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Abstract— The increasing vehicle density in urban areas has made parking space availability a significant 
challenge. With technological advancements, efficient smart parking systems based on object detection have 
become essential. This study evaluates the performance of YOLO versions 3 to 11 in detecting vacant parking 
spaces in urban environments, focusing on real-time processing, high accuracy with limited datasets, and 
adaptability to varying conditions. Using 4,215 annotated images and two test videos, YOLOv7 achieved the 
highest overall accuracy of 99.57% with an average FPS of 30.79, making it the most effective model for smart 
parking applications. YOLOv8 and YOLOv11 followed closely, with accuracies of  98.51% and 98.72%, 
respectively, and average FPS rates of 32.31 and 31.99, balancing precision and speed, which are ideal for real-
time applications. Meanwhile, YOLOv5 stood out for its exceptional processing speed of 33.92 FPS. These results 
highlight YOLO's potential to revolutionize smart parking systems by significantly enhancing both detection 
precision and operational efficiency.    

 
Keywords: YOLO, car detection, parking spaces, smart parking, urban mobility. 

 
Intisari— Meningkatnya kepadatan kendaraan di daerah perkotaan telah menjadikan ketersediaan ruang 
parkir sebagai tantangan yang signifikan. Dengan kemajuan teknologi, sistem parkir cerdas yang efisien 
berbasis deteksi objek menjadi sangat penting. Penelitian ini mengevaluasi performa YOLO versi 3 hingga 11 
dalam mendeteksi ruang parkir kosong di lingkungan perkotaan, dengan fokus pada pemrosesan waktu nyata, 
akurasi tinggi meskipun menggunakan dataset terbatas, serta kemampuan adaptasi terhadap berbagai 
kondisi. Menggunakan 4.215 gambar yang telah diberi anotasi dan dua video uji, YOLOv7 mencapai akurasi 
keseluruhan tertinggi sebesar 99,57% dengan FPS rata-rata 30,79, menjadikannya model yang paling efektif 
untuk aplikasi parkir cerdas. YOLOv8 dan YOLOv11 mengikuti dengan akurasi masing-masing sebesar 98,51% 
dan 98,72%, serta FPS rata-rata 32,31 dan 31,99, menyeimbangkan presisi dan kecepatan yang ideal untuk 
aplikasi real-time. Sementara itu, YOLOv5 menonjol dengan kecepatan pemrosesan yang luar biasa sebesar 
33,92 FPS. Hasil ini menunjukkan potensi YOLO untuk merevolusi sistem parkir cerdas dengan secara 
signifikan meningkatkan presisi deteksi dan efisiensi operasional. 
 
Kata Kunci: YOLO, deteksi mobil, tempat parkir, parkir cerdas, mobilitas perkotaan. 
 

INTRODUCTION 
      . 

Parking has become a critical issue in urban 
areas due to the continuous rise in car ownership 
[1]. This trend poses new challenges for urban space 
management, particularly in terms of parking 
availability [2]. As the number of vehicles increases, 

there is an urgent need for more efficient and 
innovative parking management systems [3]. With 
the advancement of remote monitoring technology, 
including smart parking systems, it has become 
increasingly important to provide users with 
efficient and practical ways to locate available 
parking spaces[4]. Thus, implementing sensor-
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based smart parking systems has emerged as a 
viable solution[5]. However, the use of sensors 
currently incurs high costs, energy consumption, 
and maintenance, especially when implemented on 
a large scale [6]. While sensor-based solutions, such 
as infrared or ultrasonic detectors, offer a partial 
solution, they are prone to inaccuracies, particularly 
when objects other than cars pass through the 
sensors [7]. Additionally, traditional image 
processing methods, while alternative solutions, 
still suffer from low accuracy, unreliability in 
scenarios involving complex object colors, and 
limited flexibility due to their dependence on 
manually set parameters and thresholds [8]. 

Given the limitations of traditional methods, 
deep learning-based computer vision approaches 
have emerged as a promising alternative. This 
technology offers fast and accurate detection 
capabilities, making it highly suitable for 
implementation using existing CCTV systems in 
parking areas, thereby simplifying the monitoring 
process [9]. Furthermore, deep learning enables 
automatic feature extraction, learns complex 
patterns, and adapts seamlessly to diverse datasets. 
Therefore, object detection for vehicle identification 
in parking areas has become an essential 
component of modern smart parking systems. 
Previous studies on vehicle parking detection have 
utilized various approaches. For instance, a study 
employing the Deep Extreme Learning Machine 
(DELM) algorithm trained on a dataset of 21,431 
samples achieved a training accuracy of 94.37% 
[10]. Other studies reported 98% accuracy in 
vehicle classification using a ResNet-50-based deep 
learning model trained using CNN-based models 
with a dataset of 10,440 images across 13 vehicle 
classes [11]. Another study achieved an accuracy of 
95% utilizing the PKLot dataset, consisting of more 
than 12,000 images with 3 cameras, to develop a 
multi-angle parking detection system using a 
modified MobileNetV3 Model [12]. Additionally, the 
application of You Only Look Once version 3 
(YOLOv3) with a custom dataset of 4,900 images 
demonstrated an accuracy of 94.7% in detecting 
vacant parking spaces [13].  

Several studies have identified YOLO as a 
strong candidate for smart parking systems due to 
its speed and accuracy. While YOLO has shown 
significant promise in object detection, there is 
limited research comparing the performance of 
different YOLO versions for parking space detection. 
However, with the continuous development of 
YOLO across multiple versions, there remains a lack 
of clarity on how technological changes influence 
detection performance in parking slot scenarios. 
This study aims to fill this gap by systematically 

evaluating the performance of YOLO versions 3 
through 11 in detecting vacant parking spots from 
different perspectives. By analyzing accuracy and 
processing speed across various scenarios, the 
study provides a comprehensive assessment of 
YOLO’s evolution in this specific application. 

Among object detection approaches, YOLO 
achieves high accuracy even with smaller datasets, 
compared to other methods such as CNN, LSTM, 
AlexNet, and VGG-6 [14]. The YOLO architecture 
processes images in a single forward pass through 
the neural network, contributing to its speed and 
real-time capability [15]. YOLO can detect objects at 
speeds of up to 100 FPS and has a smaller file 
size[16]. With a limited training dataset, this 
method is effective, performing well in detection 
speed, making it a more efficient choice for real-
time applications [17]. This efficiency is particularly 
valuable in scenarios where large datasets are 
unavailable or when rapid model development is 
required [18]. Specifically, YOLOv3 to YOLOv11 are 
equipped with Multi-Scale Object Detection 
capabilities, enabling the detection of objects of 
different sizes within a single inference process. 
Additionally, YOLO has efficient reasoning 
capabilities for various types of direct input, 
including single images, multiple images, videos, 
and external camera input[17].  

The primary research gap addressed by this 
study lies in the limited comparative analyses of 
different YOLO versions for parking slot detection. 
While prior studies have demonstrated YOLO’s 
effectiveness for general object detection [19], [20], 
[21], [22], few have systematically examined its 
version-specific performance in real-world parking 
environments. The unpredictability of how different 
YOLO architectures perform under varying 
conditions, such as long-range and close-range 
perspectives, necessitates a structured 
investigation. This study aims to explore the 
strengths and weaknesses of each YOLO version and 
provides empirical evidence on their suitability for 
parking slot detection, considering factors such as 
detection accuracy and real-time processing 
capabilities. The findings of this study contribute to 
the advancement of computer vision technologies 
by offering a structured evaluation of model 
selection strategies for smart parking applications. 
By systematically analyzing the impact of different 
YOLO architectures on parking slot detection, this 
research provides a foundation for optimizing 
model deployment based on specific 
implementation requirements. These insights are 
expected to benefit both the research community 
and industry practitioners by facilitating informed 
decision-making regarding the trade-offs between 
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detection accuracy, computational efficiency, and 
real-time applicability. Furthermore, the study 
serves as a reference for future advancements in 
intelligent parking systems, supporting the 
development of more efficient and scalable 
solutions in urban environments.  

 
 

MATERIALS AND METHODS 
 

This study was conducted in several stages, 
as illustrated in Figure 1. 

 
Source : (Research Results, 2024) 

Figure 1. Research stages 
 

The process illustrated in Figure 1 began 
with problem identification and a literature review 
to understand parking issues, existing detection 
methods, and YOLO-based approaches. A 
comprehensive dataset of vehicle images was then 
prepared to ensure diverse and representative 
training data, simulating real-world parking 
conditions for model training and evaluation. YOLO 
versions 3 to 11 were trained using identical 
hyperparameters to ensure a fair performance 
comparison. After training, all YOLO versions were 
trained with identical hyperparameters to ensure a 
consistent performance comparison. The detection 
results were analyzed based on accuracy and 
frames per second (FPS) to assess each model's 
efficiency in identifying vacant parking spaces. 
Finally, the performance of different YOLO versions 
was compared to determine the most effective 
model for real-time parking space detection. 

 
YOLO Architecture Advancements 

YOLO, or You Only Look Once, is a 
groundbreaking object detection framework 

introduced by Redmon et al. in 2016, which 
revolutionized the field with its single-stage 
architecture, enabling real-time performance while 
maintaining high accuracy. Unlike traditional multi-
stage detectors that separate region proposal and 
classification, YOLO reframes object detection as a 

single regression problem, predicting bounding 
boxes and class probabilities directly from full 
images in one way. Over time, YOLO's mechanism 
has evolved significantly, driven by the need to 
balance computational efficiency, accuracy, and 
adaptability to diverse datasets.  

YOLO's evolution from YOLOv3 to YOLOv11 
reflects significant advancements in object 
detection mechanisms, with each version 
introducing architectural and methodological 
innovations to improve performance and efficiency. 
YOLOv3, released in 2018, introduced key concepts 
such as the Spatial Pyramid Pooling (SPP) block and 
the Darknet-53 backbone, which allowed the model 
to extract richer features for better performance in 
detecting objects at multiple scales [23]. YOLOv4, 
released in 2020, further improved the model by 
adding the Mish activation function and using the 
CSPDarknet-53 backbone, which provided better 
feature reuse [24], [25]. That same year, YOLOv5 
was introduced, which adopted anchor-free 
detection and the SWISH activation function, along 
with PANet, which optimized the feature 
aggregation process for more accurate detections 
[26], [27]. 

In 2022, the development of YOLO models 
took a major leap forward with YOLOv6 and 
YOLOv7. YOLOv6 introduced self-attention 
mechanisms and continued the trend of anchor-free 
object detection, allowing for more flexible and 
efficient object localization [18][28]. YOLOv7, on 
the other hand, incorporated transformers and the 
Extended-Efficient Layer Aggregation Network (E-
ELAN) reparameterization technique, further 
boosting the model's ability to handle complex 
detection tasks by improving the flow of 
information across the network [29], [30]. In 2023, 
YOLOv8 continued this trend by introducing 
Generative Adversarial Networks (GANs), which 
improved the quality of detections while 
maintaining its anchor-free detection approach 
[31], [32]. 

The advancements continued in 2024 with 
YOLOv9, YOLOv10, and YOLOv11. YOLOv9 brought 
the Proportional Gradient Inference (PGI) and 
Generalized Efficient Layer Aggregation Network  
(GELAN) techniques, which improved model 
efficiency and robustness during inference [33], 
[34]. YOLOv10 introduced a novel approach to Non-
Maximum Suppression (NMS)-free training by using 
consistent dual assignments, which help in making 
the model faster [35], [36]. Finally, YOLOv11 
introduces new components such as the Spatial 
Pyramid Pooling Fast (SPFF) and the Cross Stage 
Partial with Spatial Attention (C2PSA) block, which 
further enhances the model's ability to capture 
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Evaluation and Conclusion
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complex patterns and improve its computational 
efficiency[15], [37]. These ongoing advancements 
reflect the continuous evolution of YOLO as one of 
the most powerful frameworks in the field of object 
detection, as summarized in the iterations of YOLO 
presented in Table 1. 

 
Table 1. YOLO: Evolution of models 

Release Year Contribution Framew
ork 

YOLOv3 2018 SPP Block, Darknet-53 
Backbone 

Darknet 

YOLOv4 2020 Mish activation, 
CSPDarknet-53 backbone 

Darknet 

YOLOv5 2020 Anchor-free detection, 
SWISH activation, PANet 

Pytorch 

YOLOv6 2022 Self-attention, anchor-free 
OD 

Pytorch 

YOLOv7 2022 Transformers, E-ELAN 
reparameterisation 

Pytorch 

YOLOv8 2023 GANs, anchor-free 
detection 

 

YOLOv9 2024 PGI and GELAN Pytorch 
YOLOv10 2024 Consistent dual 

assignments for 
NMS-free training 

Pytorch 

YOLOv11 2024 Spatial Pyramid Pooling 
Fast (SPFF), C2PSA Block 
(Cross Stage Partial with 
Spatial Attention): 

Pytorch 

Source : (Research Results, 2024) 
 

Table 1 highlights the contributions, 
frameworks, release years, and features of each 
YOLO version. This comparison underscores the 
architectural modifications introduced in each 
iteration, which result in variations in accuracy and 
efficiency. These differences are particularly 
significant in the context of this study, which focuses 
on detecting vacant parking spaces. Furthermore, 
the selection of YOLOv3 to YOLOv11 in this study is 
based on the availability of these versions as open-
source models on the official documentation site 
https://docs.ultralytics.com/ [38]. Additionally, the 
exclusion of YOLOv1 and YOLOv2 is due to the 
absence of Multi-Scale Object Detection in YOLOv1 
and the limited capabilities of Multi-Scale Object 
Detection in YOLOv2 [18]. These features are 
critical for this study, which requires real-time 
detection that is effective in both close and distant 
conditions. 

 
System Design 

 
The workflow of the parking availability 

detection system design used in this study is 
presented in Figure 2. 

 
Source : (Research Results, 2024) 

Figure 2. Design system workflow 
 
Figure 2 illustrates the various steps involved 

in detecting parking space availability using a 
camera-based system. 

 
1. Library Import 

At this stage, several libraries are imported to 
facilitate the detection process. The Open-Source 
Computer Vision (OpenCV) library is utilized to 
process images and videos [39], while the Pickle 
library enables the storage of predefined parking 
slot data [40]. Additionally, the Torch library is 
employed to access the model via CUDA for GPU-

based computations [41]. 
 
2. Input Image Parking Slot 

At this stage, screenshots from the parking lot 
video footage, representing the parking area 
conditions, will be included. The images are 
captured with the same resolution as the video and 
saved in PNG file format, with a total of two images. 
 
3. Labeling images and saved coordinates Parking 

Slots 
In this stage, we manually annotated each 

parking slot using OpenCV, and the coordinates 
were stored in a Pickle file for future use in the 
detection process, as illustrated in Figure 3. 
 

https://docs.ultralytics.com/
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Source : (Research Results, 2024) 
Figure 3. Illustration of parking coordinate storage 
 
Figure 3 illustrates the manual labeling process, 
where parking slots are delineated with dimensions 
of 15 x 30 pixels. The coordinates of these labeled 
parking slots are stored for subsequent use in the 
detection process. Steps 2 and 3 are performed only 
when necessary; otherwise, the process proceeds 
directly to Step 4. 
 
4. Input Video 

In this stage, the video data used to test the 
YOLO versions is introduced. The input consists of 
two video clips, one lasting 45 seconds and the other 
60 seconds. Each parking scenario is captured in 
two separate videos, representing close-range and 
long-range perspectives, both saved in .mp4 format. 
 
5. Car detection process  

In this stage, YOLO detects cars captured in the 
input video. The process begins by feeding the video 
into the model, which then processes each frame 
video. YOLO utilizes a backbone network to extract 
fundamental features from the image, such as 
shapes and textures, which are crucial for object 
detection. These features are subsequently 
processed in the neck through a feature pyramid 
network to detect objects across multiple scales. In 
the final stage, YOLO's head generates predictions in 
the form of bounding boxes and confidence scores 
for each detected car, as shown in Figure 4. 

 
Source : (Research Results, 2024) 

Figure 4. Illustration of car detection results 
 
By dividing the image into a grid, as depicted in 
Figure 4, YOLO can directly predict the location and 
confidence level of each car object in every frame. 
This method accurately produces bounding boxes to 
mark the position of each detected car. 
 

6. Vacant detection and Output parking 
availability status 
In this stage, vehicle detection results from 

YOLO are integrated with pre-labeled parking slot 
data, which were labeled using OpenCV and stored 
with Pickle. The integration results are visualized in 
Figure 5. 

 
Source : (Research Results, 2024) 

Figure 5. Illustration of Detecting an Empty Car 
Parking Space 

 
As shown in Figure 5, the parking space detection 
system identifies the status of parking slots. A 
parking slot is marked as occupied if a vehicle is 
detected within the pre-labeled area by YOLO, and 
it is highlighted in red. Conversely, if no vehicle is 
detected by YOLO within the labeled area, the space 
is considered vacant and displayed in green. This 
output effectively distinguishes between occupied 
and available parking spaces. Additionally, this 
stage includes calculating the video processing 
speed during YOLO model execution, contributing 
to real-time responsiveness. 

 
Dataset 

This study utilizes a dataset comprising 
4,215 images of private cars captured under various 
conditions, including differences in color, angle, 
type, and shape. The dataset is designed to replicate 
real-world parking scenarios, ensuring the model's 
robustness across diverse environments. The 
variations in the dataset include different car colors 
and types to encompass all possible vehicle 
variations entering the parking area, varying 
distances and angles to ensure accurate detection 
from both close and far perspectives, enabling the 
model to function effectively with different CCTV 
angles, and different lighting conditions (sunny and 
cloudy) to enhance the model's adaptability to 
changing weather conditions. These conditions 
were selected because they are ideal for parking 
situations, particularly during working hours from 
morning to afternoon. The dataset is systematically 
partitioned into three subsets: a training set 
comprising 3,041 images, a validation set with 761 
images, and a test set containing 413 images. Data 
collection and annotation were facilitated by 
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Roboflow, a platform designed to streamline the 
labeling and management of datasets [42]. Each car 
object in the images was precisely annotated with 
bounding boxes, serving as critical reference points 
for the model to identify regions containing car 
objects [42]. For model training, the dataset is 
configured with a batch size of 25, enabling the 
simultaneous processing of multiple images to 
expedite the learning process. The training is 
conducted over 130 epochs. These settings are 
tailored to produce a robust .pt model for YOLOv5-
YOLOv11 (Pytorch) and .weight for YOLOv3-
YOLOv4 (Darknet), optimized for vehicle detection 
within the system. Some examples of the dataset are 
illustrated in Figure 6. 

 

 

 
Source : (Research Results, 2024) 

Figure 6. Collection of research datasets 
 
Experimental Setup 

The experimental setup for this study 
integrates both software and hardware components 
to evaluate the performance of various YOLO 
versions in detecting the availability of empty 
parking spaces. The configuration includes the 
following: 

 
1. ASUS TUF GAMING A15 Laptop with the 

following specifications: 
a. Processor: AMD Ryzen 7 6800H with 

Radeon Graphics 3.20 GHz 
b. Graphics: NVIDIA® GeForce RTX™ 3060 

Laptop GPU, 1752MHz* at 140W 
(1702MHz Boost Clock+50MHz 
OC,115W+25W Dynamic Boost) 

c. RAM: 16 GB 
d. Storage: 512 GB 
e. OS: Windows 10 Home 
 

2. Camera CCTV Hikvision 1080P DS-2CD1021-I 
2MP 

3. 15-meter long USB 2.0 Male to Female cable 
4. Software used: 

a. Visual Studio Code 
b. Google Colab Colaboratory 
c. Python 3.11.9 
d. OpenCV 4.10.0 
e. Torch 2.1.0 
f. Pickle Library 

g. CUDA 11.8 

The study involved testing each YOLO model 
on the ASUS TUF GAMING A15, utilizing its GPU, to 
analyze performance using two parking lot 
surveillance videos. These videos represented 
different camera angles, specifically near and far 
perspectives, to assess the ability of each YOLO 
version to detect vehicles at varying distances: 
1. Video 1: A 60-second simulation video 

providing an overview of a parking area with 8 
parking slots. The footage was recorded using 
a distant camera positioned at a height of 0.5 
meters and less than 15 meters away from the 
parking site, offering a broad perspective of the 
area. 

2. Video 2: A 45-second video presenting a close-
up view of the parking area, covering 5 parking 
slots. This footage was captured from a 
distance of less than 4 meters and a height of 
0.5 meters, providing a detailed perspective of 
individual parking spaces. 

The video data utilized in this study was 
captured using a Hikvision 1080P CCTV camera 
designed for outdoor use with a color video 
composition. To optimize computational efficiency, 
the videos were resized to a resolution of 480p. Two 
different parking lot conditions were recorded for 
this study. Video 1 was captured from a camera 
positioned approximately 15 meters away from the 
parking area, with a duration of 60 seconds. Video 2 
was recorded at a closer range, from a camera 
placed less than 4 meters away, with a duration of 
45 seconds. Both videos were saved in the (.mp4) 
format for consistency in processing. Illustrations of 
the video capture setup and camera distance are 
presented in Figures 7, 8, 9, and 10. 

 
Source : (Research Results, 2024) 

Figure 7. Illustration of video 1 capture 
 

 
Source : (Research Results, 2024) 

Figure 8. Illustration of video 1 camera distance 
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Source : (Research Results, 2024) 

Figure 9. Illustration of video 2 capture 

 

 
Source : (Research Results, 2024) 

Figure 10. Illustration of video 2 camera distance 

 
In this study, the videos presented in Figures 

7, 8, 9, and 10 were utilized to evaluate parking 
availability detection. The analysis was conducted 
on two distinct video recordings, each representing 
unique camera perspectives and parking slot 
configurations. Both videos capture diverse 
attributes of parked vehicles, including variations in 
color, brand, and condition, providing a 
comprehensive dataset for detection analysis.  

 
Performance Metric 

To evaluate the performance of each YOLO 
version in this study, two primary metrics were 
utilized: accuracy and efficiency, with the latter 
assessed through the detection speed measured in 
Frames Per Second (FPS). Accuracy is the key 
performance metric, quantifying the model's ability 
to detect parking slot availability. This metric is 
calculated based on the proportions of True Positive 
(TP), True Negative (TN), False Positive (FP), and 
False Negative (FN), as detailed in Table 2. 

 
Table 2. Measurement Scenario 

Measurement Quantity 

True Positive (TP): 
A parking slot is correctly 
detected as available. 

True Negative (TN): 
A parking slot is correctly 
detected as occupied. 

False Positive (FP): 
A parking slot is incorrectly 
detected as available, but it is 
actually occupied. 

False Negative (FN): 
A parking slot is incorrectly 
detected as occupied, but it is 
actually available. 

Source : (Research Results, 2024) 

The accuracy metric provides a 
comprehensive understanding of YOLO’s 
performance in detecting parking slot availability 
by considering both correct and incorrect 
detections. Accuracy is calculated using the formula 
shown in Equation (1): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 
In addition to accuracy, the detection speed 

of each YOLO version is assessed using the FPS 
metric. FPS is calculated using Equation (2): 

 

𝐹𝑃𝑆 =
𝑁

𝑇
 (2) 

 
where: 
N is the total number of frames processed in a 
detection session. 
T is the total time required to process N frames, 
measured in seconds 

 
The selection of Accuracy and FPS as the 

primary metrics reflects their relevance in 
evaluating the detection system's performance in 
real-world, real-time environments. Accuracy 
assesses the model's precision in classifying parking 
slots as available or occupied, which is crucial for 
the system’s reliability. A higher accuracy indicates 
the model's capability to minimize false positives 
and false negatives, thereby enhancing user trust in 
the parking availability information provided [43]. 
On the other hand, FPS measures the model's 
processing speed, a critical factor for real-time 
applications [44]. High FPS ensures the system can 
promptly respond to changes in parking slot 
occupancy, offering users up-to-date information 
and facilitating efficient decision-making in 
dynamic parking management scenarios. The 
combination of these metrics provides a holistic 
evaluation of the model's performance, making it 
well-suited for deployment in practical 
environments requiring both accuracy and 
responsiveness. 

 
RESULTS AND DISCUSSION 

  
Despite this adjustment, the study achieved 

satisfactory detection results. The study videos 
were recorded during the daytime in an outdoor 
setting to represent real-world parking conditions 
during busy working hours, with shaded and sunny 
lighting conditions.  
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Video Detection Results 
The detection results are illustrated in 

Figures 11, 12, 13, and 14, highlighting the system's 
performance under varying conditions. 

 
Source : (Research Results, 2024) 

Figure 11. Input Video 1 
 

 
Source : (Research Results, 2024) 

Figure 12. Output Detection Video 1 
 

 
Source : (Research Results, 2024) 

Figure 13. Input Video 2 
 

 
Source : (Research Results, 2024) 

Figure 14. Output Detection Video 2 
 

Figures 11, 12, 13, and 14 illustrate the visual 
input and output of Video 1 and Video 2, showcasing 
the scenes before and after detection using the 
YOLO method. The detection process successfully 
identifies vehicles entering the parking area, 
marked by bounding boxes that indicate objects 
classified as cars. Each bounding box is 
accompanied by the class label "0," representing 
cars, a confidence score, and the parking slot's 
availability status. The parking slot's status, 

represented by a colored indicator (pickle), changes 
dynamically: it turns red when a bounding box 
corresponding to a detected car overlaps with a 
parking slot, indicating occupancy. Conversely, it 
remains green when no bounding box is detected 
within the parking slot, signifying availability.  

In Video 1, which captures the parking area 
from a long-range perspective, the system 
successfully detects eight parking slots. Conversely, 
in Video 2, recorded from a closer range, the system 
identifies five parking slots. While certain versions 
of YOLO are capable of detecting vehicles positioned 
behind the target area, this study specifically 
focuses on the five front parking slots that are 
clearly visible to the camera and unobstructed by 
significant obstacles. Additionally, the system 
calculates and displays the FPS on the top-left 
corner of the video in real-time, providing an 
ongoing measure of detection speed throughout the 
analysis. This FPS value is instrumental in 
evaluating the performance of each YOLO version 
during the detection process. 
 
Accuracy Result of Video 1 and Video 2 

The detection results from Videos 1 and 2, 
processed using different YOLO versions, were 
stored and subjected to slicing at a rate of two 
frames per second. This process yielded a total of 
120 frames for Video 1 and 90 frames for Video 2.         
We calculated the accuracy of each YOLO version 
using the frames processed during detection, which 
were calculated based on these frames. The 
accuracy results for Video 1 across all YOLO 
versions are presented in Figure 15. 

 
Source : (Research Results, 2024) 

Figure 15. YOLO accuracy results on Video 1 and 
Video 2 

 
Figure 15 illustrates the detection accuracy 

of various YOLO versions on Video 1, representing a 
distant camera's scenario detecting vacant parking 
spaces. Several versions of YOLO, including YOLOv3, 
YOLOv5, YOLOv7, YOLOv8, YOLOv9, YOLOv10, and 
YOLOv11, demonstrate high accuracy, exceeding 
95%, with YOLOv9 achieving the highest accuracy 
of 99.58%. Notably, YOLOv7 also performs 
exceptionally well, reaching 99.48%, followed 
closely by YOLOv8 at 98.54% and YOLOv11 at 
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98.44%. Although YOLOv4 achieves a lower 
accuracy of 90.94% compared to other versions, it 
still maintains reliable performance. On the other 
hand, YOLOv6 shows significantly lower accuracy at 
77.43%, making it the least effective among the 
evaluated versions in this context. The results 
indicate that while most YOLO versions are highly 
effective in detecting vacant parking spaces from a 
distance, certain versions like YOLOv6 may require 
further optimization or adjustments to enhance 
their performance in this specific use case.  

Also in Figure 15 illustrates the accuracy 
results of various YOLO versions on Video 2, 
captured at a distance of less than 4 meters, 
showcasing performance variations across different 
versions. YOLOv7 achieved the highest accuracy at 
99.78%, followed by YOLOv11 with an accuracy of 
99.33%. Other versions, such as YOLOv3, YOLOv4, 
and YOLOv8, also demonstrated strong 
performance with accuracies of 98.89%, 98.44%, 
and 98.44%, respectively. Meanwhile, YOLOv6 
delivered a solid accuracy of 96.89%, followed by 
YOLOv9 with 95.33% and YOLOv5 with 94.44%. 
However, YOLOv10 exhibited the lowest accuracy 
on Video 2, at 87.78%, indicating that this version 
may be less optimized for close-range detection 
scenarios. These findings highlight that most YOLO 
versions perform exceptionally well in detecting 
parking availability at close range, with YOLOv7 and 
YOLOv11 leading in performance. 

Accuracy Comparison Results  
To evaluate the performance of each YOLO 

version in detecting parking availability, a summary 
comparison of accuracy results is presented. The 
comparison includes detection accuracy for Video 1 
and Video 2, as shown in Figure 16. 

 

 
Source : (Research Results, 2024) 

Figure 16. Summary YOLO accuracy results 
 

Figure 16 shows the comparison of YOLO 
variants in Video 1, representing long-distance 
detection, and Video 2, representing short-distance 
detection, reveals distinct performance patterns for 
each model. YOLOv3 demonstrates balanced 

accuracy between both scenarios, achieving 97.19% 
for Video 1 and 98.89% for Video 2, highlighting its 
robustness in handling varying object distances. 
Similarly, YOLOv4 shows moderate performance, 
with 90.94% accuracy for Video 1 and a slightly 
improved 98.44% for Video 2, indicating its 
stronger capability in short-distance detection. 
YOLOv5 performs consistently well, maintaining 
high accuracy for both scenarios, though it shows a 
slight drop in Video 2 (94.44%) compared to Video 
1 (96.67%), suggesting minor sensitivity to object 
proximity. Interestingly, YOLOv6 exhibits a 
significant improvement in short-distance 
detection, achieving 96.89% accuracy for Video 2 
compared to 77.43% for Video 1, indicating that it is 
better optimized for closer object detection. On the 
other hand, YOLOv7 outperforms all other variants, 
achieving the highest accuracy in both scenarios, 
with 99.48% for Video 1 and 99.78% for Video 2, 
showcasing its exceptional adaptability and 
efficiency in detecting objects across varying 
distances. Similarly, YOLOv8 delivers strong and 
consistent results, achieving 98.54% accuracy for 
Video 1 and 98.44% for Video 2, highlighting its 
versatility in diverse detection contexts. YOLOv9 
performs exceptionally well for Video 1, achieving 
the highest accuracy in the long-distance scenario at 
99.58%. However, its performance slightly declines 
in Video 2, with an accuracy of 95.33%, indicating 
potential challenges in short-distance detection. In 
contrast, YOLOv10 shows a notable drop in 
accuracy for Video 2 (87.78%) compared to Video 1 
(97.08%), suggesting its limitations in handling 
short-distance scenarios. Finally, YOLOv11 
demonstrates excellent performance in both 
scenarios, achieving 98.44% accuracy for Video 1 
and 99.33% for Video 2, reflecting its reliability and 
balanced detection capabilities across different 
distances. 

Considering the combined accuracy of Video 
1 and Video 2, YOLOv7 stands out as the most 
effective model, achieving the highest overall 
accuracy of 99.57%. Following closely, YOLOv11 
achieves 98.72%, and YOLOv8 delivers 98.51%, 
both showing exceptional performance and 
adaptability across varying distances. YOLOv3 also 
performs admirably, with a combined accuracy of 
97.73%, demonstrating its robustness despite being 
one of the older variants. YOLOv5 achieves a 
respectable overall accuracy of 95.96%, 
maintaining consistent performance across both 
scenarios. On the other hand, YOLOv4 achieves 
93.33%, indicating reliable but not exceptional 
performance. YOLOv9, despite achieving the highest 
accuracy for Video 1, records a combined accuracy 
of 98.23%, slightly lower than YOLOv7, YOLOv8, 
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and YOLOv11 due to its decline in accuracy for 
Video 2. YOLOv10 shows a combined accuracy of 
94.11%, further indicating its challenges in short-
distance detection. Lastly, YOLOv6 records the 
lowest overall accuracy of 83.62%, reflecting its 
significant performance gap compared to the other 
variants, particularly in long-distance detection. 
This phenomenon can be attributed to several 
factors, including the presence of other objects 
mistakenly detected as vehicles, cars obstructed by 
other objects, or limitations in the specific YOLO 
version's ability to accurately detect objects from a 
distance.  These results highlight the strengths and 
limitations of each YOLO variant, emphasizing that 
while advanced versions generally excel, the choice 
of model should align with the specific 
requirements of the detection context. 

 
FPS Stability Result Video Detection 

Alongside detection accuracy, the FPS 
achieved by each YOLO version varies significantly. 
Figures 17 and 18 illustrate the FPS detection 
performance trends for each YOLO version when 
applied to Video 1 and Video 2. 

 
Source : (Research Results, 2024) 

Figure 17. YOLO FPS results on Video 1 
 

 
Source : (Research Results, 2024) 

Figure 18. YOLO FPS results on Video 2 
 
Based on Figures 17 and 18 overall, YOLOv4 

demonstrates the most stable FPS performance, 
maintaining consistent detection rates despite its 
relatively lower average FPS compared to other 
versions. This suggests that while YOLOv4 may not 
be the fastest model, its stability in frame processing 
could make it suitable for applications where 
consistent performance is prioritized over raw 

speed. Other versions, such as YOLOv3, YOLOv10, 
and YOLOv11, also show stable FPS with relatively 
high averages, indicating their ability to balance 
detection speed with consistency. These versions 
are well-suited for scenarios requiring a 
combination of speed and reliability. In contrast, 
YOLOv6, YOLOv7, and YOLOv9 exhibit more 
fluctuating FPS trends, as reflected in their 
detection graphs. Although these fluctuations are 
not excessively significant, they highlight occasional 
inconsistencies in frame processing, which could 
impact applications demanding highly stable real-
time performance. YOLOv5, which achieves the 
highest overall FPS among all versions, stands out 
for its exceptional speed. However, its detection 
graph reveals occasional instability during certain 
seconds of video playback, indicating variability in 
its processing rates. The summarized FPS results 
are illustrated in Figure 19, providing a comparative 
overview of the stability and speed of each YOLO 
version. 

 
Source : (Research Results, 2024) 

Figure 19. Summary YOLO FPS results 
 

Based on Figure 19, YOLOv5 consistently 
achieves the highest average FPS, with 33.46 for 
Video 1 and 33.92 for Video 2, highlighting its 
superior speed and efficiency in both scenarios. 
Furthermore, YOLOv5 records the highest FPS of 
39.66 in Video 2, underscoring its capability to 
handle rapid processing under optimal conditions. 
YOLOv8 follows closely with an average FPS of 
32.12 for Video 1 and 32.49 for Video 2, reflecting 
its efficient performance in real-time applications. It 
achieves a peak FPS of 36.91 in Video 2, further 
solidifying its status as a high-performing variant. 
Similarly, YOLOv7 and YOLOv10 exhibit strong and 
comparable performance, with YOLOv7 recording 
average FPS values of 30.87 for Video 1 and 30.71 
for Video 2, and YOLOv10 achieving slightly higher 
values of 31.87 and 31.95 for the respective videos. 
Both models show competitive peak FPS values, 
with YOLOv7 reaching 33.26 and YOLOv10 
achieving 33.67 in Video 2. YOLOv11 also 
demonstrates commendable speed, with average 
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FPS values of 31.88 for Video 1 and 32.09 for Video 
2, and a peak FPS of 33.35 in Video 2, making it a 
reliable choice for applications requiring consistent 
frame rates. In contrast, YOLOv9 shows moderate 
performance with average FPS values of 25.66 for 
Video 1 and 28.25 for Video 2, and a peak FPS of 
31.45 in Video 2, indicating room for improvement 
in optimizing its processing speed.  

YOLOv6 exhibits consistent but slightly 
lower performance, with average FPS values of 
26.39 for Video 1 and 26.48 for Video 2, and a peak 
FPS of 29.49 in Video 1, suggesting its suitability for 
applications with moderate speed requirements. 
YOLOv3, while achieving competitive accuracy, has 
relatively modest FPS values of 22.53 for Video 1 
and 22.57 for Video 2, and a peak FPS of 26.72 in 
Video 1, reflecting its older architecture and 
processing limitations. Finally, YOLOv4 records the 
lowest FPS among all variants, with averages of 
19.70 for Video 1 and 19.72 for Video 2, and a peak 
FPS of 20.10 in Video 2. This highlights its limited 
speed capabilities, which may restrict its 
applicability in real-time or high-throughput 
detection tasks.  

YOLOv7 outperforms all other versions, 
including YOLOv8 through YOLOv11, in terms of 
accuracy. This improvement may be attributed to 
the implementation of the E-ELAN (Extended 
Efficient Layer Aggregation Network) architecture 
in YOLOv7, which improves feature integration and 
allows for more precise detection under varying 
conditions, , particularly under varying conditions 
such as distance, scale, and lighting (e.g., sunny and 
cloudy), as observed in this study [45]. 
Consequently, YOLOv7 achieves superior accuracy 
over earlier versions like YOLOv3 to YOLOv6. In 
contrast, post-YOLOv7 versions (YOLOv8 to 
YOLOv11) prioritize a balance between accuracy 
and speed (FPS) and no longer implement the E-
ELAN architecture [46]. These versions employ 
more efficient techniques to maintain rapid 
performance without significantly compromising 
accuracy. However, this trade-off results in slightly 
lower accuracy compared to YOLOv7, as the focus 
shifts toward computational efficiency and stable 
FPS [45]. The study's findings confirm this, showing 
that while YOLOv8 and YOLOv11 maintain stable 
accuracy and FPS, they do not exceed YOLOv7's 
accuracy levels.  

Although YOLOv5 achieves the highest FPS 
(33.92), its lower accuracy compared to YOLOv7 
highlights the importance of balancing FPS with 
detection precision, particularly for real-time 
applications. In this context, YOLOv7 emerges as the 
most effective model due to its ability to deliver an 
optimal balance between speed and accuracy, 

making it highly suitable for implementation in 
smart parking systems. It achieves the highest 
overall accuracy of 99.57%, excelling in both long-
range (99.48%) and close-range (99.78%) 
detection scenarios. Although its average FPS of 
30.79 is not the fastest among the evaluated models, 
it comfortably exceeds the 30 FPS threshold for 
real-time applications [47], making it ideal for 
systems prioritizing precision. However, its FPS 
stability is slightly less consistent, which may be a 
consideration for applications requiring highly 
stable frame rates. While FPS is an important 
metric, especially for real-time applications, it is not 
the sole determinant of usability; in this case, 
accuracy plays a critical role. For systems where 
accuracy is the top priority, ensuring precise 
detection and minimizing errors such as false 
positives or false negatives, YOLOv7 is the clear 
choice due to its unparalleled precision. 

Following YOLOv7, YOLOv11 is a strong 
contender, achieving an overall accuracy of 98.72% 
and an average FPS of 31.99, striking a near-perfect 
balance between accuracy and speed. Similarly, 
YOLOv8 offers a balanced approach, achieving 
98.51% accuracy and an average FPS of 32.31, with 
consistent FPS stability, making it a versatile choice 
for various parking detection scenarios. These 
versions demonstrate robust performance across 
different conditions, making them suitable for real-
time applications where both accuracy and speed 
are critical. YOLOv10, while achieving competitive 
accuracy (97.08% for long-range and 87.78% for 
close-range), exhibits lower performance in close-
range detection, suggesting limitations in handling 
short-distance scenarios. Despite its FPS stability, 
with an average of 31.87 for Video 1 and 31.95 for 
Video 2, its lower accuracy in close-range scenarios 
may limit its applicability in environments 
requiring high precision across varying distances. 

On the other hand, YOLOv9, while achieving 
the highest accuracy for long-range detection 
(99.58%), shows a slight decline in close-range 
scenarios (95.33%), indicating potential challenges 
in maintaining consistent performance across 
varying distances. Its FPS, averaging 25.66 for Video 
1 and 28.25 for Video 2,  raises concerns for real-
time implementation due to its relatively lower 
speed. In terms of FPS stability, 
YOLOv4 demonstrates the most consistent 
performance, maintaining stable frame rates 
despite its relatively lower average FPS (19.70 for 
Video 1 and 19.72 for Video 2). However, its lower 
accuracy (90.94% for Video 1 and 98.44% for Video 
2) may limit its applicability in scenarios requiring 
high precision. 
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YOLOv6, on the other hand, shows improved 
accuracy in short-distance detection, achieving 
96.89% accuracy for Video 2 compared to 77.43% 
for Video 1, indicating that it is better optimized for 
closer object detection. However, it demonstrates 
the lowest accuracy, particularly in detecting small 
objects at long distances. This limitation may be due 
to its fully anchor-free object detection (OD) 
architecture, which predicts bounding boxes 
directly from object center points without 
traditional anchor boxes [48]. While this simplifies 
the detection process, it can struggle with 
accurately identifying small objects, especially in 
occluded or complex backgrounds. Notably, 
YOLOv5 introduced anchor-free detection as an 
optional feature, retaining anchor boxes by default 
[49]. In contrast, YOLOv7 to YOLOv11 fully adopt 
anchor-free methods, incorporating additional 
enhancements like transformers, GANs, PGI, and 
GELAN to improve detection performance [46]. This 
study highlights YOLOv6's limitations in detecting 
small objects at long ranges, resulting in lower 
accuracy and suboptimal FPS compared to other 
versions, making it less suitable for long-range 
parking scenarios. 

The results of this study demonstrate 
significant achievements, with satisfactory levels of 
accuracy and frame per second (FPS). A 
performance comparison of various YOLO versions, 
particularly the latest ones, reveals substantial 
improvements over previous studies. Research 
comparing multiple object detection methods for 
parking slot detection provides valuable insights, 
highlighting YOLO as one of the optimal methods 
[14]. However, a prior study by utilized only 
YOLOv3 and did not include the latest YOLO 
versions. Another study evaluating the latest YOLO 
versions compared YOLOv8 and YOLOv10 for 
vehicle detection, achieving high accuracy [50]. 
Unfortunately, this study did not incorporate 
YOLOv11, lacked FPS-based speed detection 
analysis, and omitted specific discussions on 
parking slot availability detection. Additionally, a 
study comparing object detection algorithms under 
varying weather conditions evaluated YOLOv3 to 
YOLOv7, reporting impressive results for YOLOv7 in 
terms of accuracy and inference time (FPS) [51]. 
Nevertheless, this study did not include YOLOv8 
through YOLOv11 and was not focused on parking 
slot detection. 

This study evaluates the performance of 
YOLO (You Only Look Once) in detecting vehicles of 
various sizes, ranging from small to large, in both 
near and far parking scenarios. Additionally, the 
study conducts tests under different weather 
conditions, specifically sunny and cloudy 

environments, as well as in the presence of 
obstructions such as trees. The results demonstrate 
that YOLO performs effectively in detecting vehicles 
under sufficient sunlight and shaded conditions. 
However, this study is limited to sunny and cloudy 
conditions, with no testing conducted in darker 
lighting environments. This limitation opens 
avenues for further research into YOLO's 
performance under low-light conditions. 

The findings of this study are influenced by 
several factors, particularly the density of detected 
parking spaces, which significantly impact the FPS 
(Frames Per Second) of YOLO-based detection 
systems. This is evident in the results, where Video 
1, which detected a higher number of cars, exhibited 
a lower FPS compared to Video 2, which detected 
only five parking spaces. Additionally, the study 
focused on testing under sunny and cloudy weather 
conditions, as supported by the dataset used. 
However, the results may yield lower accuracy 
when implemented in other real-world conditions, 
such as rainy or nighttime environments. 
Furthermore, the models used in this study may 
experience reduced accuracy when applied to 
parking areas with higher density or less structured 
layouts, such as those with unclear or frequently 
changing parking spaces, as well as improper 
camera placement that is not perpendicular to the 
parking area. Irregular parking arrangements may 
obstruct vehicle visibility, leading to decreased 
detection accuracy. 

This study has certain limitations, including 
the relatively small number of video samples (two 
videos with specific camera perspectives) and the 
use of standard parking lot layouts. A larger and 
more diverse dataset could provide a broader range 
of scenarios to evaluate the performance of 
different YOLO versions under various 
environmental factors, such as weather conditions 
and lighting. Additionally, the reliance on a fixed 
CCTV setup in this study limits its generalizability to 
real-world dynamic environments, where parking 
spaces may be occupied by different vehicle types 
and orientations, potentially affecting detection 
accuracy. 

Despite these limitations, the findings from 
this study contribute significantly to the ongoing 
development of efficient smart parking systems. By 
identifying which YOLO versions perform best 
under varying conditions, this research can guide 
future implementations of real-time vehicle 
detection systems, particularly in urban parking 
infrastructures. Furthermore, the study highlights 
the potential of YOLO-based systems to integrate 
seamlessly with existing surveillance 
infrastructure, offering a cost-effective solution for 
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parking management. This work can serve as a 
foundational reference for future studies aiming to 
optimize YOLO models for different detection 
contexts. 

 
CONCLUSION 

 
This study evaluates YOLO versions 3 

through 11 for detecting vacant parking spaces and 
identifies YOLOv7 as the most effective model, 
achieving the highest accuracy (99.57%) with a 
suitable FPS (30.79) for real-time applications. This 
makes it ideal for systems that prioritize precision. 
YOLOv8 and YOLOv11 also demonstrated strong 
performance, achieving overall accuracies (98.51% 
and 98.72%) along with stable and high FPS rates 
(32.31 and 31.99). These versions are well-suited 
for applications requiring a balance between 
accuracy and speed, making them equally effective 
for smart parking solutions. Additionally, YOLOv5 
stood out for its notable computational efficiency, 
making it particularly suitable for real-time 
implementations. However, the study identified 
certain limitations. The dataset used in this research 
consisted of a relatively small number of videos, 
with fixed perspectives and standard parking 
layouts, which may not fully capture the diversity of 
real-world scenarios. Environmental factors, such 
as variable weather conditions and dynamic 
lighting, were not incorporated into the testing, 
potentially limiting the generalizability of the 
findings. Additionally, some YOLO versions 
exhibited challenges in maintaining consistent 
performance under specific conditions, signaling 
the need for further refinement. 

A key contribution of this study lies in its 
comprehensive and systematic approach to 
evaluating YOLO versions for parking space 
detection, addressing both theoretical and practical 
challenges. By providing empirical evidence and 
actionable insights, this research advances smart 
parking system development and lays the 
groundwork for future innovations in urban 
mobility and parking management. Furthermore, 
this study fills a significant research gap by offering 
a structured evaluation of YOLO versions 
specifically for parking slot detection, an area that 
has been largely unexplored in previous literature. 
While prior research has primarily focused on 
general object detection or individual YOLO 
versions, this study presents a comparative analysis 
that quantifies the strengths and weaknesses of 
each model within the parking management 
domain. Additionally, this study incorporates 
YOLOv11, the latest version released in September 
2024, providing valuable insights into 

advancements in YOLO architectures and their 
applicability to real-world challenges such as smart 
parking systems. 

As a recommendation, future research 
should focus on expanding datasets to include more 
varied parking configurations, environmental 
conditions, and vehicle orientations to improve 
model robustness. Incorporating adaptive pre-
processing techniques for changing weather and 
lighting conditions, as well as testing on dynamic 
surveillance systems, could enhance the practical 
applicability of YOLO-based detection methods. 
Furthermore, exploring hybrid architectures, such 
as combining YOLO with advanced techniques like 
transformers or Graph Neural Networks (GNNs), 
may further optimize detection performance and 
efficiency. Additionally, Future studies should 
explore the performance of YOLO models in 
nighttime conditions and integrate IoT or cloud-
based systems to enhance scalability and real-time 
responsiveness. Low-light environments pose 
significant challenges for object detection, often 
requiring additional preprocessing techniques or 
infrared imaging to maintain accuracy. By 
addressing these limitations, future 
implementations can ensure consistent 
performance regardless of lighting conditions. 
Additionally, the integration of IoT or cloud 
platforms could allow for centralized data 
processing, remote monitoring, and automated 
updates, thereby increasing operational efficiency 
and reducing maintenance overhead in smart 
parking systems. 
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