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Abstract— Chronic Kidney Disease (CKD) is a progressive condition that impairs kidney function and cannot 
be cured. Early detection is crucial for effective management and therapy. However, diagnosing CKD is 
challenging as patients often have comorbidities such as diabetes, hypertension, or heart disease, which 
complicate diagnosis and treatment. Accurate classification methods are essential for early detection. K-
Nearest Neighbor (KNN) is a classification algorithm that groups data based on feature similarity. K-NN is an 
algorithm that is resistant to outliers, easy to implement, and highly adaptable. It only requires distance 
calculations between data points and does not involve complex parameters. However, its performance depends 
on hyperparameters such as the number of neighbors (k), weighting, and distance metric. Incorrect 
hyperparameter selection can lead to overfitting, underfitting, or reduced accuracy. To address these issues, 
GridSearchCV is used to optimize KNN by systematically selecting the best hyperparameters, ensuring 
improved accuracy and reduced overfitting. This optimization enhances the model’s reliability in early CKD 
detection compared to other methods. This study aims to determine the optimal KNN parameters for CKD 
classification using GridSearchCV. The results show 8.05% accuracy improvement and reduction in overfitting, 
with the prediction gap between training and testing decreasing from 6% to only 1.15%. These enhancements 
contribute to more reliable CKD diagnosis, enabling accurate early detection and better clinical decision-
making.  

 
Keywords: chronic kidney disease, classification, gridsearchCV, KNN, optimization. 

 
Intisari— Penyakit Ginjal Kronis (PGK) adalah kondisi progresif yang merusak fungsi ginjal dan tidak dapat 
disembuhkan. Deteksi dini sangat penting untuk manajemen dan terapi yang efektif. Namun, diagnosis PGK 
seringkali menantang karena pasien sering mengalami komorbiditas seperti diabetes, hipertensi, atau 
penyakit jantung, yang memperumit diagnosis dan pengobatan. Oleh karena itu, metode klasifikasi yang 
akurat sangat diperlukan untuk deteksi dini. K-Nearest Neighbor (KNN) adalah algoritma klasifikasi yang 
mengelompokkan data berdasarkan kesamaan fitur. K-NN merupakan algoritma yang tahan terhadap 
outlier, mudah diimplementasikan, dan dapat beradaptasi dengan baik. Algoritma ini hanya memerlukan 
perhitungan jarak antar data dan tidak melibatkan parameter yang kompleks. Namun, kinerjanya sangat 
bergantung pada hyperparameter seperti jumlah tetangga terdekat (k), pembobotan, dan metrik jarak. 
Pemilihan hyperparameter yang tidak tepat dapat menyebabkan overfitting, underfitting, atau akurasi yang 
menurun. Untuk mengatasi masalah ini, GridSearchCV digunakan untuk mengoptimalkan KNN dengan cara 
memilih hyperparameter terbaik secara sistematis, sehingga meningkatkan akurasi dan mengurangi 
overfitting. Optimasi ini meningkatkan keandalan model dalam deteksi dini PGK dibandingkan dengan metode 
lainnya. Penelitian ini bertujuan untuk menentukan parameter optimal KNN untuk klasifikasi PGK 
menggunakan GridSearchCV. Hasil penelitian menunjukkan peningkatan akurasi sebesar 8.05% dan 
pengurangan overfitting, dengan selisih antara prediksi pelatihan dan pengujian yang menurun dari 6% 
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menjadi 1,15%. Peningkatan ini berkontribusi pada diagnosis PGK yang lebih andal, memungkinkan deteksi 
dini yang lebih akurat dan pengambilan keputusan klinis yang lebih baik.  
 
Kata Kunci: penyakit ginjal kronis, klasifikasi, gridsearchCV, KNN, optimisasi. 
. 

INTRODUCTION 
 

The kidneys are essential for maintaining the 
body's balance by performing vital functions such as 
detoxifying the blood, filtering waste, regulating 
fluid levels, and eliminating toxins through urine 
[1]. The World Health Organization (WHO) ranks 
kidney disease as the 9th leading cause of death in 
high-income countries, with 20 deaths per 100,000 
population in crude death rates [2].  

Chronic kidney disease (CKD) is a condition 
marked by the gradual and irreversible decline of 
kidney function. This impairment prevents the body 
from maintaining proper metabolism, fluid, and 
electrolyte balance, leading to elevated levels of 
urea [3]. Patients with end-stage kidney disease 
must undergo either a kidney transplant or dialysis, 
which significantly impacts their quality of life [4]. 
The symptoms of this disease develop slowly and 
are often not noticeable at first [5]. CKD can be 
prevented and treated effectively, particularly if 
detected early [6]. Prompt action in chronic kidney 
disease patients can slow disease progression. This 
not only improves patients' quality of life but also 
reduces the risk of severe illness, death, and the high 
costs associated with kidney replacement 
therapy[7]. The challenge in diagnosing kidney 
disease is that patients frequently also have other 
health conditions, such as diabetes, hypertension, or 
heart disease [8]. These conditions complicate the 
diagnosis and treatment as they also impact kidney 
function. Therefore, an accurate diagnosis is 
essential for the early detection of chronic kidney 
disease. Classification is the process of categorizing 
objects based on similar features or characteristics 
[9]. Classification methods have been widely used to 
predict diseases [10]–[16]. The classification 
system estimates event likelihoods using existing 
data, helping to prevent losses and maximize 
potential gains [17]. By using classification, chronic 
kidney disease (CKD) patients can be easily 
detected based on several medical attributes that 
contribute to the disease. This study proposes using 
the K-NN algorithm optimized with GridSearchCV 
for classifying CKD. 

K-Nearest Neighbor (KNN) is an algorithm 
used for classification based on the similarity of 
features or attributes [18], [19]. The KNN algorithm 
has also been widely used to detect diseases [20]–
[22]. KNN algorithm has several important 
hyperparameters, such as the number of nearest 

neighbors (k), weighting, and distance metric. An 
inappropriate choice of the k value can lead to 
overfitting, where the model fits the training data 
too closely, making it difficult to predict new data 
effectively, or underfitting, which occurs when the 
model is too simple to effectively capture the 
patterns in the data [23]–[25]. Additionally, 
improper weighting and distance calculations can 
lead to less accurate predictions [26]. To address 
the issues of underfitting, overfitting, and less 
accurate predictions in KNN, researchers use 
GridSearchCV. GridSearchCV, or Grid Search Cross-
Validation, is a technique that helps find the set of 
parameters that yields the best performance for a 
particular model [27]. The use of GridSearchCV in K-
NN aims to optimize hyperparameters to find the 
best combination that provides optimal model 
performance. The parameters that can be tested 
with GridSearchCV for the K-NN algorithm include 
parameter k, the weighting parameter, and the 
distance calculation parameter. By utilizing 
GridSearchCV, the K-NN model can be tuned to 
achieve more accurate and optimal predictions 
without the need to manually experiment with 
different hyperparameters. The aim of this research 
is to identify the optimal parameters for classifying 
chronic kidney disease using the K-NN algorithm 
combined with GridSearchCV. 

Previous research on CKD is study [28], The 
researchers utilized the Naïve Bayes Classifier and 
K-Nearest Neighbor algorithms for classifying CKD. 
A 10-fold cross-validation was used to determine 
optimal results, with evaluation model such as 
accuracy, recall, precision, and ROC. The results 
indicated that the Naïve Bayes Classifier, using K-
Fold Cross Validation, achieved an accuracy of 
94.25%, a precision of 98.40%, a recall of 94.23%, 
and an AUC of 0.961. In comparison, the K-NN 
algorithm with K-Fold Cross Validation showed an 
accuracy of 77.79%, a precision of 80.20%, a recall 
of 95.06%, and an AUC of 0.627. These results 
indicate that classification using the Naïve Bayes 
Classifier outperformed the K-NN algorithm.  

The primary reference for this research is 
study [29], which used the K-Nearest Neighbor 
method to classify chronic kidney disease. This 
study implemented a 75:25 data split and evaluated 
the model with a confusion matrix, measuring 
accuracy, F1-score, recall, and precision. The results 
showed that the system was able to classify the data 
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with an accuracy of 92.59%, a precision of 89.85%, 
a recall of 87.32%, and an F1-score of 88.57%. 

In the studies referenced as [28] and [29], the 
K-NN algorithm utilized default parameters, 
resulting in suboptimal outcomes. Specifically, [28] 
reported K-NN performance with an AUC value 
close to 0.5, indicating predictive ability close to 
random guessing. Study [28] only optimized the 
model using K-Fold Validation without modifying 
the parameters of both algorithms. Additionally, the 
preprocessing step, which only involved data 
cleaning, caused the K-NN algorithm—sensitive to 
data distance—to suffer from underfitting. 
Meanwhile, study [29] conducted only a single 
experiment using the default K-NN parameters, 
leaving room for potential improvements through 
further parameter exploration. In this research, the 
GridSearchCV method is implemented to facilitate 
the selection of optimal parameters efficiently 
without requiring extensive time. Furthermore, 
proper preprocessing plays a crucial role in 
improving the model’s accuracy. Therefore, this 
study applies preprocessing techniques, including 
data cleaning, normalization, class balancing, and 
feature selection. 

The objective of this research is to achieve 
optimal performance for the K-NN algorithm in CKD 
classification. The GAP of this study from the 
referenced studies lies in the use of GridSearchCV 
for K-NN parameter optimization. The novelty of 
this research is the enhancement of the K-NN 
algorithm’s performance in CKD classification. This 
study will implement the K-NN algorithm with 
parameter optimization using GridSearchCV for 
CKD classification. 

This research contributes to the medical 
field, particularly in the diagnosis CKD, by providing 
a robust method for detecting this condition. The 
findings of this study can contribute to clinical 
applications by improving patient classification 
accuracy, aiding in early disease detection, and 
optimizing treatment decisions based on data-
driven insights like clinical decision support 
systems. Additionally, this study advances the field 
of data mining, specifically regarding the 
application of the K-NN algorithm for optimal 
parameter determination in health data analysis. 

This research consists of four sections: 
introduction, research methods, results & 
discussion, and conclusion. In the research methods 
section, the researcher explains the steps taken and 
reviews relevant literature related to the study. In 
the results section, the researcher presents the 
findings of the study, and in the conclusion section, 
the researcher analyzes and summarizes the results 
obtained. 

MATERIALS AND METHODS 
 
Research Method 

This research consists of three stages: the 
data preprocessing stage, the testing stage with 
KNN using default parameters and KNN with 
GridSearchCV, and the evaluation stage. The 
researcher uses Python programming with Jupyter 
Notebook to classify the data. The flowcharts of the 
research in Figures 1. 
 

 
Source: (Research Result’s, 2024) 

Figure 1. Research Flow Diagram 
 

In Figure 1, a research flowchart is presented. 
The first step involves finding suitable data for this 
study, which is sourced from Kaggle and consists of 
491 data points. This data has not undergone 
preprocessing, so applying it directly to the 
algorithm may lead to issues. Preprocessing 
addresses these problems by cleaning and enriching 
the data, as well as normalizing values to ensure 
they fall within a consistent range. With cleaner and 
more uniform data, machine learning models can 
learn patterns and relationships within data and 
make predictions more accurately and efficiently. 

The second step is the application of feature 
selection and the removal of missing data. Choosing 
the most relevant features allows the model to focus 
on significant information, reducing the risk of 
overfitting, improving performance, and speeding 
up the training process. Removing missing data is 
crucial to ensure that the analysis is conducted on 
clean and complete data, leading to more valid 
conclusions.  

The third step involves applying the 
Synthetic Minority Over-sampling Technique 
(SMOTE). When working with imbalanced data in 
classification tasks, issues like majority class bias 
can occur. This bias happens when the model tends 
to predict the more frequently occurring class, 
leading to low sensitivity for the minority class. 
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Consequently, the model may miss crucial patterns 
within underrepresented data, leading to poor 
performance on the minority class, despite 
appearing to have high overall accuracy. To address 
this class imbalance in the dataset, the researcher 
employs SMOTE. SMOTE was chosen for 
oversampling the minority class as it generates 
synthetic samples through interpolation between 
existing minority class instances, effectively 
addressing the class imbalance issue. Other 
methods, such as ADASYN, also aim to improve 
minority class representation, but ADASYN focuses 
on generating samples around difficult-to-classify 
instances. While ADASYN can be beneficial in some 
cases, SMOTE was selected here for its simplicity 
and general effectiveness in balancing the class 
distribution. 

The fourth step is to perform data 
normalization using MinMaxScaler. Data 
normalization is a preprocessing step aimed at 
standardizing the scale of features within the 
dataset, ensuring that all variables have a uniform 
range of values. Without normalization, features 
with larger scales can dominate the influence on the 
model, resulting in the model being less responsive 
to features that may also be important but have 
smaller value ranges. Normalization ensures that all 
features contribute equally to decision-making. 
MinMaxScaler is a normalization technique used to 
transform features in the dataset so that their values 
fall within a specified range, typically [0, 1]. This 
process involves subtracting the minimum value of 
each feature and then dividing the result by the 
range (the difference between the maximum and 
minimum values). 

The fifth step is to split the preprocessed data 
using stratified sampling for classification. Splitting 
the data helps ensure that the model can be 
effectively evaluated and optimized. By splitting the 
dataset into training and testing sets, the model can 
be trained on one subset of data and tested on its 
ability to generalize to unseen data. In this stage, the 
researcher performs a data split of 80:20, allocating 
80% of the data for training and 20% for testing. 
The researcher uses stratified splitting, which 
maintains the proportion of class distribution in 
each resulting subset, ensuring that both the 
training and testing sets have the same class 
distribution. The data splitting stage completes the 
preprocessing phase before testing the model using 
KNN Default and KNN with GridSearchCV. 

The sixth step is to implement the K-Nearest 
Neighbors (KNN) algorithm, along with KNN using 
GridSearchCV. In the GridSearchCV for KNN, 
researcher will test several parameters, including 
the value of k, which will be selected from odd 

values ranging from 3 to 30. The researcher also 
evaluated two weighting options: "uniform" and 
"distance." The cross-validation will use 10 folds. 
Additionally, we will consider two distance 
calculation methods: Euclidean Distance and 
Manhattan Distance. The optimal result from the 
KNN GridSearchCV will be determined as the 
average accuracy of the training data with the 
specified parameters. The model's performance will 
be assessed using metrics such as accuracy, 
precision, recall, F1-score, and ROC-AUC. 

The final step is the evaluation stage. At this 
point, the researcher will compare the performance 
of KNN with GridSearchCV to that of the default 
KNN, aiming to determine if using GridSearchCV 
optimization leads to an improvement. 
 
Data Collection 

The data used in this research consists of 
medical records of chronic kidney disease patients 
from Tawam Hospital, Al-Ain City, Abu Dhabi, 
United Arab Emirates, obtained from the Kaggle 
website 
(https://www.kaggle.com/datasets/davidechicco/
chronic-kidney-disease-ehrs-abu-dhabi).  

Table 1. Sample of Chronic Kidney Disease Patient 
Record 

No 
Se
x 

AgeBaselin
e 

… 
EventCKD3

5 
TIME_YEA

R 
1 0 64 … 0 8 
2 0 52 … 0 9 
… … … … … … 
49
1 

0 0 … 0 0 

Source: (Research Result’s, 2024) 
 
Table 1 presents an example of patient 

records with Chronic Kidney Disease. The dataset 
contains 491 records with 22 attributes. Each 
attribute includes Sex, AgeBaseline, 
HistoryDiabetes, HistoryCHD, HistoryVascular, 
HistorySmoking, HistoryHTN, HistoryDLD, 
HistoryObesity, DLDmeds, DMmeds, HTNmeds, 
ACEIARB, CholesterolBaseline, CreatinineBaseline, 
eGFRBaseline, sBPBaseline, dBPBaseline, 
BMIBaseline, TimeToEventMonths, EventCKD35, 
and TIME_YEAR, all of which can indicate whether a 
person has CKD. This data will be used for 
evaluation and classification using the KNN 
algorithm. 
 

RESULTS AND DISCUSSION 
 
In this section, the researcher will apply the 

methods outlined in the flowchart to conduct the 
study. The results obtained from this research 
indicate a significant improvement in classifying 

https://www.kaggle.com/datasets/davidechicco/chronic-kidney-disease-ehrs-abu-dhabi
https://www.kaggle.com/datasets/davidechicco/chronic-kidney-disease-ehrs-abu-dhabi
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chronic kidney disease using GridSearchCV for the 
KNN algorithm. 

 
Preprocessing Data 

At this stage, the researcher performs data 
preprocessing to ensure that the results of the study 
are optimal. The researcher utilizes SMOTE, 
MinMaxScaler, feature selection, and checks for 
missing data to obtain a quality dataset that can 
yield optimal testing. First, a check for missing 
values in the chronic kidney disease data is 
conducted. In this process, the identification of 
columns or rows with empty or missing values is 
performed:  

 

 
Source: (Research Result’s, 2024) 

Figure 2. Plot Missing Value 
 

In Figure 2 above, the data used does not 
have any missing values, so there is no need for 
adding or removing data. The next step is feature 
selection for the classification. In this stage, the 
researcher removes the attributes 
TimeToEventMonths and TIME_YEAR from the 
data, as these attributes do not influence the 
classification or the chronic kidney disease. 

 

 
Source: (Research Result’s, 2024) 

Figure 3. Classes CKD35 Before and After SMOTE 
 
Next is the step of balancing classes within 

the data. The attribute being balanced in this stage 
is the EventCKD35 attribute (the class attribute). 
The class imbalance between class 0 (435 samples) 

and class 1 (56 samples) may cause the model to 
underfit. Therefore, oversampling is applied to class 
1 to balance the data distribution between classes. 
The balancing of this attribute uses the SMOTE 
oversampling technique. The results before and 
after applying SMOTE can be seen in Figure 3. 

Next, the researcher applies MinMaxScaler 
for data normalization, which aims to change the 
range of values for each feature to the interval [0, 1]. 
This process helps improve the model's 
performance by ensuring that all features have the 
same scale. The attributes that undergo 
normalization are AgeBaseline, 
CholesterolBaseline, CreatinineBaseline, 
eGFRBaseline, sBPBaseline, dBPBaseline, and 
BMIBaseline. The results of the data normalization 
can be seen in Table 1 below. 

 
Table 2. Data Attributes after Normalization 

N
o 

Age
Base
line 

Choles
terolB
aselin

e 

Creat
inine
Basel

ine 

eGF
RBas
eline 

sBP
Base
line 

dBP
Base
line 

BMI
Base
line 

1 0.62 0.36 0.45 0.18 0.59 0.64 0.61 
2 0.43 0.58 0.39 0.25 0.63 0.7 0.72 
3 0.5 0.58 0.43 0.21 0.64 0.63 0.63 
… … … … … … … … 
8
7
0 

0.69 0.16 0.61 0.16 0.46 0.32 0.29 

Source: (Research Result’s, 2024) 
 
As seen in Table 2, the normalized data has a 

value range from 0 to 1. This normalized data is now 
ready for splitting. In the final stage, the researcher 
divides the data using the Stratified K-Fold method 
to ensure a balanced class distribution in each fold. 
The data is divided into 80% for the training set and 
20% for the testing set. The Stratified K-Fold 
method is chosen because it maintains the class 
proportions in both the training and testing 
datasets, making the model evaluation results more 
representative of the overall data. 
 
KNN Implementation 

After the data preprocessing is completed, 
the next step is to test the data using K-NN, starting 
with the KNN Default test. The KNN with default 
parameters uses a metric of Minkowski, n=5, and 
weight = 'uniform'. The model was evaluated only 
once using the test data. The results from the KNN 
with default parameters yield a high F1 score of 
86%, accuracy of 86%, recall of 86%, and precision 
of 87%. This model shows a good balance between 
precision and recall, reflecting the effectiveness of 
KNN in classification. The confusion matrix for the 
default KNN algorithm can be seen in Figure 4. 
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Source: (Research Result’s, 2024) 

Figure 4. Confusion Matrix of Default KNN. 
 
From Figure 4, it is evident that the default 

parameters of the KNN algorithm successfully 
classified at least 150 data points, with around 24 
data points resulting in errors. This indicates that 
even without utilizing GridSearchCV, the KNN 
algorithm is already quite effective for classification 
tasks. 

 

 
Source: (Research Result’s, 2024) 

Figure 5. ROC Curve of Default KNN. 
 

 The ROC-AUC graph in Figure 5 on the right 
shows a high ROC AUC score of 0.948 (94.8%), 
which is close to 1. A ROC AUC value approaching 1 
signifies very good pattern recognition in 
classification. Figure 5 shows high TPR and low FPR 
at most thresholds, indicating the model's ability to 
detect most positive cases while minimizing false 
positives. the overall performance of the K-NN 
model is very good. Additionally, the comparison 
between the testing data and training data is 
illustrated in Figure 6. 

 

 
Source: (Research Result’s, 2024) 

Figure 6. KNN Default Comparison Results. 
 

In Figure 6, that the accuracy on the training 
set is 0.92(92%) while the accuracy on the testing 
set is 0.86(86%). This model shows indications of 
overfitting, as indicated by the 0.6(6%) accuracy 
difference between training and testing. This 
accuracy gap suggests that the model may have 
captured specific details from the training data that 
do not necessarily apply to unseen data, thereby 
risking a lack of generalization. 

 
Tuning With GridSearchCV 

Next, model tuning will be performed using 
GridSearchCV. In this study, the parameters 
selected for testing on the K-Nearest Neighbors 
(KNN) model include the number of neighbors 
(n_neighbors), weighting method (weights), type of 
distance calculation (metric), and the number of 
folds in cross-validation (K-Fold). These parameters 
are summarized in Table 3, which aims to optimize 
the performance of the KNN model by finding the 
best parameter combinations. 

Table 3. Parameters to Be Tested With 
GridsearchCV. 

Parameters Name Value 
K (n_neighbors) Odd value 3 - 30 
weights “uniform”,”distance” 
distance metric (p) 'euclidean'(p=1), 

 'manhattan'(p=2),  
'minkowski'(p=3) 

K-Fold 10 

Source: (Research Result’s, 2024) 
 
In Table 3 the parameter range of 3-30 for the 

number of neighbors in K-NN was chosen to explore 
a variety of values that could balance the model's 
bias and variance. Odd values were specifically 
selected to avoid ties in classification, as even values 
of k could lead to ambiguous results in cases of equal 
class distribution among neighbors. This range 
provides a comprehensive search for the optimal k-
value to improve model performance. The tested 
weighting methods included both uniform and 
distance-based approaches. Three different 
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distance metrics were utilized for calculating the 
distance between neighbors: Euclidean distance, 
Manhattan distance, and Minkowski distance. The 
data were split using the K-Fold method, with the 
parameter set to 5 folds. A comparison of the 
accuracy results based on these specified 
parameters can be found in Figure 7 below. 
 

 

 

 
Source: (Research Result’s, 2024) 
Figure 7. Comparison of Training Accuracy for Each 

Weight Using GridSearchCV Parameters 
 
In Figure 7, it can be observed that the 

variation in the value of k significantly affects the 
performance of the K-Nearest Neighbors (KNN) 
algorithm. Higher values of k, or a larger number of 
neighbors, tend to decrease the model's accuracy. 
This is due to the nature of the KNN algorithm, 
where an increasing value of k means that more 
neighbors are considered in the classification 
process. Consequently, predictions become more 
influenced by points that may not be fully relevant, 
thus reducing the model's ability to capture specific 
patterns in the data. On the other hand, smaller 
values of k allow the model to consider only a few 

closest neighbors in determining the class of the 
data. This increases sensitivity to local patterns 
around the tested data point, resulting in higher 
accuracy. However, with a low value of k, the model 
risks overfitting, as classification decisions are 
overly influenced by the data surrounding that 
point and are less capable of generalizing to new 
data. The researcher has summarized the best 
results from each specified distance metric, which 
can be seen in Table 4 below. 

 
Table 4. Optimal Results of Each Distance 

Calculation 
No p K weight Train Test F-1  AUC 
1 1 3 distance 1 0.942 0.945 0.990 
2 1 3 uniform 0.954 0.942 0.945 0.987 
3 2 3 distance 0.939 0.908 0.911 0.962 
4 2 3 uniform 1 0.925 0.928 0.973 
5 3 3 distance 1 0.919 0.923 0.967 
6 3 3 uniform 93.53 0.902 0.907 0.955 

Source: (Research Result’s, 2024) 

 
In Table 4, it is shown that the best results 

from GridSearch using 10-fold cross-validation 
were achieved with parameters p = 1, k = 3, and 
weights = distance. This combination of parameters 
resulted in 100% accuracy on the training data, an 
F1 score of 0.945, and a ROC-AUC value of 0.990. 
However, these results indicate signs of overfitting, 
with a difference in accuracy between the training 
and testing data of 0.58(5.8%), as same as the 
results obtained using the default KNN settings.  

For more stable results without overfitting, 
the parameter combination of p = 1, k = 3, and 
weights = uniform showed better performance. This 
combination resulted in a difference in accuracy 
between the training and testing data of only 0.115 
(1.15%). Compared to other parameters, this one 
had the smallest overfitting value while maintaining 
high accuracy. The small difference in accuracy 
indicates that the model successfully learned 
patterns from the data without overfitting. With 
minimal disparity between the training and testing 
data, the model demonstrates stable and consistent 
performance on unseen data, making it reliable for 
predictions beyond the training data. 

Based Figure 8, it can be observed that the 
KNN algorithm using weights = distance tends to 
experience overfitting, while KNN with weights = 
uniform tends to be more stable. Based on this 
indication, it is determined that the algorithm using 
uniform weights is the optimal parameter among all 
the parameter combinations used. Therefore, the 
most optimal results are achieved with parameters 
p = 1, weights = uniform, and k = 3, resulting in an 
accuracy of 94.25%, precision of 95%, recall of 94%, 
F1-score of 94%, and an AUC value of 0.9865. 
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Source: (Research Result’s, 2024) 
Figure 8. Comparison of Training Testing Accuracy 

for P=1 and P=2 
 

 
Source: (Research Result’s, 2024) 

Figure 9. Confusion Matrix Best Parameters KNN 
Algorithm. 

 
From Figure 9, the best parameters from 

GridSearchCV for KNN were able to accurately test 
at least 164 data points, with about 10 data points 
resulting in errors. This leads to the conclusion that 
the algorithm with the best parameters 
outperforms the default parameters. 

 

 
Source: (Research Result’s, 2024) 

Figure 10. ROC Best Parameters KNN Algorithm. 
 

The ROC results for the optimal parameters 
with GridSearchCV KNN indicate an optimal value of 
0.98652, meaning this model is very effective at 
recognizing patterns in classification with the 
dataset provided (Figure 10). ROC = 0.98652 shows 
that the KNN model is nearly perfect in 
distinguishing between different classes. The use of 
GridSearchCV has helped optimize the 
hyperparameters of the KNN model, maximizing its 
performance for this data. A comparison between 
KNN with default parameters and KNN with 
GridSearchCV can be seen in Table 5. 

Table 5. KNN Comparison 
Algoritma Testing F-1 Uji AUC 
KNN Gridsearchcv  94.25% 0.945 0.987 
KNN Default 86.2% 0.861 0.948 

Source: (Research Result’s, 2024) 
 

In Table 5, it is evident that optimizing 
parameters using GridSearchCV significantly 
improves model performance. By using the 
optimized parameters, the model's accuracy 
increased by 0.805(8.05%), indicating that the 
model is better able to classify the data correctly. 
Additionally, there was an increase of 0.084 in the 
F1 score, and the AUC value rose by 0.038. This 
increase in AUC signifies that the model's ability to 
distinguish between classes has improved after 
optimization. Overall, the use of optimized 
parameters allows the algorithm to operate more 
efficiently and accurately compared to the default 
parameter settings.  

The model using KNN also has a small 
difference between training and testing results of 
only 0.115(1.15%), compared to the default KNN, 
which has a difference of 0.6(6%), where the 
training data has a higher accuracy than the testing 
data used. Furthermore, from the confusion 
matrices for KNN GridSearchCV (Figure 9) and KNN 
default (Figure 4), that the number of incorrect 
predictions for each class in KNN GridSearchCV is 
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10, while KNN default has 24 incorrect predictions. 
This indicates that KNN with GridSearchCV 
optimization can enhance the results of the KNN 
model. 
 

CONCLUSION 
 

The results of this study indicate an 
improvement in the model of 8.05% and a reduction 
to just 1.15% in the difference between training and 
testing predictions. The evaluation results 
demonstrate consistent performance across both 
training and test datasets, suggesting that the model 
generalizes well and is not overly sensitive to the 
specific data it was trained on. The best model for 
classifying CKD using KNN is with K=3, p=1 
(Manhattan), and Weights = "Uniform." The best 
results from this algorithm include an accuracy of 
94.25%, an F1 Score of 0.945, and an AUC of 0.987. 
It can be concluded that optimization with 
GridSearchCV enhances model performance, 
especially in the classification of CKD. For future 
research, it may be beneficial to use the KNN 
algorithm to predict CKD with other optimization 
techniques or to compare this model with other 
optimized algorithms. 
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