuk mengoptimalkan proses penemuan obat dan memberikan wawasan penting dalam 
pengembangan obat antivirus untuk demam dengue. 
 
Kata Kunci: afinitas pengikatan, virus dengue, pembelajaran mesin, docking molekuler, protease NS2B-NS3. 
 

INTRODUCTION 
 

Dengue fever remains a significant public 
health challenge in Indonesia. In 2023, there were 
114,435 cases and 894 deaths, while in the first 
eight weeks of 2024, there were 15,977 cases and 
124 deaths. Notably, the DENV-3 and DENV-2 
serotypes dominate, contributing 53.4% and 38.6% 

of total cases, respectively, with a higher risk of 
severe complications such as dengue shock 
syndrome (DSS) [1]. The genetic variability of the 
pathogen and the limitations of antiviral treatments 
exacerbate the situation, emphasizing the urgent 
need for effective therapies [2]. 

The NS2B-NS3 protease plays a crucial role in 
dengue virus replication, functioning in the 
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processing of proteins necessary for the formation 
of infectious virus particles. The interaction 
between NS2B and NS3 forms a protease complex 
that cleaves viral polyproteins into functional 
proteins. Recent research indicates that inhibiting 
this protease can significantly reduce viral 
replication, making it an attractive therapeutic 
target. A study reported that compounds inhibiting 
this interaction can decrease viral replication by up 
to 80% in cell cultures [3]. Additionally, 
epidemiological data show that dengue infections 
can lead to severe complications, so the 
development of effective inhibitors against the 
NS2B-NS3 protease could contribute to the 
reduction of dengue-related morbidity and 
mortality. Therefore, these proteins are a primary 
focus in the development of new antiviral therapies. 

Despite promising research on protease 
inhibitors, there remains a gap in understanding the 
specific mechanisms behind the molecular 
interactions between ligands and this protease. 
Many existing studies still rely on limited datasets 
that do not encompass the broad genetic variability 
of DENV, which can affect the effectiveness of the 
developed inhibitors. Consequently, further 
research is needed to create a comprehensive 
protein-ligand dataset and to apply machine 
learning techniques to improve binding affinity 
predictions and the efficacy of antiviral therapies. 

The specific objectives of this research 
include: (1) creating a new protein-ligand dataset 
that encompasses DENV genetic variability, (2) 
developing more accurate binding affinity 
prediction models through the integration of 
machine learning algorithms, and (3) exploring key 
interactions between ligands and the NS2B-NS3 
protease to design more effective inhibitors. 

Antiviral agents for Dengue Hemorrhagic 
Fever (DHF) can be evaluated using molecular 
docking techniques, which predict interactions 
between small molecules (ligands) and proteins 
(receptors) [4]. DHF, caused by four DENV 
serotypes, involves non-structural proteins (NS) 
that play roles in viral replication and immune 
evasion. In Indonesia, NS3 and NS2 are the primary 
targets for treatment. NS2A and NS2B assist in viral 
assembly and replication, while NS2B-NS3 must 
collaborate for DENV replication, making it a crucial 
therapeutic target [5]. NS3 also interacts with NS4A 
for viral genome cleavage and DENV RNA 
processing [6], [7]. 

This research focuses on developing a new 
protein-ligand dataset and binding affinity 
prediction models using machine learning scoring 
functions, aiming to reduce reliance on existing 
datasets. Docking simulations between antiviral 

agents and the NS2 and NS3 proteins of the dengue 
virus were conducted using AutoDock Vina due to 
its significance in Dengue Fever (DF) cases in 
Indonesia. The generated protein-ligand interaction 
data enhance the accuracy of the machine learning 
models by identifying key interaction patterns. 
Random Forest Regressor (RF Regressor) and 
Support Vector Regression (SVR) are commonly 
used algorithms in this study [8], [9], with RF 
Regressor often excelling in Pearson Correlation 
Coefficient (R) evaluations [10], [11], although 
Extreme Gradient Boosting Regressor (XGBoost 
Regressor) sometimes performs better [12], [13]. 
SVR dominates in Mean Absolute Error (MAE) and 
Root Mean Squared Error (RMSE) evaluations [14], 
[15]. This study integrates three algorithms into a 
new scoring function, aiming to improve accuracy 
and predictive resilience. 

 
MATERIALS AND METHODS 

 
As a vital part in the replication of Dengue 

virus, NS2B-NS3pro protein plays a major role in 
the virus polypeptide process and is a potential 
target for the development of antivirus. The NS2B-
NS3pro protein obtained from the RSCB PDB 
database is labeled with the PDB code 4M9K [15] . 
The 4M9K protein is selected based on the dengue 
virus type 2 virus protein. In this study, the NS2B-
NS3pro protein is chosen as the main target for 
molecular docking with various ligands in order to 
identify candidate molecules that could be effective 
protease inhibitors. Figure 1 depicts the structure of 
the NS2B-NS3pro receptor protein (PDB ID: 4M9K) 
used in this study. 

 

 
Source: (https://www.rcsb.org/structure/4M9K.  
[Accessed: Jul. 05, 2024]) 

Figure 1. Protein Reseptor PDB ID 4M9K 
 

https://www.rcsb.org/structure/4M9K
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System Design 
This research utilizes AutoDock Vina version 

1.1.2 to obtain a dataset containing the receptor-
ligand binding affinity and the strength of receptor-
ligand complex binding as shown in Figure 2 [16]. 
The search for binding affinity is carried out with 
the following flow. 

Preparing a set of ligand molecules obtained 
through the DrugBank database to interact with the 
NS2B-NS3pro receptor of dengue virus type 2 [17]. 
The docking process uses both data to simulate the 
interaction between the ligand and receptor. A total 
of 1,138 ligand configurations were meticulously 
curated for various viral infections like hepatitis C, 
malaria, cancer, and more. Additionally, the ligands 
were selected based on confirmed or tested 
features. Furthermore, the ligands are converted 
from PDB into PDBQT files before docking. 

 

 
Source: (Danestiara, 2021) [16] 
Figure 2. Overview of the process of creating a new 

data set with docking using AutoDock Vina. 
 

Protein 4M9K loses water molecules as water 
can disrupt the interaction between the protein and 
ligand. Then, charged hydrogen atoms are added to 
improve accuracy in predicting binding locations. 
Determining the grid box on the protein is done to 
determine the ligand's location during the docking 
process, with the grid box determining the center 
and spatial dimensions of the docking area.  

Few important parameters were set to get 
the best results prior to running molecular docking 
simulations using AutoDock Vina. The search space 
of ligand-receptor inter actions was defined by a 
grid box with the center coordinates x, y, z of 17.771, 
9.012, 5.203 angstroms and dimensions x, y, z of 
50,50, and 40Å. Furthermore, the protein is 
converted into PDBQT files before docking with 
Autodock Vina.  

 
Source: (Danestiara, 2021) [16] 

Figure 3. The Process Flow of Molecular 
Interaction Feature Using A Set Of Docking Data 

 
Once the docking process is finished, the data 

is saved in a Docking Data Set, which includes 
information about the binding affinity or interaction 
energy between the ligand and receptor. Next, we 
preprocess this data using molecular interaction 
features to map interactions at the atomic level by 
measuring distances between atoms. Finally, the 
data is exported to a .csv file for further analysis 
with machine learning. Figure 3 presents an 
overview of the process flow for docking data set 
processing. 

After obtaining the set of data on 
intermolecular interactions, the prediction of 
binding affinity values of receptor-ligand complexes 
is carried out using three machine learning 
algorithms for scoring functions, namely RF 
Regressor, SVR, and XGBoost Regressor. 

 

 
Source: (Research Result, 2024) 

Figure 4. The Process Flow Of Predicting The 
Affinity Value Bond Using Machine Learning 

Scoring Function by RF Regressor, SVR, Xgboost 
Regressor. 
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Figure 4 overviews machine learning applied 
to intermolecular interaction data. The results of the 
collection of intermolecular interaction data are 
split into 80% training data and 20% test data from 
1118 data. Subsequently, predictions are made on 
the training data set using RF Regressor, SVR, 
XGBoost Regressor. This process results in RF-
Score, SVR-Score, and XGBoost-Score, and the 
predicted values of binding affinity for the receptor-
ligand complex as a whole.  
 
Features of Intermolecular Interactions 

The relationship between receptor-ligand 
complexes and affinity is influenced by 
intermolecular interactions, and Machine Learning 
can use regression techniques to analyze these non-
linear relationships. Molecular interaction involves 
measuring distances between atoms in receptor-
ligand complexes. For example, the interaction 
between carbon and nitrogen is a key feature of 
each complex. This research focuses on heavy atoms 
typically found in PDB structures, which helps 
efficiently analyze intermolecular relationships 
[18]. While using various types of atoms can 
increase the number of features, it’s important to 
keep their values low to avoid impacting predictions 
and delays in feature clustering. In this study, nine 
types of heavy atoms are considered in the receptor 
and ligand. 

 
{𝑃(𝑖)}𝑖=1

9 = {𝐶, 𝑁, 𝑂, 𝐹, 𝑃, 𝑆, 𝐶𝑙, 𝐵𝑟, 𝐼}                        (1) 
{𝐿(𝑖)}𝑖=1

9 = {𝐶, 𝑁, 𝑂, 𝐹, 𝑃, 𝑆, 𝐶𝑙, 𝐵𝑟, 𝐼}                         (2) 
 

The molecular interaction between receptor-
ligand is defined as follows: 

 

𝑥 ( 𝐴(𝑃(𝑗)),  𝐴(𝐿(𝑖))) ≡ ∑ ∑ 𝜃(𝑑𝑐𝑢𝑡𝑜𝑓𝑓 − 𝑑𝑝𝑙)
𝐿(𝑖)

𝑙=1

𝑃𝑗

𝑝=1

                        (3) 
All the required data is contained in the PDB 

files of the receptor and ligand. Where 𝑃𝑗 and 𝐿𝑖 
represent the number of receptor and ligand atoms. 
The role that changes the atom number and is used 
to replace the characteristics that have been 
determined as A. dpl is the Euclidean distance that 
calculates the distance between atoms. dcutoff <12 Å, 
the cutoff selection is inspired by PMF which 
captures the solvation effect very well even though 
there is no claim stating that this selection is the 
optimal choice. Θ is the Heaviside step function that 
determines the receptor-ligand complexes 
involved. 

 

 (𝑑𝑝𝑙 , 𝑑𝑐𝑢𝑡𝑜𝑓𝑓) {
𝑑𝑝𝑙 ≤ 12 Å, 1

𝑑𝑝𝑙 > 12 Å, 0
                       (4) 

 

If the distance between two molecules (𝑑𝑝𝑙) 
is greater than 12 Å, then the intermolecular 
interactions in the receptor-ligand complex will 
have a value of zero, indicating that it is not included 
in the feature set and vice versa. 

Furthermore, each receptor-ligand complex 
has 36 features characterized in vector form, 
namely: 
�⃗� =

(
𝑥6,6, 𝑥6,7,𝑥6,8,𝑥6,9,𝑥6,15,, x6,16, x6,17, x6,35, x6,53,

x7,6, … , x53,53
) ∈ ℵ36

                (5) 
          The calculation process of intermolecular 
interactions is carried out throughout the receptor-
ligand complex that will be predicted against the 
receptor-ligand. After that, the results of a series of 
collected features will be compiled into the 
following dataset: 
 
𝐷 = {(�⃗�𝑛, 𝑦𝑛)}𝑛=1

𝑁               (6)    
  

Where D is a set of pre-processed coal data. 
�⃗�𝑛 is a 36-feature vector containing complex 
receptor-ligand atom interactions. yn is the actual 
receptor-ligand binding affinity. 

 
Binding Affinity Prediction by Random Forest 
Regressor 

RF Regressor is an ensemble method that 
combines multiple decision trees. The algorithm 
works by randomly splitting the dataset into 
subsets, building decision trees for each subset, and 
then averaging the results of the trees to make final 
predictions. RF is defined as follows: 

 

𝑅𝐹 ≡ (𝑥 ; 𝑚𝑡𝑟𝑦) ≡
1

𝑃
∑ 𝑇𝑝(

𝑃

𝑝=1

�⃗�(𝑛); 𝑚𝑡𝑟𝑦)  

𝑇𝑝: ℵ36 → 𝑅+∀𝑝                 (7) 

 
Where the number of trees is 5000 trees, p is 

the tree index and 𝑇𝑝 is the regression value of 
individual trees in the forest, 𝑚𝑡𝑟𝑦 is some randomly 
selected number of features, 𝑥 affinity bonds will be 
predicted by RF Regressor. 

In order to assess the effectiveness of the 
machine learning models (RF Regressor, SVR, and 
XGBoost Regressor) in a structured manner, we 
utilized three common statistical measures: Mean 
Absolute Error (MAE), Root Mean Square Error 
(RMSE), and Pearson Correlation Coefficient (R). 
These techniques are employed to measure the 
discrepancy between observed and estimated 
values. A good prediction model is one where the 

predicted value 𝑓(�⃗�(𝑛)) closely matches the actual 

value 𝑦(𝑛),    namely: 
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𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦(𝑛) − 𝑓(�⃗�(𝑛))|𝑁

𝑛=1                 (8) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑁

𝑛=1 𝑦(𝑛) −  𝑓(�⃗�(𝑛)))2              (9) 

 
𝑅

≡
𝑁 ∑ (𝑦(𝑛), 𝑓(�⃗�(𝑛))) −  ∑ (𝑦(𝑛)) ∑  𝑓(�⃗�(𝑛)))𝑁

𝑛=1
𝑁
𝑛=1

𝑁
𝑛=1

√(𝑁 ∑ (𝑦(𝑛))2 − (∑ (𝑦(𝑛))2)(𝑁
𝑛=1

𝑁
𝑛=1 𝑁 ∑ 𝑓(�⃗�(𝑛))2 − (∑ 𝑓(�⃗�(𝑛))2))𝑁

𝑛=1
𝑁
𝑛=1

       

         (10) 
 
The MAE, RMSE, and R methods are widely 

used to evaluate the accuracy of regression models. 
These metrics measure how close the model 
predictions are to the actual values in the dataset, so 
they can be consistently applied to various 
regression algorithms, including RF, SVR, and 
XGBoost. The difference lies in how each model 
generates prediction values 𝑓(�⃗�(𝑛)). 

 
Binding Affinity Prediction by Support Vector 
Regressor 

The SVR technique uses kernels such as 
Radial Basis Function (RBF) to map data into higher 
dimensions, predicting the binding affinity between 
ligands and receptors. This approach reveals non-
linear relationships between molecular features 
from atom interactions [19]. The RBF kernel 
enables SVR to capture complex, non-linear 
patterns, enhancing prediction accuracy. SVR is 
defined as follows: 

 
𝑆𝑉𝑅 =  ∑ (𝑎𝑖 − 𝑎𝑖

∗) 𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑁
𝑖=1                     (11) 

 
Where N is the number of data points from 

the dataset used to build the regression model. 𝑎𝑖 −
𝑎𝑖

∗ are lagrange multipliers, which are weights used 
by SVR for each support vector. K(xi, x) is a kernel 
function that measures the similarity between the 
support vector and new input data. b is a constant 
that helps adjust predictions to be more aligned 
with the actual data. x is an interaction feature 
between receptor-ligand. xi is a support vector from 
the training dataset. 
 
Binding Affinity Prediction by XGBoost 
Regressor 

XGBoost is ideal for predicting molecular 
binding affinity due to its capability to handle 
complex features and non-linear interactions, 
where chemical and structural factors affect binding 
strength. Using gradient boosting, it iteratively 
builds decision trees, making it a powerful and 
efficient algorithm. Moreover, XGBoost includes 
optimizations such as parallel processing and 
regularized learning, boosting its effectiveness in 
predicting non-linear relationships in ligand-

receptor binding affinity. The objective function 
includes a loss function to measure prediction error 
and regularization terms to control model 
complexity and prevent overfitting [20]. 

 
�̂�𝑖 =  ∑ 𝑓𝑘(𝑥𝑖)

𝐾
𝑘=1             (12) 

 
Where the number of trees is K = 5000, with 

k as the tree index, fk (xi) indicates the result of the 
k-th decision tree when applied to the input vector 
xi. Each tree fk functions by linking the input features 
xi to the predicted value for the target variable. 

 
RESULTS AND DISCUSSION 

 
RF is deemed superior to the other 

algorithms as indicated by the provided Table 1, 
owing to its exceptional performance on the testing 
data. It exhibits lower MAE value of 0.55 and RMSE 
value of 0.78, alongside R² value of 0.89, in 
comparison to both the SVR and XGBoost. 
Furthermore, RF demonstrates a commendable 
ability to generalize from training data to testing 
data, revealing a minimal decline in performance 
and circumventing the overfitting issues 
encountered with the XGBoost. This algorithm also 
sustains an advantageous equilibrium between 
bias, variance and exhibits heightened resistance to 
overfitting as a result of its ensemble learning 
methodology. Consequently, the RF is identified as 
the preferred option within the parameters of the 
provided dataset. 

 
Table 1. Comparison of the Evaluations From 

Training Data And Testing Data 
N
o 

Machine 
Learning 
Algorith
m 

Training Data Testing Data 
MA
E 

RMS
E 

R MA
E 

RMS
E 

R 

1 Random 
Forest 
Regresso
r 

0,2
7 

0,28 0,9
8 

0,5
5 

0,78 0,8
9 

2 Support 
Vector 
Regresso
r 

0,5
7 

0,78 0,9 0,5
6 

0,8 0,8
9 

3 XGBoost 
Regresso
r 

0,0
9 

0,26 0,9
9 

0,6
4 

0,89 87 

Source: (Research Result, 2024) 
 
Figure 5 displays a graph with the values of 

receptor-ligand binding affinity on the y-axis using 
RF. The affinities shown have undergone a learning 
process and are arranged from smallest to largest. 
Each complex id represents one value of receptor-
ligand binding affinity. 
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Source: (Research Result, 2024) 
Figure 5. ID Complex and Receptor-Ligand Binding 

Affinities Generated By RF Score. 
 

Every algorithm have different predictions 
on binding affinities. Although not significantly 
different, each model has its own unique way of 
evaluating data, resulting in slightly varied affinity 
binding values. Table 2 displays a comparison of the 
predicted values from the three models and the 
rankings produced based on the affinities. This 
research will provide a deeper understanding of the 
most suitable model in predicting binding 
compatibility. 

Figure 6 presents the correlation between 
predicted binding affinity and actual binding affinity 
of receptor-ligand complexes. The proximity of 
points to the diagonal line, which represents the 
ideal prediction, reflects the model's accuracy in 

predicting binding affinity. A smaller RMSE and 
MAE indicate that most points are close to the line, 
signifying higher accuracy of the model's 
predictions. Additionally, the R provides insights 
into the linear correlation between predicted and 
actual values, with a higher R value indicating a 
stronger positive correlation. In terms of the graph, 
when points cluster closely along the diagonal, it 
indicates a high R value and confirms a strong 
alignment between predicted and actual binding 
affinity. Therefore, this visual representation 
successfully supports the model performance as 
evaluated through RMSE, MAE, and R metrics. 

 

  
Source: (Research Result, 2024) 

Figure 6. The Distribution and Correlation of 
Binding Affinity Before and After Predicted. 

 

Table 2. Comparison of Binding Affinity Predictions and Rankings for Antiviral Compounds using 
XGBoost, RF, and SVR Models 

Antiviral 

XGBoost RF SVR 
Average Value of 
Binding Affinity 

Ranking from 
Average 
Value 

Binding 
Affinity 

Ranking 
Binding 
Affinity 

Ranking 
Binding 
Affinity 

Ranking 

Fidaxomicin 10.999245 4 10.8428 1 10.277158 1 10.706401 1 

Temoporfin 11.53072 1 10.1777 4 9.662838 5 10.457086 2 

Deacetoxyvinzolidine 11.17846 3 10.288517 3 9.838864 4 10.43528033 3 

Gantacurium 10.34101 6 10.5264 2 10.23925 2 10.36888667 4 

Jtk-853 11.358109 2 9.410833 14 8.991529 15 9.920157 5 

Caspofungin 9.188359 21 9.420833 13 9.874012 3 9.494401333 6 

Source: (Research Result, 2024) 
 
Understanding how atoms connect is 

crucial for grasping how ligands and receptors 
bind together. XGBoost and RF use built-in feature 
importance to evaluate the impact of atom 
interactions, while SVR relies on permutation 
importance since it lacks a built-in method. This 

approach, which incorporates insights from all 
three algorithms, helps us better understand the 
atomic interactions that influence the binding 
strength of molecules. 
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Source: (Research Result, 2024) 

Figure 7. Comparison of Feature Importance for 
the Top 10 Atomic Interactions in Xgboost, SVR, 

RF, and Average Models.  

 
Figure 7 shows the comparison of the top 

10 atomic interactions based on the feature 
importance of XGBoost and RF, as well as the 
permutation importance for SVR. The graph lines 
indicate that atoms interacting with X6,6 (C-C), 
X8,6 (O-C), and X7,6 (N-C) contribute the most to 
binding affinity. The peak value of the X6,6 
interaction is found in each algorithm, with the C-
C interaction having a value of around 0.83 for 
SVR, 0.51 for XGBoost, and 0.35 for RF, indicating 
the strength of the carbon-carbon interaction in 
the process. X8,6 (O-C) contributes significantly 
with a value of 0.18 in SVR and 0.1 in XGBoost, 
followed by X7,6 (N-C) with a value of 0.2 in RF 
and XGBoost. 

When calculating feature importance and 
permutation importance, the X6,6 (C-C) 
interaction consistently ranks highest in both 
XGBoost, RF, and SVR. This proves that the carbon-
carbon (C-C) interaction is dominant and most 
influential in molecular binding affinity. The 
collective interactions of C-C, O-C, and N-C atoms 
affect the strength of bonds in the target molecule, 
with the C-C interaction being dominant among 
them. To further validate these findings, 
laboratory tests should be conducted to assess the 
actual binding affinities and interactions of 
synthesized compounds based on these features. 
 

CONCLUSIONS 
 

The research identified X66 (carbon-
carbon interaction) as the most dominant feature 
in predicting binding affinity, consistently ranking 
highest across all models. This highlights the 
significance of carbon-carbon interactions in 
ligand binding to the NS2B-NS3pro protein, 
offering insights for the future design of antiviral 
compounds targeting the protease. The findings 
shed light on the intermolecular interactions that 

govern binding strength, providing valuable clues 
for developing more effective inhibitors targeting 
the NS2B-NS3 protein. 

Future research should focus on laboratory 
testing to validate binding affinity predictions 
from machine learning models. This includes 
synthesizing antiviral compounds based on 
dominant carbon-carbon interactions targeting 
the NS2B-NS3 protein and evaluating them using 
fluorescence binding assays and protease 
inhibition tests. Kinetic studies and surface 
plasmon resonance (SPR) methods should also be 
employed to assess stability and binding strength. 
These tests could enhance compound 
effectiveness and contribute to developing new 
antiviral therapies for dengue fever. 
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