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Abstract—Tea farming, one of the key pillars of Indonesia's economy, faces productivity challenges due to 
diseases affecting tea leaves. Manual identification of tea leaf diseases requires significant time and cost, 
making an automated solution necessary. This research develops an innovative model for classifying tea leaf 
diseases by synergizing Learning Vector Quantization (LVQ) and Linear Discriminant Analysis (LDA). By 
leveraging LVQ’s prototype-based classification and LDA’s dimensionality reduction, the model ensures 
accurate and efficient disease identification. During preprocessing, tea leaf images were converted to the 
CIELAB color space to enhance segmentation using Otsu’s Thresholding. Features such as Mean Color and 
texture attributes based on Gray Level Co-occurrence Matrix (GLCM) were extracted, reduced via LDA, and 
classified using LVQ. Tested on five tea leaf disease classes, the model achieved 94.1% accuracy. This 
performance underscores its potential to significantly assist farmers in early detection and management of tea 
leaf diseases, while also providing researchers with a robust tool for advancing agricultural technology. 

 
Keywords: GLCM texture features, linear discriminant analysis, learning vector quantization, mean color, tea 
leaf disease classification. 

 
Intisari— Pertanian teh, salah satu pendukung utama ekonomi Indonesia, menghadapi tantangan 
produktivitas akibat penyakit yang menyerang daun teh. Identifikasi penyakit daun teh secara manual 
memerlukan waktu dan biaya yang signifikan, sehingga diperlukan solusi otomatis. Penelitian ini 
mengembangkan model inovatif untuk mengklasifikasikan penyakit daun teh melalui sinergi antara Learning 
Vector Quantization (LVQ) dan Linear Discriminant Analysis (LDA). Dengan memanfaatkan klasifikasi 
berbasis prototipe LVQ dan reduksi dimensi oleh LDA, model ini memastikan identifikasi penyakit yang akurat 
dan efisien. Pada tahap pra-pemrosesan, citra daun teh dikonversi ke ruang warna CIELAB untuk 
meningkatkan segmentasi menggunakan Otsu’s Thresholding. Fitur seperti Mean Color dan atribut tekstur 
berdasarkan Gray Level Co-occurrence Matrix (GLCM) diekstraksi, direduksi melalui LDA, dan diklasifikasikan 
menggunakan LVQ. Model ini diuji pada lima kelas penyakit daun teh dan mencapai akurasi sebesar 94,1%. 
Kinerja ini menunjukkan potensinya untuk membantu petani dalam deteksi dini dan pengelolaan penyakit 
daun teh, serta memberikan peneliti alat yang kuat untuk memajukan teknologi pertanian. 
 
Kata Kunci: fitur tekstur GLCM, linear discriminant analysis, learning vector quantization, mean color, 
klasifikasi penyakit daun teh. 
 

INTRODUCTION 
 

Tea farming plays a vital role in Indonesia’s 
economy, particularly as a leading export product 
and for domestic consumption. According to data 

from the Central Bureau of Statistics (BPS), 
Indonesia's tea production in 2022 reached over 
130,000 tons, with more than 50% of it exported to 
various countries [1]. The main tea-producing 
regions in Indonesia include West Java, North 
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Sumatra, and Central Java. However, one of the 
major challenges faced by tea farmers in Indonesia 
is the spread of diseases affecting tea plants, 
particularly the leaves, which are a critical part of 
production [2]. Various tea leaf diseases can reduce 
the quality of the leaves and ultimately affect tea 
production [3]. If not promptly identified and 
treated, these diseases can cause significant harm to 
the plants. Tea leaf disease identification is 
primarily performed manually by specialists, a 
process that is both time-intensive and expensive. 
Therefore, a more efficient and automated solution 
for identifying tea leaf diseases is needed to 
improve agricultural productivity and minimize 
production losses. 

A study using Support Vector Machine (SVM) 
for mango leaf disease classification reported 80% 
accuracy [4], but SVM's effectiveness heavily 
depends on the selection of hyperparameters, such 
as the kernel function, which can be challenging to 
optimize. Furthermore, SVM struggles with 
imbalanced datasets, where one class significantly 
outnumbers others, potentially leading to biased 
predictions. Research using the Extreme Learning 
Machine (ELM) neural network identified tomato 
leaf diseases with 84.667% accuracy [5], though its 
reliance on randomly assigned input weights can 
lead to inconsistent training outcomes. This lack of 
control over weight initialization makes the model 
sensitive to variations in the dataset and prone to 
underfitting or overfitting, especially in scenarios 
with limited training data. The Backpropagation 
neural network also identified rice leaf spot disease 
with 85.8% accuracy [6], but it often encounters 
convergence issues, which can result in prolonged 
training times or the risk of getting trapped in local 
minima. This drawback is particularly problematic 
for high-dimensional data, where the optimization 
process becomes more complex. Additionally, 
Backpropagation requires careful tuning of learning 
rates to ensure stability and avoid overshooting 
during training. 

Previous studies show that neural networks 
excel at learning and recognizing complex patterns 
from training data. However, given the complexity 
of leaf images and the constraints of limited labeled 
data, a method is needed that not only maps inputs 
for each class effectively but also provides 
interpretability for classification decisions. 
Learning Vector Quantization (LVQ) addresses 
these needs through its prototype-based 
classification approach. By representing each class 
with a prototype vector, LVQ offers a clear and 
interpretable way to understand how classification 
decisions are made [7]. This is particularly 
advantageous in plant disease classification, where 

transparent decision-making can guide agricultural 
interventions. Furthermore, LVQ’s computational 
efficiency and adaptability enable it to learn 
classification patterns quickly, making it highly 
suitable for multi-class problems like tea leaf 
disease classification [8]. Despite its strengths, one 
of the challenges in implementing LVQ is managing 
the high dimensionality of feature data, which can 
lead to overfitting and slower model performance 
[9]. To overcome this, Linear Discriminant Analysis 
(LDA) is integrated into the model for 
dimensionality reduction. LDA enhances the model 
by maximizing the separation between classes 
while minimizing variance within each class, 
resulting in more discriminative features [10], [11]. 
This ensures that the LVQ model processes only the 
most relevant features, reducing noise and 
computational burden. By combining LDA’s feature 
optimization capabilities with LVQ’s prototype-
based classification, this study achieves a robust 
and efficient model for identifying tea leaf diseases.  

The objective of this research is to develop a 
model for classifying tea leaf diseases by integrating 
Learning Vector Quantization (LVQ) and Linear 
Discriminant Analysis (LDA). In the preprocessing 
stage, tea leaf images are converted to the CIELAB 
color space to separate color and intensity 
components, enhancing subsequent analysis. Image 
segmentation is then performed using Otsu’s 
Thresholding method, which automatically isolates 
the infected leaf area from the background based on 
pixel intensity distribution. The next step involves 
feature extraction, focusing on two primary types of 
features: color features and texture features. Color 
features, such as Mean Color, provide insights into 
the intensity distribution of the infected area, while 
texture features are extracted using the Gray Level 
Co-occurrence Matrix (GLCM) to analyze texture 
patterns resulting from pixel intensity variations. 
These features are subsequently processed using 
LDA to reduce dimensionality, ensuring that only 
the most relevant data are used in the classification 
process by LVQ. The main contribution of this study 
is the development of a novel methodology for 
classifying tea leaf diseases through the integration 
of LVQ and LDA, an approach that remains 
underexplored in the agricultural sector. 

 
MATERIALS AND METHODS 

 
The research methodology serves as a critical 

systematic guide that directs the researcher 
throughout the process, ensuring a structured and 
logical approach [12]. This study aims to develop an 
image-based classification model for detecting tea 
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leaf diseases, with the research steps outlined in 
Figure 1. 

 

 
Source : (Research Results, 2024) 

Figure 1. Research Steps Applied 
 
Figure 1 presents a visual representation of 

the research methodology implemented. Below is a 
comprehensive description of each step, providing 
detailed explanations of the processes and actions 
taken in this research. 
 
Data Collection 

The initial stage of this research involves the 
collection of a dataset of tea leaf images, which 
includes samples of healthy leaves and leaves 
infected by various diseases. The dataset used is 
“Tea Leaf Disease Classification,” a publicly 
available dataset that can be accessed on Kaggle 
(https://www.kaggle.com/datasets/mamun009/te
a-leaf-disease-clasification)  [13]. This study focuses 
on five classes of tea leaf conditions: healthy leaves, 
algal spot, brown blight, gray blight, and red spot. 
The dataset consists of 5000 images, each with a 
resolution of 256 × 256 pixels, ensuring consistent 
quality and adequate detail for analysis. The images 
were captured under controlled lighting conditions 
to minimize noise and shadow artifacts. For model 
development, the dataset was split into training and 
testing sets with an 80:20 ratio, resulting in 4000 
training images (800 per class) and 1000 testing 
images (200 per class). This balanced distribution 
ensures sufficient representation for each class 
during both the training and evaluation phases. 

Image Pre-processing 
After acquiring the tea leaf image dataset, the 

next step is image pre-processing. The primary goal 
of pre-processing is to enhance the quality of the 
images and prepare them for segmentation and 
feature extraction [14]. One of the key steps in this 
process is converting the images from the RGB color 
space to the CIELAB color space (commonly 
referred to as LAB). This transformation is critical 
because the CIELAB color space is designed to 
approximate human vision, making it more suitable 
for analyzing color-based patterns in images [15]. 
Unlike RGB, which is highly sensitive to lighting 
variations, CIELAB separates the image into three 
independent components: L (luminance or 
lightness), a (green to red), and b (blue to yellow). 
This separation ensures that color analysis is stable 
across varying lighting conditions, allowing 
algorithms to detect subtle color differences in 
infected leaves more effectively. For example, 
discoloration caused by diseases is more apparent 
in the a and b channels, enabling precise 
differentiation between healthy and infected areas. 
 
Image Segmentation 

At this stage, the pre-processed images are 
segmented to separate the main object from the 
surrounding area. Segmentation removes 
unnecessary information, such as background noise 
or irrelevant elements, aiding the classification 
process [16]. Otsu's Thresholding is used to 
automatically divide the image into the foreground 
and background. This technique was chosen for its 
ability to find the optimal segmentation threshold 
by analyzing pixel intensity distribution, enabling 
clear separation of image elements [17]. By using 
Otsu's Thresholding, the best threshold value is 
found to distinguish the leaf from its background, 
optimizing the image for feature extraction. 

 
Feature Extraction 

The objective of this feature extraction step is 
to gather pertinent data from the visual content, 
which will subsequently facilitate the classification 
task [18]. This study uses two types of features: 
color and texture. The Mean Color method is 
particularly suited for analyzing tea leaf diseases 
because discoloration is one of the primary 
symptoms of many leaf diseases. By calculating the 
average intensity of the L*, a*, and b* components in 
the CIELAB color space, Mean Color effectively 
captures subtle variations in hue and brightness 
that indicate disease progression or severity. For 
texture features, the Gray Level Co-occurrence 
Matrix (GLCM) is employed due to its ability to 
analyze spatial relationships between pixel pairs 
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with specific intensity levels. Texture plays a 
significant role in identifying disease-related 
patterns, such as lesions, spots, or irregular surface 
textures caused by infections. GLCM is ideal for this 
task as it provides quantitative metrics, including 
contrast, dissimilarity, homogeneity, energy, and 
correlation, which describe the distribution and 
organization of intensity variations in the leaf 
surface [19]. These features are particularly 
effective in differentiating between healthy and 
diseased areas, where diseases often create distinct 
textural anomalies. The combination of color and 
texture features ensures a comprehensive 
representation of the visual cues necessary for 
accurate disease classification. 
 
Dimension Reduction with Linear Discriminant 
Analysis (LDA) 

After extracting color and texture features, 
Linear Discriminant Analysis (LDA) is applied for 
dimensionality reduction. LDA reduces the number 
of features while retaining the most important ones 
for classification [20]. It enhances class separation 
by maximizing inter-class distance and minimizing 
within-class variance, leading to more 
discriminative features [21]. LDA identifies 
projections that optimize class separation and 
reduces within-class variance, assessed using the 
within-class scatter matrix, as shown in Equation 
(1). 
 

𝑆𝑊 = ∑ ∑ (𝑥𝑖 − 𝜇𝑘)𝑥𝑖∈𝐶𝑘
(𝑥𝑖 − 𝜇𝑘)

𝑇𝐾
𝑘=1  (1) 

 
where 𝑆𝑊  denotes the within-class scatter matrix, 
𝐾 is the number of classes, 𝐶𝑘 refers to the 𝑘-th class, 
𝑥𝑖  represents the feature vector of the 𝑖-th sample in 
class 𝐶𝑘, and 𝜇𝑘 is the mean feature vector for class 
𝐶𝑘. 

Next, the between-class scatter matrix is 
calculated to measure the variance between the 
means of each class relative to the overall mean. 
Equation (2) is used to calculate the between-class 
scatter matrix. 
 

𝑆𝐵 = ∑ 𝑁𝑘(𝜇𝑘 − 𝜇)(𝜇𝑘 − 𝜇)𝑇𝐾
𝑘=1  (2) 

 
where 𝑆𝑏 refers to the between-class scatter matrix, 
𝑁𝑘  represents the number of samples in the 𝑘-th 
class, 𝜇𝑘 denotes the mean feature vector for class 
𝐶𝑘 , and 𝜇 indicates the global mean feature vector. 

LDA optimizes the ratio of between-class 
scatter to within-class scatter. This ratio is 
expressed in Equation (3). 
 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
⁄  (3) 

where 𝐽(𝑤) represents the scatter ratio to be 
maximized, 𝑤 indicates the projection vector (LDA 
component) to be found, 𝑆𝐵  refers to the between-
class scatter matrix, and 𝑆𝑊 denotes the within-
class scatter matrix 

LDA maximizes 𝐽(𝑤) by finding the 
projection vector 𝑤 that optimizes class separation 
relative to within-class variance. This ensures that 
the data in the lower-dimensional space achieves 
optimal class separation, selecting the most 
relevant features for classification. 

 
Classification Using Learning Vector 
Quantization (LVQ) 

The features reduced by LDA are used to 
train the Learning Vector Quantization (LVQ) 
model, an artificial neural network that compares 
input features with learned prototype vectors [22]. 
LVQ's goal is to learn a prototype vector for each 
class to classify new data [23]. The core of LVQ is 
updating prototypes based on training data. To find 
the closest prototype to input vector 𝑥, LVQ 
calculates the Euclidean distance between 𝑥 and 
each prototype 𝑤𝑗 , as shown in Equation (4). 

 

𝑑(𝑥,𝑤𝑗) = √∑ (𝑥𝑖 −𝑤𝑗𝑖)
2𝑛

𝑖=1  (4) 

 

where 𝑑(𝑥, 𝑤𝑗) is the Euclidean distance between 

the input vector 𝑥 and the prototype 𝑤𝑗 , 𝑥𝑖  refers to 

the 𝑖-th component of the input vector 𝑥, 𝑤𝑗𝑖  is the 𝑖-

th component of the prototype 𝑤𝑗 , while 𝑛 is the 

number of features in the vector 𝑥. 
The prototype is then updated based on 

whether the classification is correct or incorrect, 
moving closer to correct data and farther from 
incorrect data to improve accuracy. The prototype 
vector gradually adapts to better represent each 
class's data pattern. The update for correct 
classifications is shown in Equation (5), and for 
incorrect classifications in Equation (6). 
 

𝑤𝑗
𝑛𝑒𝑤 = 𝑤𝑗

𝑜𝑙𝑑 + 𝛼(𝑥 − 𝑤𝑗
𝑜𝑙𝑑) (5) 

 
𝑤𝑗
𝑛𝑒𝑤 = 𝑤𝑗

𝑜𝑙𝑑 − 𝛼(𝑥 − 𝑤𝑗
𝑜𝑙𝑑) (6) 

 
LVQ uses the Euclidean distance to select the 

nearest prototype and updates the prototype based 
on whether the classification was correct or 
incorrect. 
 
Model Performance Evaluation 

Once the LVQ model has been trained, the 
final step involves evaluating its performance using 
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metrics such as accuracy, precision, recall, and the 
F1-score. Accuracy provides an overall measure of 
the model's ability to correctly classify tea leaf 
diseases, making it a straightforward indicator of 
performance [24]. Precision, which measures the 
proportion of correctly classified positive instances 
out of all predicted positives, is particularly relevant 
in this context to minimize false positives that could 
lead to unnecessary interventions [25]. Recall, or 
sensitivity, assesses the model's ability to identify 
all true positive instances, which is critical for 
ensuring that no diseased leaves are overlooked 
[26]. The F1-score, as the harmonic mean of 
precision and recall, is especially important when 
dealing with imbalanced datasets, as it balances the 
trade-off between false positives and false negatives 
[26]. Together, these metrics provide a 
comprehensive evaluation of the model’s 
performance, ensuring its reliability in accurately 
identifying and classifying tea leaf diseases under 
real-world conditions. 
 

RESULTS AND DISCUSSION 
 
To develop a tea leaf disease classification 

model integrating Learning Vector Quantization 
(LVQ) and Linear Discriminant Analysis (LDA), the 
dataset must first be prepared for training and 
evaluation. This research uses the public "Tea Leaf 
Disease Classification" dataset from Kaggle , 
consisting of 5000 images, divided in an 80:20 ratio 
into 4000 training images (800 per class) and 1000 
testing images (200 per class). This ensures 
balanced representation for each class during 
model development and validation.  

Training and testing are crucial for helping 
the model recognize unique patterns in different tea 
leaf types and assess its classification accuracy on 
unseen data. 

 

 
Source : (Research Results, 2024) 

Figure 2. (a) Original Resulting Image and (b) 
CIELAB Image Transformation 

 
The first step is pre-processing, where RGB 

images are converted to CIELAB due to its superior 
representation of human visual perception. This 
color space separates color from intensity, 

improving the algorithm's ability to extract key 
information and perform image segmentation, 
particularly for leaf-based image classification. 
Figure 2 shows an example of an RGB to CIELAB 
conversion. 

Figure 2 shows the conversion of the original 
image to CIELAB, effectively separating color from 
intensity. The next step, segmentation, removes 
irrelevant elements like background noise and 
shadows, preparing the image for classification. 
Otsu's Thresholding was used to automatically split 
the image into foreground (leaf) and background by 
finding the optimal threshold that maximizes 
between-class variance. Figure 3 presents two 
outputs: the segmentation results and the 
segmentation results while retaining CIELAB 
characteristics. 

 

 
Source : (Research Results, 2024) 

Figure 2. (a) Segmentation Results, and (b) 
Segmentation Results Preserving CIELAB Images 

 
Figure 3 demonstrates the effectiveness of 

the segmentation process in clearly separating the 
main object from its background. After 
segmentation, the next step is feature extraction 
from the processed image, focusing on color and 
texture features. To analyze the color features of tea 
leaves, the Mean Color method was implemented. 
This technique essentially calculates the average 
color intensity for each channel in the color space 
used. In the CIELAB color space, Mean Color is 
calculated by averaging the intensity values of the 
L*, a*, and b* components. The specific results from 
the color feature extraction, which include values 
for each parameter, are comprehensively presented 
in Table 2. 
 
Table 2. Example of Feature Extraction Results with 

Mean Color 

Segmented Image 
Color Feature Extraction 

Color Channel Mean Value 

 

L* 176.3553 

a* 135.3462 

b* 115.4992 

Source : (Research Results, 2024) 

 
(a) 

 
(b) 

 

 
(a) 

 
(b) 
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Furthermore, to obtain texture 
characteristics, the Gray Level Co-occurrence 
Matrix (GLCM) technique is used. GLCM analyzes 
the frequency of pixel pair occurrences with specific 
intensity values at a defined distance and 
orientation. Texture features are obtained based on 
parameters such as contrast, dissimilarity, 
homogeneity, energy, and correlation. The texture 
feature extraction results, summarized in Table 3, 
offer detailed insights into the texture 
characteristics of the analyzed tea leaf images. 
 

Table 3. Example of Feature Extraction Results with 
GLCM 

Segmented Image 
Texture Feature Extraction 

Parameters Value 

 

Contrast 86.0714 

Dissimilarity 0.9914 

Homogeneity 0.6521 

Energy 8.9166 

Correlation 0.0013 

Source : (Research Results, 2024) 
 

The features in Tables 2 and 3 are critical 
inputs for classification. Linear Discriminant 
Analysis (LDA) reduces dimensionality by retaining 
significant features, enhancing class separation, and 
minimizing within-class variability. Effective class 
separation is achieved by centering data around 
distinct centroids, as visualized in Figure 4 using 
800 samples per class. 

 

 
Source : (Research Results, 2024) 

Figure 4. Plotting Data Reduction Using LDA 

 
In the plot, samples from different classes are 

grouped, demonstrating LDA's success in 
distinguishing them. After LDA reduces the data, 
Learning Vector Quantization (LVQ) uses the most 
relevant features for learning and classification. 
LVQ maps each reduced feature vector to a 
prototype representing a class, initially assigned 
randomly or from the training data. It then 
compares each input sample with the prototype 
using Euclidean distance to find the closest match. 

The prototype is updated based on the 
classification's correctness, either moving closer to 
correct samples or further away from incorrect 
ones. This iterative process continues until the 
prototype effectively represents each class. Figure 5 
visualizes the data distribution and prototype 
movement. 

 

 
Source : (Research Results, 2024) 

Figure 5. LVQ Prototype Movement 

 

The dashed lines between the black and red 
dots indicate the trajectory of the prototype 
movement from the initial position to the final 
position during the training process. The prototype 
moves closer to the correct class data clusters 
during the iterations, as the updates occur each time 
new data is learned by the algorithm. This 
movement illustrates how LVQ optimizes the 
prototype position to better represent the data 
patterns of each tea leaf disease class.   

After the training of the Learning Vector 
Quantization (LVQ) model is completed, the next 
crucial stage is the model performance evaluation. 
This evaluation process uses a series of metrics, 
including accuracy, precision, recall, and F1-score, 
to measure how effectively the model can classify 
various tea leaf diseases. To ensure objectivity and 
the model’s generalization ability, the evaluation is 
conducted using a test dataset separate from the 
training data. This test dataset consists of 1000 
images, with an even distribution of 200 images for 
each of the five tea leaf disease classes. The first step 
in the evaluation process is the formation of a 
confusion matrix, visualized in Figure 6. 
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Source : (Research Results, 2024) 

Figure 6. Confusion Matrix Results 
 

Figure 6 presents the confusion matrix, 
offering a detailed overview of the model's 
classification ability by showing the distribution of 
appropriate and inappropriate predictions for each 
class. Based on this information, various evaluation 
metrics, such as accuracy, precision, recall, and F1-
score, can be calculated, offering in-depth insights 
into the model’s strengths and weaknesses in 
classifying each type of tea leaf disease. The 
evaluation outcomes of the performance of the 
developed model are shown in Table 4. 

 
Table 4. Model Performance Evaluation Results 

Class Name Precision Recall 
F1-

Score 
Accuracy 

Healthy Leaves 98.49 98.99 98.74 

94.10 
Algal Spot 91.35 95.00 93.14 
Brown Blight 92.86 91.00 91.92 
Gray Blight 92.93 91.54 92.23 
Red Spot 94.97 94.03 94.50 

Source : (Research Results, 2024) 
 
The model achieved an overall accuracy of 

94.1%, outperforming several existing methods. For 
example, previous studies using Support Vector 
Machine (SVM) achieved 80% accuracy [4], Extreme 
Learning Machine (ELM) reported 84.67% accuracy 
[5], and Backpropagation neural network obtained 
an accuracy of 85.8% [6]. These methods faced 
challenges such as sensitivity to outliers (KNN), 
reliance on parameter tuning (SVM), and unstable 
performance due to random initialization (ELM). In 
contrast, the integration of LDA and LVQ in this 
study not only improved accuracy but also offered 
interpretability and computational efficiency. 

While the proposed model achieves excellent 
results, its reliance on a dataset limited to 5000 
images may not fully reflect the variability 
encountered in real-world conditions. Furthermore, 
disease classes with visual similarities may pose 

challenges in achieving even higher classification 
accuracy. Future research could address these 
limitations by incorporating data augmentation 
techniques to expand dataset variability and 
improve robustness. Exploring additional features, 
such as more intricate texture patterns or leaf 
morphology traits, could further enhance class 
discrimination. Moreover, experimenting with 
advanced neural network architectures, such as 
convolutional neural networks (CNNs), could 
enable better handling of high-resolution image 
data and improve overall classification 
performance. These advancements would 
strengthen the model’s applicability in diverse and 
practical agricultural contexts. 
 

CONCLUSION 
 

This study demonstrates the effectiveness of 
combining Learning Vector Quantization (LVQ) and 
Linear Discriminant Analysis (LDA) for tea leaf 
disease classification, achieving an impressive 
overall accuracy of 94.1%. LDA reduced feature 
dimensionality by focusing on relevant color and 
texture attributes, while LVQ excelled in learning 
distinct patterns for each disease class. The model's 
high precision, recall, and F1-score across all classes 
highlight its robustness and sensitivity in accurately 
classifying diseases. In practical terms, the 
proposed model can significantly benefit tea 
farming by automating disease detection, reducing 
reliance on manual inspections, lowering labor 
costs, and enabling timely interventions to improve 
crop health and yield. However, the study's reliance 
on a limited dataset indicates the need for further 
validation on larger, more diverse datasets to 
enhance its generalizability. Future research could 
expand the dataset through data augmentation and 
field-sourced images, explore additional features 
like leaf morphology for better differentiation of 
visually similar diseases, and experiment with 
advanced machine learning models such as 
convolutional neural networks (CNNs) for handling 
high-resolution images. These advancements would 
enhance the model’s scalability and real-world 
applicability, offering a more comprehensive 
solution for agricultural disease monitoring. 
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