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Abstract— Endoscopy is a crucial tool for diagnosing digestive tract diseases—colon cancer and polyps using 
a camera with LED lighting, but often results in low-quality images with poor contrast and luminance. This 
study evaluates the performance of two contrast-based image quality enhancement—Contrast Limited 
Adaptive Histogram Equalization (CLAHE) and Improved Adaptive Gamma Correction with Weighting 
Distribution (IAGCWD)—along with various color space transformations (RGB, HSV, YCbCr, CIELAB, 
Grayscale) in deep learning-based digestive tract diseases detection system. The detection system using 
EfficientNetV2S model and Quadratic Weighted Kappa (QWK) loss function to obtain the balance of prediction 
results for each class. The experiment shows that CLAHE is able to achieve 79% accuracy which is superior in 
clarifying important information in endoscopy images. CLAHE performs well due to its ability to reduce noise 
and enhance contrast. The classification model with HSV and CLAHE on KVASIR is able to recognize all classes 
well. RGB, HSV, and YCbCr color spaces have stable performance in most tests. This study contributes insights 
for enhancing endoscopic image quality to support both computer-aided and clinical diagnosis. 

Keywords: Biomedical, Cohen kappa loss, Color space, Endoscopy, Image enhancement. 
 
Intisari— Endoskopi merupakan alat penting untuk mendiagnosis penyakit saluran pencernaan kanker usus 
besar dan polip—dengan menggunakan kamera yang dilengkapi pencahayaan LED, namun sering 
menghasilkan citra berkualitas rendah dengan kontras dan luminansi yang kurang baik. Penelitian ini 
mengevaluasi kinerja dua metode peningkatan kualitas citra berbasis kontras—Contrast Limited Adaptive 
Histogram Equalization (CLAHE) dan Improved Adaptive Gamma Correction with Weighting Distribution 
(IAGCWD)—bersama dengan berbagai transformasi ruang warna (RGB, HSV, YCbCr, CIELAB, Grayscale) 
dalam sistem deteksi penyakit saluran pencernaan berbasis deep learning. Sistem deteksi ini menggunakan 
model EfficientNetV2S dan fungsi loss Quadratic Weighted Kappa (QWK) untuk mendapatkan keseimbangan 
hasil prediksi pada setiap kelas. Hasil eksperimen menunjukkan bahwa CLAHE mampu mencapai akurasi 
sebesar 79% yang unggul dalam memperjelas informasi penting pada citra endoskopi. CLAHE bekerja dengan 
baik karena kemampuannya mengurangi noise dan meningkatkan kontras. Model klasifikasi dengan HSV dan 
CLAHE pada KVASIR mampu mengenali seluruh kelas dengan baik. Ruang warna RGB, HSV, dan YCbCr 
menunjukkan kinerja yang stabil di sebagian besar pengujian. Penelitian ini memberikan wawasan untuk 
meningkatkan kualitas citra endoskopi guna mendukung diagnosis berbantuan komputer maupun klinis.  

Kata Kunci: Biomedis, Cohen kappa quadratic loss, Endoskopi, Peningkatan gambar, Ruang warna. 
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INTRODUCTION 
 

The digestive system, also known as the 
gastrointestinal (GI) tract—consisting of the mouth 
to the anus—which is responsible for processing 
food. Diseases of the digestive tract—polyps, gastric 
ulcers, and colon cancer—affect the health of the 
body. Polyps are abnormal tissue growths that often 
appear in the stomach and large intestine. Most 
polyps are benign tumors that do not pose a risk of 
cancer, but if left untreated in the long term (5 to 10 
years) will become cancer.  

Colon cancer is suffered by 8.6% of the 
population in Indonesia (34,189 people), and the 
incidence of colon cancer globally is 19.5% [1], [2]. 
Diagnosing polyps and colon cancer in the digestive 
tract using an endoscopy. Endoscopy is used to 
observe the digestive tract to find anatomical 
abnormalities and diseases. Traditional endoscopy 
uses a wired tube, while modern endoscopy uses a 
wireless capsule.  

The main problem with endoscopic images 
acquisition with the White Light Imaging (WLI) 
technique is that the image quality is depends by the 
acquisition environment and LED lighting. The 
resulting image can be low/high contrast and 
uneven illumination [3]. This has an impact on the 
level of accuracy and interpretation by doctors and 
computer-aided diagnosis. Computer-aided 
diagnosis uses machine vision (camera), mostly 
represented by the RGB color space, as input to 
diagnose disease.  

Color is represented based on color theory, 
which maps real-world colors into pixels using 
either a linear model (YCbCr and YUV) or a 
nonlinear model (HSV and CIELAB) [4]. Most color 
spaces can be described by a three-dimensional 
channel, except for grayscale, which only has a 
single channel. The color model is not only the 
representation of color information but also the 
representation of texture information. 

Color representation and image quality 
issues can be addressed using image enhancement 
techniques. Image enhancement is installed on a 
computer endoscope receiver such as Narrow Band 
Imaging (NBI) [5], Linked Color Imaging (LCI), and 
Blue Laser Imaging [6]. Apart from that, image 
enhancement is carried out after the shooting 
process.  

Research [7] uses color conversion from RGB 
to CIELAB color space to separate images with 
bleeding and without bleeding based on K-Means 
Clustering. CIELAB makes it easy to see the 
difference between objects and backgrounds. 
Research [8] evaluates the enhanced results of 
CLAHE, HE, and Gamma Correction on endoscopy 
data. CHALE provides better results than HE, and 

Gamma Correction, however, research [8] did not 
provide the results of a medical examination by a 
doctor or a machine. By enhancing the texture of the 
detail layer and tone mapping using gamma 
correction [9], it has become easier for doctors to 
detect adenomas [10]. 

Detecting digestive tract diseases can also be 
performed using deep learning models by utilizing 
the transfer learning process.  Transfer learning is a 
method that accelerates the training process by 
refining the pre-trained model with large data. This 
technique is frequently used to address issues in the 
medical field due to the scarcity of available data.  

In the diagnosis of malaria parasites in red-
blood smears, a study [11] using transfer learning 
techniques on ResNet50, EfficientNetB0, and 
InceptionV3 models achieved an accuracy above 
77%. In the study of diagnosis of digestive tract 
diseases, a previous study [12] used pre-trained 
models, namely DenseNet121, Dense169, 
Dense201, and ResNet50V2, to classify endoscopy 
with 78,5%, 78,5%, 81.25% and 78.44% accuracy. 

In a similar study [13] using the Kvasir 
Capsule Dataset, the EfficientNet model with an F1-
score of 95.58% outperformed four other 
pretrained models, namely, GoogleNet, LeNet, 
MobileNet-V2, and ResNet50. Among the previous 
studies  [11] – [13], classification tasks exclusively 
used the RGB color space, and none applied image 
enhancement techniques. Additionally, an in-depth 
analysis of the impact of color and enhancement 
remains to be required.  

This research paper presents a comparative 
analysis of color transformation and contrast 
enhancement techniques for endoscopy images, 
exploring their impact on classification models 
using EfficientNetV2S. Color transformation 
converts RGB images into another color model, such 
as Grayscale, HSV, CIELAB, and YCbCr.  

The selection of this color model is due to its 
ability to approximate human vision. HSV  color 
model offers an intuitive way to express the shade 
of color, hue, and vividness. Each color 
transformation result was contrast-enhanced using 
CLAHE and IAGCWD. The Quadratic Weighted 
Kappa loss function is used to help the model 
achieve the same performance in each class. This 
study aims to provide comprehensive insights into 
the differences in combination image enhancement 
and color models for improving accuracy. The 
experiment shows that CLAHE improves class 
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distinction and overall performance. Additionally, 
this research introduced a new collection of 
endoscopy multi-house dataset for classification of 
cancer, polyps, and normal, this dataset represents 
of high overlap between each class, an imbalanced 
dataset, and low resource.   

The rest of this paper is carried out as 
follows: Materials and Methods explain the 
proposed methodology, Results and Discussion 
address the experimental findings of the proposed 
method, and Conclusions is the conclusion of the 
proposed work.  

 
MATERIALS AND METHODS 

 
This study focuses on analyzing the impact of 

different color models and contrast enhancement 
techniques, tested on the deep learning-based 
prediction model EfficientNetV2S. The study 
comprises several stages as shown in Figure 1, 
starting from data collection and preprocessing, 
data augmentation, color transformation, contrast 
enhancement, model architecture, loss function, to 
model evaluation. 

 
A. Data Collection and Preprocessing 

 
Source : (KVASIR Dataset, 2024) 

Figure 2. Image sample of KVASIR dataset 

In this stage, the dataset is taken from a 
collection of endoscopy images of KVASIR and 
DCMH that have overlapping class characteristics 
with the balance and imbalance dataset. KVASIR 
(https://datasets.simula.no/kvasir/) is a collection 
of 4,000 images divided into 8 class, for 
gastrointestinal (GI) track disease detection. For 
each class contains 500 images, each image 
annotated by medical experts from Vestre Viken 
Health Trust center and Norwegian Cancer Registry 
and each image with different size resolution 
between 720 ×  576 and 1920 ×  1072 pixels. This 
dataset is used to represent balanced data case in 
the upper and lower gastrointestinal tract.  

DCMH collection used Gastrovision [14] data 
on colon polyps, colorectal cancer, and colon 
mucosa and vascular patterns with total 2,426 
images data. Additional data from unlabeled data in 
HyperKvasir (https://datasets.simula.no/hyper-
kvasir/) that had been labeled by 
gastroenterologists from Petrokimia Gresik 
Hospital, was included due to the insufficient 
number of images (fewer than 200) in the colorectal 
cancer class. To prevent redundant data, duplicate 
images between Gastrovision and HyperKvasir 
were removed.  

This process resulted in 921 colon polyps, 
517 colorectal cancers, and 1,407 normal colon 
images. DCMH dataset is represented imbalanced 
data, low resource, and overlapping between class. 
By using two different datasets, this research can 
provide a more comprehensive understanding of 
the effects of enhancement and color 
representation.  

In Figure 2. shows random images for each 
class in KVASIR Dataset, with their respective 
names. In Figure 3. shows randomly two selected 
images from DCMH for each class. The DCMH 
dataset represent high similarity, most of image 
have overlapping, between each class. 

 
Source: (Research Results, 2024) 

Figure 1. Workflow of proposed methodology 
 

https://datasets.simula.no/kvasir/
https://datasets.simula.no/hyper-kvasir/
https://datasets.simula.no/hyper-kvasir/
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Source : (Research Results, 2024) 
Figure 3. Image sample of DCMH dataset 

 
The distributions of the number of images in 

the train, validation, and test is divided by a ratio of 
80:10:10 and divided into mini-batches with a batch 
size of 16. Since the dataset images have been 
collected from various sources with varying 
dimensions, each image undergoes a resizing 
process to 224x224 pixels. The next step is to 
normalize the pixels within the value range of 0-225 
to 0-1.  
 
B. Data Augmentation 

To enhance the diversity of the dataset, an 
augmentation process is employed. Geometric 
augmentation was selected due to minimal noise 
introduction. Geometric transformations 
techniques, provided by the Keras library, including 
operations such as flipping the image (right or left), 
rotation, contrast adjustment was performed 
randomly (range 0.2 – 1.8), and brightness variation 
(delta = 0.1).  

 
C. Color Transformation 

Colorful images based on human vision are 
represented by computers into RGB color spaces in 
composed with three basic colors, Red (𝑅), Green 
(𝐺), and Blue (𝐵). Grayscale is color model that 
refers to a range of shades of gray as a brightness, 
from black to white. Using (1) to transform the RGB 
color into Grayscale (𝐺𝑌) color. HSV stand for Hue, 
Saturation, and Value is an intuitive color model for 
the human eye. To transform RGB Color to HSV 
Color using equation (2) – (5).  

 

𝐺𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (1) 

 

𝑚𝑎𝑥 = max(𝑅, 𝐺, 𝐵) (2) 

 

𝑚𝑖𝑛 = min(𝑅, 𝐺, 𝐵) (3) 

 

𝑆 =
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥
 (4) 

In CIELAB, L* as lightness represent 
intensity, a* color represent Red channel minus 
Green channel, and b* color represent for Green 
channel minus Blue channel [15]. YCbCr color 
model separates Luminance represented by 𝑌 from 
chrominance represented by 𝐶𝑏 as blue component 
and 𝐶𝑟 as red component. The 𝑌 channel carries the 
grayscale information. 𝑌, 𝐶𝑏, and 𝐶𝑟 obtained from 
the calculation of (1), (6) and (7). 

𝐻 =

{
 
 

 
 

0, if 𝑚𝑎𝑥 = 𝑚𝑖𝑛

60 ×
𝐺−𝐵

𝑚𝑎𝑥−𝑚𝑖𝑛
, if 𝑚𝑎𝑥 = 𝑅

60 ×
𝐵−𝑅

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 120, if 𝑚𝑎𝑥 = 𝐺

60 ×
𝑅−𝐺

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 240, if 𝑚𝑎𝑥 = 𝐵

 (5) 

 

𝐶𝑏 = 128 − 0.16874𝑅 −
0.33126𝐺 + 0.5𝐵  (6) 

 

𝐶𝑟 = 128 + 0.5𝑅 − 0.41869𝐺 −
0.08131𝐵  (7) 

 
D. Contrast Enhancement 

One of the popular methods for contrast 
enhancement is Contrast Limited Adaptive 
Histogram Equalization (CLAHE) which is capable 
to improving the visibility of images in low-light 
conditions. CLAHE adaptively performs a histogram 
equalization on each images block with certain 
contrast limits [16]. There is two parameters in 
CLAHE, size of grid for histogram equalization and 
clip limit, the more higher size of grid the results will 
be better [17]. By utilizing the clip limit as the 
maximum height limit of a histogram, CLAHE can 
prevent excessive contrast enhancement.  

In the majority of cameras, there is a 
nonlinear relationship between the signal voltage 
and light intensity [18]. The level of illumination 
incident on a scene represents a significant factor 
that directly impacts the reliability of performance 
in many computer vision systems. Improved 
Adaptive Gamma Correction with Weighting 
Distribution (IAGCWD) [19], [20] to enhance the 
contrast of low-light images and reduce over-
brightness by choosing gamma value as a function 
of cumulative density function. IAGCWD performs 
enhancement for data that is too bright or too dark, 
which is better than enhancing the entire data.  

 
E. Model Architecture 

This study used EfficientNetV2S pre-trained 
models. The EfficientNet was developed in 2020, is 
architecture that focuses on achieving higher 
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accuracy with less parameter by scaling depth, 
width and resolution. The new version of 
EfficientNet [21] is faster and more parameter-
efficient by combining training-aware neural 
architecture search and scaling. EfficientNetV2S has 
20.33M parameters and six convolutional blocks. A 
transfer learning approach using models trained on 
large common data sets, exp. ImageNet, provides a 
better chance of classification success by using less 
training data and shorten the time for the training 
phase. 

After passing the pre-trained EfficientNetV2S 
model to ImageNet, a high-level feature 
representation of the input data is obtained. This 
representation is passed to the top layer as a fully 
connected layer. The top layer has two dense layers 
with 128 and 64 neurons, activation ReLU, 
regularizer L2 0.0001, and a batch normalization. 
The selection of parameter settings was chosen to 
equalize the model environment in the testing and 
analyzing proses.  

The last layer or output layer for 
classification will have the same neuron as the total 
number of classes with SoftMax activation. Training 
phase uses AdamW optimization with learning rate 
0.001 and weight decay 0.004. AdamW is able to 
adapt the learning rate to handle overfitting. Instead 
of categorical cross-entropy, we employ QWK loss, 
this loss will help to maintain the model performs in 
each class. To reduce time proses, we using 25 
epoch for model training phase. . 

 
F. Quadratic Weighted Kappa Loss 

Quadratic Weighted Kappa (QWK) [22] 
measures the level of agreement between two 
raters on ordinal categorical data. In the context of 
deep learning, it compares the classification model 
results with the standardized expert agreement. It 
handles data imbalance better than categorical 
cross entropy [23], [24]. QWK results are in the 
range of −1 and 1; negative stands for worse than 
random, zero for random, and one is perfect. The 
weight 𝑊 is calculated using (8) based on the 
power-of-two value of the difference between 
actual 𝑖 and predicted 𝑗 values divided by the 
number of classes 𝐶 minus one. Matrix 𝑂 which 
contains observation values of size 𝐶 ×  𝐶 and 
Matrix of expected outcomes E which measures the 
outer product between predicted and actual values. 
(9) calculates the normalized 𝑊, 𝑂, and 𝐸 matrix 
values. The loss function uses a minimization 
problem [25], so the loss is calculated using (10), the 
result values between the range of −∞ and 𝑙𝑜𝑔 2. 

𝑤𝑖,𝑗 =
(𝑖−𝑗)2

(𝐶−1)2
 (8) 

 

𝑄𝑊𝐾 = 1 −
∑ 𝑊𝑖,𝑗𝑂𝑖,𝑗𝑖,𝑗

∑ 𝑊𝑖,𝑗𝐸𝑖,𝑗𝑖,𝑗
 (9) 

 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑔 (1 − 𝑄𝑊𝐾) (10) 

 
G. Model Evaluation 

To quantitatively evaluate the experiment, 
this study used a confusion matrix as the evaluation 
metric. Confusion matrix contains true positive 
(𝑇𝑃) value, true negatives (𝑇𝑁) value, false positive 
(𝐹𝑃) value, and false negatives (𝐹𝑁) value. From 
the values in the confusion matrix, we calculated 
several metrics, such as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 
𝑟𝑒𝑐𝑎𝑙𝑙, 𝑓1 − 𝑠𝑐𝑜𝑟𝑒, and 𝑚𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 
(𝑀𝐶𝐶). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the percentage of the total data 
that the model correctly predicts. In the context of 
unbalanced data, 𝑀𝐶𝐶 gives a better picture of 
performance than f1-score. The accuracy and f1-
score result in imbalance dataset were unreliable. 

 
RESULTS AND DISCUSSION 

 
The results of the color transformation and 

contrast enhancement stages and their impact on 
the classification model are explained below. 

 
A. Visual Results 

The results of color transformation are 
reported in Figure 4, the sample image used are 
from DCMH dataset.  In Figure 5, shows each 
channel from different color space in Grayscale 
images.  

 

 
Source : (Research results, 2024) 

Figure 4. Sample color transformation results.  
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Source : (Research results, 2024) 

Figure 5. Sample channel color in grayscale. 
 
In Figure 4. each color model shows 

differences in highlighting important information. 
In gray, it provides a contrast between the cancer 
and the mucosa. After the image is color 
transformed, then contrast enhancement is 
performed using CLAHE to each channel and 
IAGCWD to Y channel for YCbCr, R channel for RGB, 
H channel for HSV, and L* for LAB. The sample result 
of this proses using colon polyp image presented in 
Figure 6.  

 

 
Source : (Research results, 2024) 

Figure 6. Sample contrast enhancement. 
 

B. Classification Model without Enhancement 
Results. 

In this experiment, we tested the model 
performance using difference channel in color 
space, namely Red, Green, Blue, Hue, Saturation, 
Value, L*, a*, b*, Y, Cb, and Cr channel. The results 
experimented on the DCMH Dataset are shown in 
Table 1. 

Table 1. Results of different channel on DCMH 
Color Accuracy F1-score MCC 
Red 0.7052 0.7079 0.5157 
Green 0.7719 0.7734 0.6335 
Blue 0.7824 0.7822 0.6469 
Hue 0.6736 0.6886 0.5020 
Saturation 0.7508 0.7534 0.6058 
Value 0.7824 0.7693 0.6205 
L* 0.7473 0.7335 0.6017 
a* 0.6947 0.6803 0.5111 
b* 0.6912 0.7034 0.5077 
Y 0.8140 0.8149 0.6972 
Cb 0.6421 0.6286 0.4120 
Cr 0.6280 0.6119 0.4115 

Source : (Research Results, 2024) 
 
As show on Table 1, the Red channel 

produced the best model performance compared to 
the Blue and Green channels, with high accuracy 
and MCC score. Accuracy shows how many correct 
predictions from all test data while MCC shows the 
model performance in correct and incorrect 
predictions on all classes independent of the class 
distribution. In the HSV color model, the Value 
channel performed best, achieving the same 
accuracy as the Blue channel, but worse in 
recognizing the same three classes according MCC 
score. The L* channel in the CIELAB color space 
achieved the highest performance compared to the 
a* and b* channels but was lower than each channel 
in RGB and HSV color models.  

The Y channel showed the highest 
performance of all channels tested, with high 
accuracy and an F1 score above 80%, this is because 
Y information highlights important information and 
makes it easier for machines to learn. However, 
according to the MCC metrics, the overall model 
failed to adequately detect all three classes, often 
struggling to identify the Cancer class. This problem 
may be due to the cancer polyp class, which has the 
smallest number of cases in comparison to the 
normal colon and colon polyp classes. After 
compare model results in different channel then, we 
compare the performance of EfficientNetV2S model 
on images with RGB, Grayscale, HSV, CIELAB, and 
YCbCr color spaces. The experiments were 
conducted on DCMH and KVASIR datasets, which 
are shown in Table 2.   

Table 2. Model results with different color space 
Dataset Color Accuracy F1-score MCC 
DCMH RGB 0.7770 0.7778 0.6292 
 Grayscale 0.6858 0.6477 0.5148 
 HSV 0.6689 0.6523 0.4826 
 CIELAB 0.6689 0.6720 0.4831 
 YCbCr 0.7466 0.7507 0.6088 
KVASIR RGB 0.7775 0.7326 0.7565 
 Grayscale 0.5150 0.4485 0.4603 
 HSV 0.5575 0.4416 0.5263 
 CIELAB 0.7075 0.6735 0.6746 
 YCbCr 0.6675 0.6326 0.6329 

Source : (Research Results, 2024) 
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In Table 2, the test using the DCMH dataset 
shows that the RGB color space has the best results, 
and the closest value is the YCbCr color space. YCbCr 
performs poorly on the DCMH dataset but performs 
well on the KVASIR dataset. Same in DCMH, RGB 
color space give the best result compared to 
Grayscale, HSV, CIELAB, and YCbCr. It is interesting 
that HSV shows low performance compared to the 
other five models. This is probably because more 
information is highlighted and the model 
experiences overlearning. 

The decrease in MCC results in DCMH is 
possible because the model fails to recognize one of 
the three classes. In addition, the unbalanced 
amount of data makes a difference in MCC weighting 
which results in MCC values smaller than accuracy. 
This decrease occurs in the HSV and CIELAB color 
spaces on the DCMH dataset with MCC values below 
0.5.  

 
C. Classification Model with Contrast 
Enhancement 

After experimenting with the color space, we 
continue to experiment the impact of using contrast 
enhancement techniques. Table 3 shows the 
performance results of the EfficientNetV2S model 
with images enhanced using CLAHE, and Table 4 
presents the results using IAGCWD. 

 
Table 3. Model results with CLAHE Enhancement 

Dataset Color Accuracy F1-score MCC 
DCMH RGB 0.7929 0.7977 0.6768 
 Grayscale 0.7438 0.7233 0.5654 
 HSV 0.6701 0.6727 0.4721 
 CIELAB 0.7754 0.7704 0.6253 
 YCbCr 0.7649 0.7614 0.6282 
KVASIR RGB 0.7575 0.7326 0.7565 
 Grayscale 0.4825 0.4263 0.4266 
 HSV 0.5875 0.5071 0.5497 
 CIELAB 0.6275 0.6105 0.5985 
 YCbCr 0.6900 0.6672 0.6566 

Source : (Research Results, 2024) 
 

The test results using contrast enhancement 
techniques, specifically CLAHE in Table 3 and 
IAGCWD in Table 4, indicate that the model's ability 
to recognize the disease class declines compared to 
without contrast enhancement. This is evidenced by 
the lower MCC values, all below 60%. However, the 
RGB color space with CLAHE enhancement yields 
better results, achieving 79% accuracy and 67% 
MCC on the DCMH dataset, and 75% accuracy and 
75% MCC on the KVASIR dataset. Contrast 
enhancement using IAGCWD in Table 4 shows that 
Grayscale and HSV are the best performers with 
Accuracy 75%, F1-score 74%, MCC 60% for DCMH 
and Accuracy 73%, F1-score 69%, MCC 70% for 
IAGCWD. 
 

Table 4. Model results with IAGCWD Enhancement 
Dataset Color Accuracy F1-score MCC 
DCMH RGB 0.7473 0.7403 0.5740 
 Grayscale 0.7543 0.7495 0.6047 
 HSV 0.6771 0.6808 0.4993 
 CIELAB 0.7087 0.7039 0.5260 
 YCbCr 0.6807 0.6616 0.4799 
KVASIR RGB 0.6675 0.5898 0.6506 
 Grayscale 0.5175 0.4473 0.4693 
 HSV 0.7375 0.6922 0.7068 
 CIELAB 0.4600 0.3733 0.3962 
 YCbCr 0.6375 0.6375 0.5988 

Source : (Research Results, 2024) 
 
RGB performs well, with the highest accuracy 

is 79%. CLAHE improves the model on DCMH, 
increasing the MCC metric from 48% to 63% for 
CIELAB and from 51% to 57% for grayscale. IAGWD 
also increases the MCC metric in grayscale color 
space from 51% to 60%. 

In the DCMH dataset, the cancer class is 
difficult to detect by the model, this is possible due 
to the similarity between the colon polyps class and 
the cancer polyps class, both in terms of color and 
texture. In addition to the small amount of data, the 
cancer class has a low-quality image such as 
blurred, even though it has apply image 
enhancement it still does not highlight important 
information on the cancer polyps class.  

The IAGCWD algorithm enhances images that 
are too dark or too bright. With the existing 
threshold, only 30% of the image in DCMH dataset 
is enhanced. The problem with this threshold is that 
it doesn't consider the presence of a black 
background. This makes it inaccurate in recognizing 
illumination. In Kvasir, the most difficult is to detect 
between the dyed lifted polyps class with dyed 
resection margins class and the normal pylorus 
class with esophagitis class. This is due to the 
similar characteristics of the two classes. 

 
CONCLUSION 

 
 This study demonstrates that combining 

color transformation and contrast enhancement can 
improves accuracy and generalization in GI disease 
detection using deep learning. Among the different 
color channels, the Y channel achieved the highest 
performance, with an accuracy of 81%, F1-score of 
81%, and MCC of 70%. CLAHE enhancement 
outperformed IAGCWD by making the model more 
effective at detection; however, the IAGCWD 
method was limited by a threshold value that 
reduced the number of usable images. For colorful 
images, combining HSV with IAGCWD improved 
classification results, whereas for grayscale images, 
CLAHE proved to be the more effective 
enhancement method. 
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In future work, we plan to further investigate 
the influence of individual color channels and 
employ vision transformers for classifying 
endoscopic diseases. Additionally, future 
researchers could replicate this experiment using 
expert diagnoses from medical professionals rather 
than relying solely on machine models. There is also 
potential to develop reinforcement learning 
approaches to predict the presence of diseases 
more accurately. 
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