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Abstract—Natural disasters like floods, landslides, and fires pose serious threats to both life and mental well-
being, especially in vulnerable areas like West Semarang, which frequently experiences extreme weather. To 
mitigate these risks, an accurate classification system is essential for timely prevention and response. This study 
compares the performance of three neural network models—Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU)—in classifying natural disasters using weather data. 
LSTM and GRU are particularly effective for handling long-term dependencies and addressing vanishing 
gradient problems common in time series data. Data for the study comes from the Semarang City Regional 
Disaster Management Agency (BPBD) and the Meteorology, Climatology, and Geophysics Agency (BMKG), 
spanning 2019 to 2022. The models achieved a high accuracy of 95.8%, but this is due to an imbalanced 
dataset—70 records of natural disasters versus 1377 without—resulting in classification favoring "no 
disaster." Among the models, LSTM performed the best, reaching optimal accuracy in just 20.0671 seconds per 
epoch. This suggests LSTM is the most effective model for this classification task. 

 
Keywords: gated recurrent unit, long short-term memory, natural disaster, recurrent neural network, west 
semarang. 

 
Intisari—Bencana alam seperti banjir, tanah longsor, dan kebakaran merupakan ancaman serius bagi 
kehidupan, terutama di wilayah rawan seperti Semarang Barat yang sering dilanda cuaca ekstrem. Untuk 
meminimalisasi dampak negatif, diperlukan sistem klasifikasi yang andal guna membantu pemerintah dan 
masyarakat dalam mengambil langkah mitigasi dan pencegahan yang tepat waktu. Dalam penelitian ini, 
performa tiga model neural network—Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), 
dan Gated Recurrent Unit (GRU)—diuji untuk klasifikasi bencana alam di Semarang Barat. LSTM dan GRU 
dikenal karena kemampuannya dalam menangani long-term dependencies dan masalah vanishing gradient 
pada data deret waktu. Data yang digunakan diperoleh dari Badan Penanggulangan Bencana Daerah (BPBD) 
Semarang dan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) untuk rentang tahun 2019 hingga 2022. 
Hasil menunjukkan akurasi 95.8% untuk ketiga model, meskipun hal ini disebabkan oleh ketidakseimbangan 
data—70 data dengan bencana alam dan 1377 tanpa bencana. Model LSTM mencapai performa terbaik 
dengan waktu terpendek, yaitu 20.0671 detik per epoch, menjadikannya model yang paling efisien dalam 
klasifikasi bencana alam di kasus ini. 
 

Kata Kunci: unit rekursif terjaga, ingatan jangka pendek panjang, bencana alam, jaringan saraf rekursif, 

semarang barat.
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INTRODUCTION 
 

Natural disasters such as floods, landslides 
and fires pose a serious threat to life, not only in 
terms of economic loss, but also mentally through 
loss of life, especially in highly vulnerable areas such 
as West Semarang [1]. The region often experiences 
natural disasters caused by extreme weather 
conditions, so it is important to develop a reliable 
classification system to minimize these negative 
impacts [2]. Accurate classification can help the 
government and community to take timely 
prevention and mitigation measures [3], [4].  

Based on Sustainable Development Goals 
(SDG) number 13, natural disasters play a very 
significant role in increasing mortality, where areas 
experiencing natural disasters have a mortality rate 
15 times greater than normal [5]. Therefore, natural 
disaster prevention and mitigation actions are very 
important to support the survival of people in 
natural disaster-prone areas [6], [7]. 

In recent years, advances in technology and 
data science have opened new opportunities to 
improve natural disaster classification capabilities. 
Machine learning methods, particularly artificial 
neural networks [8], [9], [10], [11], have shown 
great potential in the analysis and classification of 
weather data. Two main variants of artificial neural 
networks that are often used for modeling time 
series data are Long Short-Term Memory (LSTM) 
[12], [13] and Gated Recurrent Unit (GRU) [14]. 
Both methods are known for their ability to handle 
long-term dependencies [15], [16], [17], [18] and 
vanishing gradient [13], [19], [20], which are often 
an obstacle in modeling complex and dynamic 
weather data.  

Research on rainfall prediction in Denpasar 
using LSTM and GRU demonstrates the potential of 
these methods in modeling complex time-series 
data [21]. However, no studies have applied them to 
natural disaster classification in West Semarang. 
Our study extends the application of LSTM and GRU 
beyond rainfall prediction to natural disaster 
classification in West Semarang, an approach that 
has not been previously explored in this region. 
Similarly, while previous research has explored 
temperature prediction in Semarang using LSTM, 
this study broadens the scope by classifying areas 
with or without natural disasters, offering a more 
holistic perspective on disaster risk management in 
the region [22].  

Although prior studies have used H2O deep 
learning to predict floods in West Kalimantan based 
on rainfall data, this study focuses on West 
Semarang and incorporates a more comprehensive 

set of meteorological variables to enhance model 
accuracy [23].  

This research shows the GRU model in 
predicting floods in Ashland City, Tennessee 
effectively with high accuracy [24]. This model has 
advantages in efficiency and computational speed 
compared to LSTM in handling time-series data for 
flood prediction, showing potential in classifying 
natural disasters in West Semarang. 

This research introduces an attention-based 
LSTM model (ALSTM-DW) using double time sliding 
windows and weighted loss to improve urban flood 
forecasting by enhancing rainfall feature extraction 
and reducing peak prediction errors [25]. Tested in 
three flood-prone areas in Shenzhen, China, the 
model outperforms traditional methods, showing 
strong predictive accuracy with high R² and low 
peak flow and timing errors, supporting the use of 
LSTM in disaster-related forecasting tasks. This 
supports the use of the LSTM model in our research 
where the model can handle long-term weather 
data in natural disaster classification. 

This research analyzes the applications of ML 
and DL in disaster management, including 
prediction, disaster detection, early warning 
systems, and post-disaster response [8]. This study 
identified DL models such as CNN and LSTM 
produce significant performance in natural disaster 
data analysis. This study supports our approach 
using LSTM and GRU deep learning models for 
natural disaster classification. 

This study uses a hybrid LSTM–GRU model 
with meteorological and water level data to predict 
floods, achieving high accuracy with an NSE of 0.942 
and MSE of 3.92 [26]. It outperformed other setups, 
especially when using ASOS data, and showed 
strong performance even at historical peak water 
levels, supporting its use for flood risk management, 
relevant to our research using weather data and 
disaster data for natural disaster classification in 
West Semarang. 

This report aims to present the results of 
research and analysis of natural disaster 
classification in West Semarang using historical 
weather data with Recurrent Neural Network 
(RNN) [27], LSTM, and GRU methods. 

By understanding and utilizing weather data 
for natural disaster classification, it is hoped that 
this research can contribute to disaster risk 
mitigation efforts in West Semarang, and beyond, 
and provide practical recommendations for 
relevant parties in managing disaster threats more 
effectively. 
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MATERIALS AND METHODS 
 

Figure 1 shows the research procedure in 
flowchart form starting with data acquisition, data 
processing, model development, and model 
training. This research will compare the 
performance of RNN, LSTM, and GRU models in 
natural disaster classification based on daily 
weather data. 

 
Source : (Research Results, 2024) 

Figure 1. Research Procedure 
 

A. Data Acquisition 
This study uses data obtained from two 

sources, namely the Semarang City Regional 
Disaster Management Agency (BPBD) website [28], 
and from the Meteorology, Climatology and 
Geophysics Agency (BMKG) website [29], where the 
data used comes from the range of 2019 to 2022. 

Table 1 contains details about the data 
obtained. The BPBD data for Semarang City contains 
information on the number of disasters at any given 
time, along with information on the location of the 
disasters. Meanwhile, the BMKG data contains 
information on Semarang city's daily weather data, 
such as temperature, rainfall, wind, and humidity 
obtained from Ahmad Yani Weather Station in West 
Semarang District. 

 
Table 1. Initial Dataset Informations 

Source 
Date 

Count 
Number of 
Features 

File 
Format 

Semarang City BPBD 210 17 xlsx 
BMKG 1461 11 xlsx 

Source : (Research Results, 2024) 
 

Table 2 contains details of the features 
contained in the disaster data obtained. 

 
Table 2. Semarang City Disaster Data Features 

Features Description 

NO Data number 
TGL KEJADIAN Date of occurrence 

LOKASI Location of the incident 

Features Description 

KELURAHAN Name of urban village 

KECAMATAN Name of district 

B Flood 

RB Tidal flood 

TL Landslide 

PB Tornado 

RR House collapse 

KB Fire 

PT Tree fall 

MD Death 

Luka2 Injured people 

Hilang Missing people 

KERUGIAN Losses from disaster 

KETERANGAN Description of disaster 

Source : (Research Results, 2024) 
 

Table 3 contains details of the features 
contained in the weather data obtained. 
 

Table 3. BMKG Daily Weather Data Features 
Features Description 
Tanggal Date of data recording 

Tn Minimum temperature 
Tx Maximum temperature 

Tavg Average temperature 
RH_avg Average humidity 

RR Rainfall 
ss Length of sunshine 

ff_x Wind speed 
ddd_x Wind direction at maximum speed 
ff_avg Average wind speed 

ddd_car Most wind direction 

Source : (Research Results, 2024) 
 
B. Data Preprocessing 

First, natural disaster data from 2019 to 
2022 was merged, and then the data was cleaned in 
the following order: (1) Deleting some unused 
features, such as “NO”, “PT”, “RR”, “MD”, “Wounded”, 
“Missing”, “DAMAGE”, and “DESCRIPTION”, (2) 
Deleting data with writing errors and data with 
incorrect contents in the appropriate columns, (3) 
Filling in the blank data in the number of disasters 
with zeros, (4) Replace the incorrect date format, 
(5) Retrieve the data in West Semarang sub-district 
and delete the “LOCATION”, “FAMILY”, and 
“KECAMATAN” features, (6) Add data on dates 
without disasters and fill each disaster category 
with zeros.  

Second, daily weather data from 2019 to 
2022 were merged, after which data addition was 
carried out for missing data: (a) Data filling with 
average values on features “Tn”, “Tx”, “Tavg”, 
“RH_avg”, “ddd_x”, “ff_x”, and “ff_avg”, (b) Data filling 
with zero values on features “RR”, and “ss”, (c) Data 
filling with “C” values on features “ddd_car”. After 
that, one-hot encoding is performed on the 
“ddd_car” feature into 9 new features. 
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After the processing of disaster data and 
weather data is done, both data are combined into 
one data and converted into CSV format. then each 
disaster category is combined into 1 feature and 
each combination of disaster events is converted 
into binary numbers. Through this data merging, 
1447 data were generated with a percentage of 
1377 data without disasters, and 70 data with 
disasters. 

Then standardization is done using 
sklearn.StandardScaler to prevent overfitting. Then, 
the normalized data is converted into a time series 
dataset with a time span of 14 days at each data 
index. 

 
Source : (Research Results, 2024) 
Figure 2. Sample Visualization of Weather Features 

and Natural Disaster Occurrences 
 

The figure presents a visualization of the 
preprocessed dataset, showing a 100-day sample to 
illustrate the relationship between weather 
parameters and natural disaster occurrences in 
West Semarang. The upper panel displays 
standardized values of eight weather features: 
minimum temperature (Tn), maximum 
temperature (Tx), average temperature (Tavg), 
average relative humidity (RH_avg), rainfall (RR), 
sunshine duration (ss), and wind speed components 
(ff_x and ff_avg). The standardization process brings 
these diverse measurements onto a comparable 
scale, enabling clearer visualization of their 
temporal patterns. 

The lower panel uses a line plot to represent 
the binary occurrence of natural disasters, where 
peaks at value 1 indicate days when natural 
disasters were recorded, while values at 0 indicate 
days without disasters. This visualization allows us 
to observe the temporal distribution of disaster 
events in relation to the weather parameters shown 
above. 

While this figure shows only 100 days of data 
for clarity, the complete analysis utilizes the full 
dataset spanning from 2019 to 2022. 

Finally, the time series dataset is divided into 
3 parts, 80% for training data, 15% for validation 
data, and 5% for testing data. After that, the three 
datasets were saved into the data loader with a 
batch size of 48.  

This split is designed to maximize the 
model's learning capability by allocating a large 
portion of the data to training. Given the imbalanced 
nature of the dataset, where only 70 samples are 
labeled as disasters while 1377 samples represent 
non-disaster events, it is crucial to provide the 
model with sufficient examples during training to 
effectively learn patterns associated with rare 
disaster events.  

Additionally, a moderate portion is reserved 
for validation to fine-tune the model and prevent 
overfitting, while a smaller portion is set aside for 
testing to ensure unbiased evaluation. The datasets 
are then stored in a data loader with a batch size of 
48 for efficient processing during training. 

 
C. Model Development 

Table 4 contains information about the 
hyperparameters used in the development of the 
three deep learning models used (RNN, LSTM, GRU). 

 
Table 4. RNN, LSTM, and GRU Model 

Hyperparameter 
Hyperparameter Value 

Input Size 11 
Hidden Unit 5 

Number of Layer 5 
Number of Class 1 

Dropout 20% 
Batch Size 48 

Learning Rate 0.001 
Epoch 100 

Source : (Research Results, 2024) 
 
These models will be used to classify whether 

a disaster, namely flood (B), tidal flood (RB), 
landslide (TL), tree fall (PT), or fire (KB), will occur 
based on weather-related features.  

Each disaster type is classified using a binary 
approach, where 0 indicates the absence of the 
disaster and 1 signifies its occurrence. By analyzing 
the weather features, the models predict the 
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likelihood of each disaster, providing a structured 
framework for disaster classification and early 
warning systems. 

 
D. Model Training 

To perform natural disaster classification, 
the model is first trained using the data available in 
the test data loader. Then the model is optimized 
using the ADAM optimizer with a weight decay of 
0.01, and its performance is seen using the Binary 
Cross Entropy with Logits Loss loss function. After 
being trained, the model will be validated using the 
data available in the validation data loader, this 
training and validation process will continue to be 
repeated as many epochs as there are. After 
completion, the model will be tested using the data 
available in the test data loader. 
 

RESULTS AND DISCUSSION 
 
After training for 100 epochs, it was found 

that the RNN, LSTM, and GRU models in the 
classification of natural disasters have a 
performance with a not too significant difference. 

Table 5 contains information about the best 
results of training loss, error, and accuracy of the 
RNN, LSTM, and GRU models in 100 epochs.It can be 
seen that the RNN model has better training loss, 
and error values than the other two models, 
followed by LSTM, and GRU. However, the LSTM 
model can achieve its best performance earlier than 
the other two models at the 83rd epoch, followed by 
RNN at the 99th epoch, and GRU at the 100th epoch. 

 
Table 5. Training Result Comparison 

Model Loss Error Accuracy 
Best 

Epoch 
RNN 0.1678 0.0036 95.8549% 99 

LSTM 0.1680 0.0036 95.8549% 83 
GRU 0.1847 0.0040 95.8549% 100 

Source : (Author's last name, year of publication) 
 

Table 6 contains information about the best 
results of validation loss, error, and accuracy of the 
RNN, LSTM, and GRU models in 100 epochs. It can 
be seen that the GRU model has a slightly better 
validation loss value compared to the RNN, and 
LSTM models which have identical values. However, 
as mentioned earlier, the LSTM model achieved its 
best performance at the 83rd epoch, followed by 
RNN, and GRU. 

 
Table 6. Validation Result Comparison 

Model Loss Error Accuracy 
Best 

Epoch 
RNN 0.1732 0.0461 95.8549% 99 

LSTM 0.1732 0.0461 95.8549% 83 
GRU 0.1729 0.0461 95.8549% 100 

Source : (Research Results, 2024) 
 

Table 7 contains information about the 
testing loss, error, and accuracy results of the RNN, 
LSTM, and GRU models. It can be seen that the LSTM 
model has a better testing loss compared to the 
other two models, followed by the RNN model, and 
the GRU model. 

Table 7. Testing Result Comparison 

Model Loss Error Accuracy 
Best 

Epoch 
RNN 0.1732 0.0461 95.8549% 99 

LSTM 0.1732 0.0461 95.8549% 83 
GRU 0.1729 0.0461 95.8549% 100 

Source : (Research Results, 2024) 
 

Figure 2 shows the comparison plot between 
training loss and validation loss of (a) RNN, (b) 
LSTM, and (c) GRU models from epoch 1 to 100. 

 
(a) 

 
(b) 

 
(c) 

Source : (Research Results, 2024) 
Figure 2. Comparison of Training Loss with 

Validation Loss Model, (a) RNN, (b) LSTM, (c) GRU 
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Table 8 contains information regarding the 
time required for each model to reach 100 epochs, 
to reach the best epoch, and the average time of each 
epoch in second. It can be seen that the RNN model 
has the shortest amount of training time, followed 
by the LSTM, and GRU models. However, the LSTM 
model takes the shortest amount of time to achieve 
its best results, followed by the RNN, and GRU 
models. 

 
Table 8. Model Training Time 

Model 
Average 
Time per 
Epoch (s) 

Until Best 
Epoch (s) 

Total Time 
(s) 

RNN 0.2329 23.0612 23.2922 
LSTM 0.2407 20.0671 24.0713 
GRU 0.2451 24.5111 24.5111 

Source : (Research Results, 2024) 
 

CONCLUSION 
 

This research compares the performance of 3 
models, namely RNN, LSTM, and GRU models in 
classifying natural disasters in West Semarang 
based on daily weather data.  It is concluded that all 
three models are able to classify natural disasters 
based on weather data with an accuracy of 95.8%, 
this is due to the one-sided ratio of data with natural 
disaster labels and without natural disasters, where 
the dataset has 70 data with natural disasters, while 
there are 1377 data without natural disasters. So 
that the three models gave the classification of “no 
disaster” to each disaster features. From the 
conclusion of this research, it is highly 
recommended for other researchers who want to 
perform natural disaster classification to use the 
LSTM model, because with a larger amount of data, 
the training time will increase significantly, so a 
model that can be trained with the best time 
efficiency is needed. Furthermore, it is 
recommended for other researchers to use a wider 
range of data with the hope that the LSTM model 
created will provide even better results. In addition, 
it is expected for BMKG to record data with a more 
comprehensive coverage in each region, and it is 
also expected for each region to record the 
occurrence of their respective natural disasters as 
has been done by BPBD Semarang City, so that 
natural disaster classification can also be done in 
each region to improve and protect the safety and 
well-being of the people and environment.  
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