

VOL. 10. NO. 3 FEBRUARY 2025
.

DOI: 10.33480 /jitk.v10i3.6177

690

DEVELOPMENT OF GRAPH GENERATION TOOLS FOR PYTHON
FUNCTION CODE ANALYSIS

Bayu Samodra1*; Vebby Amelya Nora2; Fitra Arifiansyah3; Gusti Ayu Putri Saptawati4;

Muhamad Koyimatu5

School of Electrical Engineering and Informatics1, 2, 3, 4, 5
Institut Teknologi Bandung, Bandung, Indonesia1, 2, 3, 4, 5

www.itb.ac.id1, 2, 3, 4, 5

23523307@std.stei.itb.ac.id1*, 23523310@std.stei.itb.ac.id2, fitra@staff.stei.itb.ac.id3,
putri@staff.stei.itb.ac.id4, koyimatu@staff.stei.itb.ac.id5

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract—The increasing complexity of programs in software development requires understanding and
analysis of code structure, especially in Python, which dominates machine learning and data science
applications. Manual static analysis is often time-consuming and prone to errors. Meanwhile, static analysis
tools for Python, like PyCG and Code2graph, are still limited to generating call graphs without including
dependency and control flow analysis. This research addresses these shortcomings by proposing the
development of a web-based tool that integrates the generation of function call graphs, function dependency
graphs, and control flow graphs using Abstract Syntax Tree (AST), Graphviz, and Streamlit. With an iterative
SDLC methodology, this tool was developed gradually to visualize Python function code as a heterogeneous
graph. Evaluation of 11 Python function codes showed a success rate of 95.45% in analyzing and visualizing
Python function codes with various levels of complexity. The limitations of Graphviz present an opportunity for
future research to focus on improving scalability and Python code analysis.

Keywords: abstract syntax tree, control flow graph, graphviz, python, SDLC.

Intisari—Meningkatnya kompleksitas program dalam pengembangan perangkat lunak membutuhkan
pemahaman dan analisis pada struktur kode, khususnya pada Python yang mendominasi aplikasi
pembelajaran mesin, dan data sains. Analisis statis manual sering kali memakan waktu dan rentan terhadap
kesalahan. Sedangkan, alat analisis statis untuk Python seperti PyCG dan Code2graph masih terbatas hanya
pembangkitan graf pemanggilan fungsi tanpa disertai analisis dependensi dan aliran kontrol. Penelitian ini
menjawab kekurangan tersebut dengan mengusulkan pengembangan alat berbasis website yang
mengintegrasikan pembangkitan graf pemanggilan fungsi, graf keterkaitan fungsi dan graf aliran kontrol
menggunakan Abstract Syntax Tree (AST), Graphviz dan Streamlit. Dengan metodologi SDLC iteratif, alat ini
dikembangkan secara bertahap untuk memvisualisasikan kode fungsi Python sebagai graf heterogen. Evaluasi
pada 11 kode fungsi Python menunjukkan tingkat keberhasilan 95,45% dalam menganalisis dan
memvisualisasikan kode fungsi Python dengan berbagai tingkat kompleksitas. Keterbatasan pada Graphviz
menjadi peluang untuk penelitian di masa mendatang dapat difokuskan pada peningkatan skalabilitas dan
analisis kode Python.

Kata Kunci: abstract syntax tree, graf aliran kontrol, graphviz, python, SDLC.

INTRODUCTION

The complexity of modern software
development continues to grow in tandem with the
increasing size of the system [1]. This increasing

complexity highlights the importance of
understanding and analyzing code structure,
especially when dealing with many interrelated
functions and control flows [2], [3]. Static analysis
methods allow for analyzing program code without

http://www.itb.ac.id/
mailto:23523307@std.stei.itb.ac.id
mailto:23523310@std.stei.itb.ac.id
mailto:fitra@staff.stei.itb.ac.id3
mailto:putri@staff.stei.itb.ac.id
mailto:koyimatu@staff.stei.itb.ac.id

VOL. 10. NO. 3 FEBRUARY 2025.
 .

DOI: 10.33480/jitk.v10i3.6177.

691

execution, providing early detection of potential
quality issues [4], [5]. However, manual static
analysis of complex code is often time-consuming
and error-prone. Static analysis tools that
automatically perform analyzing code structure are
needed, which can significantly improve software
development efficiency by reducing debugging time.
Existing static analysis tools such as SonarQube,
Better Code Hub, and Coverity Scan still have low
precision leading to false positives and incomplete
understanding [4].

The development of static analysis tools has
grown significantly, especially in terms of
representing code structure in graph form [6], [7],
[8], [9]. Research by Rodriguez-Prieto et al. (2020)
created ProgQuery, a static analysis tool with seven
different types of graph representations [10].
Although ProgQuery offers a comprehensive range
of graphs, three fundamental graph types, Call
Graph, Dependency Graph, and Control Flow Graph,
are effectively sufficient for many static code
analysis tasks in most of their use cases to capture
and provide insights into the code structure and
behavior. Call Graph representation plays a
particularly crucial role in understanding code
structure [11]. One example is the Function Call
Graph, which visualizes the relationship between
functions and can identify potential dead code and
redundancy in program logic [12], [13].

Then, the Dependency Graph can represent
information about the relationship between
functions, variables, and parameters [14]. Thus, it
better supports code optimization and efficient
modularization. Meanwhile, to identify critical code
blocks or execution paths that can potentially cause
runtime errors, the Control Flow Graph (CFG) can
model the program execution flow, such as
branches and loops [15]. This graph-based
visualization provides an intuitive and
comprehensive representation of code structures,
enabling advanced analysis such as pattern
identification, anomaly detection, and program
optimization.

Although graph-based analysis techniques
have proven effective, their implementation varies
across programming language. Most static code
analysis tools are designed to analyze Java code
[16]. However, with the growing adoption of Python
across various applications such as big data,
machine learning, and data science, the need for
Python static analysis tools is increasing. Python’s
flexibility and expressivity make it a preferred
choice for developers, as evidenced by Python being
at the top of the TIOBE Index 2024 with a ranking of
22.85% and recording a significant growth of 8.69%
compared to the previous year [17].

Despite the increasing demand, static
analysis tools for generating graphs from Python
code are still limited. Existing tools such as
Code2graph and PyCG attempt to address this issue
by analyzing Python code, extracting its structure,
and generating a function call graph [18], [19].
Code2graph focuses on transforming code into
graph representations that facilitate structural
analysis, whereas PyCG specializes in call graph
generation for Python programs, enabling
interprocedural analysis. These tools use Abstract
Syntax Tree (AST) to extract code structure,
allowing for deeper analysis compared to plain text
parsing [20]. ASTVisitor traverses the code to
extract syntactic and semantic information from the
source code, facilitating the visualization of the
program code [15].

While Code2graph and PyCG offer valuable
functionalities, they are still limited in scope to
visualizing program code in graph form. These tools
do not provide integration with analysis outside the
function call graph, such as control flow and
dependencies between functions. This forces
developers to rely on multiple separate tools,
leading to inefficiencies in program analysis and
potential inconsistencies in understanding code
structure. Addressing these limitations, this
research proposes a novel static analysis tool that
integrates function call analysis, control flow, and
variable dependency into a single platform. The
proposed tool bridges the gap by incorporating
control flow and dependencies analysis, offering a
more holistic representation of code structure in
Python.

This research introduces a novel approach by
extracting structural information using AST,
analyzing the Python code that contains the def()
(function definition), and converting it into a single
heterogeneous graph. The contributions of this
research are:
1. Develop an integrated static analysis tool that

combines the Function Call Graph, Dependency
Graph, and Control Flow Graph in a single
heterogeneous graph.

2. A web-based platform that improves
accessibility and usability for developers and
to offer an efficient user experience.

MATERIALS AND METHODS

Research Methodology

The methodology for developing a graph
generation tool for Python function code analysis in
this research is based on the Software Development
Life Cycle (SDLC) with an iterative and incremental
approach. Figure 1 shows the SDLC iterative model

VOL. 10. NO. 3 FEBRUARY 2025
.

DOI: 10.33480 /jitk.v10i3.6177

692

applied in this research. This model breaks down
the development process into incremental cycles,
ensuring continuous refinement to achieve a
complete system. Each cycle involves design,
development, testing, and implementation [21].
This iterative approach allows for progressive
enhancement of the tool capabilities, from function
call graph generation to the integration of
dependency and control flow graph generation.

Source: (Yas et al., 2023) [21]

Figure 1. SDLC iterative model

The requirements stage focuses on an in-
depth understanding of the graph generation tool's
needs by identifying important features that the
tool must possess. The identification involves
selecting the platform and types of graphs to be
generated. This tool was developed using a web-
based platform for code visualization using the
Streamlit library, which provides an intuitive and
easy-to-use interface. Graph visualizations are
presented using graph notations such as the DOT
format [12]. DOT notation represents a text-based
directed graph before being converted into a
graphical visualization using the Graphviz library.

The main features of the graph generation
tool from Python function code include
visualization of function call graphs, dependency
graphs, and control flow graphs. The final version of
the graph generation tool is the integration of these
three graphs into a heterogeneous graph [22]. Other
features, such as a user-friendly interface,
interactive visualization for exporting graphs in
PNG format, and scalability in handling large code
sizes, are also important features. The tool also
needs to have informative features in the form of a
usage guide, legend, table of code structure analysis
results, and error handling when using the tool.

The Built 1 stage focuses on developing a
function call graph generation tool. Graph
visualization begins by analyzing Python function
code through AST traversal to identify nodes
representing function calls, then extracting
information about the calling function (caller) and
the called function (callee). Graph generation uses
Graphviz, where nodes are functions and edges are
function calls.

The Built 2 stage focuses on developing a
dependency graph generation tool. The visualized
graph is a further development of the Built 1 stage.
It adds identification and visualization of
parameters and variables used and defined in each
function, as well as return statements. Variables
used by more than one function are included as
shared variables. Graph generation uses Graphviz,
where nodes are functions, parameters, variables,
and returns, while edges represent the
relationships between parameters and variables.

The Built 3 stage focuses on developing a
control flow graph generation tool. The fulfillment
of all tool requirements is done at this stage. Each
function is defined as a basic block. Nodes represent
basic blocks, and each directed edge indicates the
control flow between these blocks, with one entry
block at the beginning and one exit block at the end
of the instruction [23]. Analysis is performed by
traversing the AST within each function block to
identify control flow, such as conditional branches
(if-else), and loops (while and for). It then visualizes
function calls and the relationships of parameters
and variables into a heterogeneous graph. Graph
generation uses Graphviz, where nodes are
functions, parameters, variables, returns, and
control flow, while edges represent the
relationships between these nodes.

System Architecture Design

The system architecture of the graph
generation tool for Python code analysis uses a
client-server architecture consisting of two main
components: a front-end and a back-end. Figure 2
illustrates the system architecture of the graph
generation tool. On the front-end side, the system
uses the Streamlit library to provide an interactive
user interface where users can input Python code to
analyze and view graph visualizations.

Source: (Research Results, 2024)

Figure 2. System Architecture of The Graph
Generation Tool

VOL. 10. NO. 3 FEBRUARY 2025.
 .

DOI: 10.33480/jitk.v10i3.6177.

693

On the back-end side, the system consists of
three main components: Code Parser, Source Code
Analyzer, and Graph Generator. The Code Parser
uses the AST library to perform parsing and
syntactic analysis of the input Python code. The
Source Code Analyzer performs an in-depth
analysis of program structure and control flow by
traversing the code to generate information for
visualization. The Graph Generator uses the
Graphviz library to generate various graphs based
on the analysis results.

Figure 3 illustrates a use case diagram that
models user interactions with the graph generation
tool system. This tool allows users to input Python
function code for analysis. Users can click the
"Create Graph" button to visualize the Python code.
Subsequently, the system will display analysis
results in the form of a function information table
and graph generation.

Source : (Research Results, 2024)

Figure 3. Use Case Diagram of The Graph
Generation Tool

RESULTS AND DISCUSSION

Result

Algorithm 1 represents the algorithm
implemented in the graph generation tool for
Python function code analysis. The tool performs
parsing using Abstract Syntax Tree (AST) to read
the input Python code, transform it into an AST tree
structure, and traverse each node to analyze the
program structure.

Algorithm 1 Graph Generation Tool
1: procedure AnalyzeCode(source_code)
2: Parse source code into AST
3: Initialize FunctionAnalyzer
4: Visit and analyze AST
5: procedure CodeAnalysis
6: Visit AST nodes
7: Process function definitions
8: procedure BlockAnalysis

9: Create control flow blocks
10: Create entry block
11: Process function body: if statements, while

loops, for loops, function calls, and return
statements

12: Create exit block
13: procedure VariableAnalysis
14: Create edges between blocks
15: Track variable usage
16: Track variable definitions
17: Run CodeAnalysis()
18: Create visualization using Graphviz
19: if visualization is successful then
20: Display function info table
21: Display heterogeneous graph
22: Generate download link
23: else
24: Display error message
25: return analysis results

Source: (Research Results, 2024)

Graph visualization is performed using
Graphviz by creating basic blocks for each function
in the source code and connecting the blocks
according to the program's control flow. In each
function block, there are at least entry and exit
blocks. Additionally, it is possible to have function
calls, parameters, used variables, and control
structures (if-else, while, and for).

The tool has two outputs: a function
information table and a heterogeneous graph with a
download link to save the analysis results. Each
node in the graph represents a code block with
different color visualizations. Blue is used for
functions and entry blocks, yellow for parameters
and condition blocks, green for variables and
normal blocks, and red for return and exit blocks.

The tool's development uses the iterative
SDLC model, making the tool usable for visualizing
graphs of Python function code from the first build
stage. Thus, tool testing can be performed at each
stage of the iterative model according to the
established targets. The following is a Python
function code tested on the tool.

def factorial(n):
 if n <= 1:
 return 1
 else:
 return n * factorial(n - 1)

def sum_factorial(numbers):
 result = 0
 i = 0
 while i < len(numbers):
 result += factorial(numbers[i])
 i += 1
 return result

def main():
 data = [3, 4, 5]
 total = sum_factorial(data)
 print(total)

Source: (Research Results, 2024)

VOL. 10. NO. 3 FEBRUARY 2025
.

DOI: 10.33480 /jitk.v10i3.6177

694

Figure 4 shows the function information
table of the source code as the first output of the
analysis results from this tool. The first function
code, the definition of the factorial function, has a
parameter n and is called the factorial function
itself. The second function code, the definition of the
sum_factorial function, has a parameter number,
defines the variables result and i, and is called the
factorial function. The third function is the main
function that defines the data and total variable,
called the sum_factorial function.

Source: (Research Results, 2024)
Figure 4. Function Information Table from Source

Code

Figure 5 illustrates the Function Call Graph as
a result of the static analysis process in the Build 1
stage. In the graph data structure, each node
represents a function, and edges represent the
calling relationships between functions. The main
function calls sum_factorial function and print.
Sum_factorial function calls factorial dan len. The
factorial function also calls itself.

Source: (Research Results, 2024)

Figure 5. Function Call Graph

Figure 6 illustrates the Dependency Graph as

a result of an analysis process that maps and
visualizes the interconnections between functions
in a Python program at the Build 2 stage. This
process is done by analyzing the parameters and
variables used. Each node represents a parameter
and variable, and edges show their

interconnections. Functions are represented using
blue boxes, while parameters are defined using
yellow ovals. Return values are represented using
red hexagons. The sum_factorial function has a
number parameter. The factorial function has a n
parameter.

Source: (Research Results, 2024)

Figure 6. Dependency Graph

Figure 7 illustrates a Control Flow Graph
(CFG) as a result of a complex analysis process that
represents the control flow of a Python program at
the Build 3 stage. Each node represents a block, and
edges represent potential control flows between
blocks, such as conditional branches (if-else), loops
(while or for), function calls, and return statements.
The entry block is represented using a blue oval,
while the exit block uses a red oval. The condition
block is represented using a yellow diamond, while
the normal process after the condition is
represented using a green box. The parameters and
returns still use the exact representation as the Built
2 stage.

Source: (Research Results, 2024)

Figure 7. Control Flow Graph

VOL. 10. NO. 3 FEBRUARY 2025.
 .

DOI: 10.33480/jitk.v10i3.6177.

695

Performance Evaluation
The graph generation tool successfully

implemented several integrated core features and
generated heterogeneous graph, including function
call graph visualization that describes the
relationships and interactions between functions in
the program, function dependencies visualization
showing parameter and variable dependencies, and
control flow graph representing the program's
control flow in detail. The tool can be accessed on a
web-based platform at https://vb.labdata.id/.
Figure 8 shows the user interface of the graph
generation tool. This platform provides a guide to
using the tool and examples of Python code so that
users can perform analysis and visualization
exploration.

Source: (Research Results, 2024)

Figure 8. User Interface of Graph Generation Tool

The graph generation tool's performance
was evaluated using several Python function codes.
The scale of Python code, both in terms of lines of
code (LOC) and number of def() (function
definitions), served as performance evaluation
parameters. Eleven Python function codes with
varying scales were used to test the graph
generation tool. Table 1 presents the results of the
tool performance evaluation.

Table 1. Tool Performance Evaluation

N
o

Progra
m
Code

Scale Result Success
Percenta
ge

LO
C

Functi
on

Functi
on

Grap
h

1 P1 11 0 0 x 100%
2 P2 14 4 4 v 100%
3 P3 33 8 8 v 100%
4 P4 23 5 4 v 100%
5 P5 48 5 5 v 100%
6 P6 68 8 8 v 100%
7 P7 70 7 7 v 100%
8 P8 85 10 10 v 100%
9 P9 87 12 12 v 100%
1
0

P10 86 17 17 x 50%

1
1

P11
12

2
18 18 v 100%

Average Success Rate 95.45%

Source: (Research Results, 2024)

Based on Table 1, the success percentage of
this tool is 100% if it can analyze Python function
code accurately and display the results in the form
of a function information table and graph
visualization. Meanwhile, if it only displays one
function information table or graph visualization
accurately, the success percentage of this tool is
50%.

Two program codes, P1 and P10, were not
visualized as graphs from the 11 Python source
codes tested on the graph generation tool. P1 is a
Python code without function definitions, so the
tool's success rate is 100% because it correctly did
not visualize it as a graph.

Program code P10 is a Python code
containing 17 function definitions. In terms of
complexity, program code P11 is more complex
than program code P10. Figure 9 shows the error
for program code P10. The tool could not generate a
graph for program code P10, resulting in the error
"unable to reclaim box space in spline routing for
edge 'block_41' → 'block_42'". This issue arises due
to a limitation in the Graphviz library, which is used
for visualizing the graph structure. When the tool
displays labels such as names, functions,
parameters, variables, and related return values for
each instruction block, there are space limitations
for generating graph visualizations.

Source: (Research Results, 2024)

Figure 9. Error for Program Code P10

As shown in Figure 10, when all labels are
displayed on each node, the tool can only generate
the graph up to program code P7. To address this
issue, optimization was applied to the node labeling
scheme. Figure 10 illustrates the label modification
on the Control Flow Graph. By simplifying the labels
displayed on each node, the tool successfully
generates the graphs for program codes P8, P9, and

https://vb.labdata.id/

VOL. 10. NO. 3 FEBRUARY 2025
.

DOI: 10.33480 /jitk.v10i3.6177

696

P11 without space limitations for graph
visualizations.

Source: (Research Results, 2024)
Figure 10. Label Modification on the Control Flow

Graph

CONCLUSION

This research successfully developed a tool
using the SDLC method with an iterative model,
achieving an average success rate of 95.45% in
generating graphs from Python function code. The
implementation using Abstract Syntax Tree (AST)
effectively extracted structural and control flow
information, where the generation of
heterogeneous graphs for Python function code
integrated three types of graph analyses: function
call graphs, inter-function dependency graphs, and
control flow graphs on a single platform. The
development of this tool has contributed to the field
of function code analysis, particularly for the Python
ecosystem. The limitations of graph generation
using the Graphviz library present an opportunity
for future research.

Further development in the future may
include enhancing the tool's capabilities to handle
larger and more complex graph visualizations and
expanding the analysis coverage to class and object
levels in Python code. Additional testing with larger
and more complex code and testing across various
usage scenarios will also improve the effectiveness
of this tool in real-world applications.

REFERENCE

[1] M. Alenezi and M. Zarour, “On the

Relationship between Software Complexity
and Security,” International Journal of
Software Engineering & Applications, vol. 11,
no. 1, pp. 51–60, Jan. 2020, doi:
10.5121/ijsea.2020.11104.

[2] M. S. Khoirom, M. Sonia, B. Laikhuram, J.
Laishram, and D. Singh, “Comparative
Analysis of Python and Java for Beginners,”
International Research Journal of Engineering
and Technology, 2020, Accessed: Dec. 03,
2024. [Online]. Available:
https://www.irjet.net/archives/V7/i8/IRJE
T-V7I8755.pdf

[3] X. Zong, S. Zheng, H. Zou, H. Yu, and S. Gao,
“GraphPyRec: A novel graph-based approach
for fine-grained Python code
recommendation,” Sci Comput Program, vol.
238, Dec. 2024, doi:
10.1016/j.scico.2024.103166.

[4] V. Lenarduzzi, F. Pecorelli, N. Saarimäki, S.
Lujan, and F. Palomba, “A Critical
Comparison on Six Static Analysis Tools:
Detection, Agreement, and Precision,”
Journal of Systems and Software, vol. 198, Apr.
2023, doi: 10.1016/j.jss.2022.111575.

[5] H. Bapeer Hassan, Q. Idrees Sarhan, Á.
Beszédes, and H. B. Hassan, “Evaluating
Python Static Code Analysis Tools Using FAIR
Principles,” Nov. 2024, doi:
10.1109/ACCESS.2024.0429000.

[6] G. Antal, P. Hegedus, Z. Herczeg, G. Loki, and
R. Ferenc, “Is JavaScript Call Graph Extraction
Solved Yet? A Comparative Study of Static
and Dynamic Tools,” IEEE Access, vol. 11, pp.
25266–25284, 2023, doi:
10.1109/ACCESS.2023.3255984.

[7] E. Fregnan, J. Fröhlich, D. Spadini, and A.
Bacchelli, “Graph-based Visualization of
Merge Requests for Code Review,” J Syst
Softw, vol. 195, p. 111506, 2023, doi:
10.1016/j.jss.2022.111506.

[8] Y. Jin et al., “Graph-Centric Performance
Analysis for Large-Scale Parallel
Applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 35, no. 7, pp.
1221–1238, Jul. 2024, doi:
10.1109/TPDS.2024.3396849.

[9] K. Borowski, B. Balis, and T. Orzechowski,
“Semantic Code Graph - An Information
Model to Facilitate Software
Comprehension,” IEEE Access, vol. 12, pp.
27279–27310, 2024, doi:
10.1109/ACCESS.2024.3351845.

[10] O. Rodriguez-Prieto, A. Mycroft, and F. Ortin,
“An Efficient and Scalable Platform for Java
Source Code Analysis Using Overlaid Graph
Representations,” IEEE Access, vol. 8, pp.
72239–72260, 2020, doi:
10.1109/ACCESS.2020.2987631.

[11] Z. Sagodi, E. Pengo, J. Jasz, I. Siket, and R.
Ferenc, “Static Call Graph Combination to

VOL. 10. NO. 3 FEBRUARY 2025.
 .

DOI: 10.33480/jitk.v10i3.6177.

697

Simulate Dynamic Call Graph Behavior,” IEEE
Access, vol. 10, pp. 131829–131840, 2022,
doi: 10.1109/ACCESS.2022.3229182.

[12] R. Alanazi, G. Gharibi, and Y. Lee, “Facilitating
Program Comprehension with Call Graph
Multilevel Hierarchical Abstractions,” Journal
of Systems and Software, vol. 176, Jun. 2021,
doi: 10.1016/j.jss.2021.110945.

[13] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and
C. Mcmillan, “Function Call Graph Context
Encoding for Neural Source Code
Summarization,” IEEE Transactions on
Software Engineering, vol. 49, no. 9, pp. 4268–
4281, Sep. 2023, doi:
10.1109/TSE.2023.3279774.

[14] H. Liu, Y. Tao, W. Huang, and H. Lin, “Visual
Exploration of Dependency Graph in Source
Code Via Embedding-based Similarity,” J Vis
(Tokyo), vol. 24, no. 3, pp. 565–581, Jun. 2021,
doi: 10.1007/s12650-020-00727-x.

[15] H. V. Tran and P. N. Hung, “A Control Flow
Graph Generation Method for Java Projects,”
VNU Journal of Science: Computer Science and
Communication Engineering, vol. 40, no. 1,
Jun. 2024, doi: 10.25073/2588-
1086/vnucsce.668.

[16] P. Bedadala, M. D, and L. S. Nair, “Generation
of Call Graph for Java Higher Order
Functions,” in Proceedings of the Fifth
International Conference on Communication
and Electronics Systems (ICCES), IEEE, 2020.
Accessed: Nov. 20, 2024. [Online]. Available:
https://ieeexplore.ieee.org/document/9138
056

[17] P. Jansen, “TIOBE Index for November 2024,”
https://www.tiobe.com/tiobe-index/.

[18] Z. Zhao, X. Wang, Z. Xu, Z. Tang, Y. Li, and P.
Di, “Incremental Call Graph Construction in
Industrial Practice,” in Proceedings -
International Conference on Software

Engineering, IEEE Computer Society, 2023,
pp. 471–482. doi: 10.1109/ICSE-
SEIP58684.2023.00048.

[19] V. Salis, T. Sotiropoulos, P. Louridas, D.
Spinellis, and D. Mitropoulos, “PyCG:
Practical Call Graph Generation in Python,” in
Proceedings - International Conference on
Software Engineering, IEEE Computer
Society, May 2021, pp. 1646–1657. doi:
10.1109/ICSE43902.2021.00146.

[20] N. Mehrotra, A. Sharma, A. Jindal, and R.
Purandare, “Improving Cross-Language Code
Clone Detection via Code Representation
Learning and Graph Neural Networks,” IEEE
Transactions on Software Engineering, vol.
49, no. 11, pp. 4846–4868, Nov. 2023, doi:
10.1109/TSE.2023.3311796.

[21] Q. Yas, B. Rahmatullah, A. Alazzawi, and Q. M.
Yas, “A Comprehensive Review of Software
Development Life Cycle methodologies: Pros,
Cons, and Future Directions,” Iraqi Journal for
Computer Science and Mathematics, vol. Vol. 4
No. 4, pp. 173–0, 2023, doi:
10.52866/ijcsm.2023.04.04.0.

[22] Y. Huang, M. He, X. Wang, and J. Zhang,
“HeVulD: A Static Vulnerability Detection
Method using Heterogeneous Graph Code
Representation,” IEEE Transactions on
Information Forensics and Security, 2024, doi:
10.1109/TIFS.2024.3457162.

[23] H. Il Lim, “An approach to comparing control
flow graphs based on basic block matching,”
Indian Journal of Computer Science and
Engineering, vol. 11, no. 3, pp. 289–296, May
2020, doi:
10.21817/indjcse/2020/v11i3/201103237.

