

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6238.

909

 PWA AND NON-PWA PERFORMANCE ANALYSIS: CHROME EXTENSION
TESTING ON E-COMMERCE PLATFRORM

Panji Revolusioner Saputro1*; Rifda Faticha Alfa Aziza2

Informatic1,2

Universitas Amikom Yogyakarta, Sleman, Indonesia1, 2
https://home.amikom.ac.id/1,2

pannji22revolusio@students.amikom.ac.id1*, rifda@amikom.ac.id2

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract—This study compares Progressive Web Apps (PWA) and traditional web applications performance
using a custom Chrome extension and Google Lighthouse, focusing on Tokopedia's e-commerce platform. The
research employs a quantitative approach with controlled testing environments across three viewports for the
custom extension (desktop, tablet, mobile) and two viewports for Google Lighthouse (desktop, mobile). The
custom extension measures eleven metrics, including Core Web Vitals, PWA features, and resource usage, while
Google Lighthouse provides five core metrics. Results show PWA implementation improves performance with
9.9% better First Contentful Paint on desktop and significant memory efficiency (29-33MB vs 59-62MB). The
comparison between testing tools reveals methodology differences, with custom extension showing optimistic
results in real-world conditions and Lighthouse providing more conservative measurements under throttled
conditions. This research contributes to PWA performance measurement methodology by combining real-
world and standardized testing approaches.

Keywords: chrome extension, performance analysis, progressive web apps, tokopedia, web metrics

Intisari—Penelitian ini menyajikan analisis komparatif antara Progressive Web Apps (PWA) dan aplikasi web
tradisional menggunakan ekstensi Chrome khusus dan Google Lighthouse, dengan fokus pada platform e-
commerce Tokopedia. Penelitian menggunakan pendekatan kuantitatif dengan lingkungan pengujian
terkontrol pada tiga viewport untuk ekstensi khusus (desktop, tablet, mobile) dan dua viewport untuk Google
Lighthouse (desktop, mobile). Ekstensi khusus mengukur sebelas metrik, termasuk Core Web Vitals, fitur PWA,
dan penggunaan sumber daya, sementara Google Lighthouse menyediakan lima metrik inti. Hasil
menunjukkan implementasi PWA meningkatkan performa dengan First Contentful Paint 9.9% lebih baik pada
desktop dan efisiensi memori yang signifikan (29-33MB vs 59-62MB). Perbandingan antara tools pengujian
mengungkapkan perbedaan metodologi, dengan ekstensi khusus menunjukkan hasil optimis dalam kondisi
nyata dan Lighthouse memberikan pengukuran lebih konservatif dalam kondisi throttling. Penelitian ini
berkontribusi pada metodologi pengukuran performa PWA dengan menggabungkan pendekatan pengujian
dunia nyata dan terstandarisasi.

Kata Kunci: analisis performa, ekstensi chrome, metrik web, progressive web apps, tokopedia

INTRODUCTION

 The rapid development of web technology
has driven the evolution of web-based applications.
One of the innovations that has emerged is
Progressive Web Apps (PWA), which offers a
solution to bridge the gap between traditional web
applications and native applications [1][2][3].

According to Kumar et al. [4] and Mhatre and
Mali[5], PWA has changed the application
development paradigm by presenting a better user
experience through offline capabilities, faster access
speeds, and features that approach native
applications. Rochim et al. [1], Bennervall et al. [3],
and Heričko et al. [2] in their research, revealed that
PWA shows better performance in terms of

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6238

910

response time and resource usage compared to
traditional web applications. This is reinforced by
the findings of Vepsäläinen et al. [6] and Nichifor et
al. which prove that PWA has more optimal energy
efficiency and loading time. Ribeiro et al. [7] added
that implementing PWA in service-oriented
applications can increase user engagement
significantly and reduce the bounce rate.

In the implementation context, Kweche
Ebechue and Te Dorsthorst [8] identified several
challenges in implementing PWAs, especially
regarding browser support, app visibility in app
stores, and caching strategies. Fahad and
Chowdhury [9] highlighted the importance of
choosing the right caching strategy, as suboptimal
implementation can affect PWA performance,
especially on frequently updated sites. This aligns
with the findings of Cherukuri [10], who
emphasized the importance of comprehensive
performance measurement in ensuring effective
PWA implementation.

In the context of e-commerce, Eunike et al.
[11], Muna et al. [12], and Haryanto and Elsi [13]
demonstrated that PWA implementation can
improve performance scores by up to 30%
compared to traditional web applications. Through
their research, Ribeiro [7] and Muman [14]
underlined the importance of in-depth evaluation of
PWA performance using standardized tools. This is
reinforced by Leshchuk et al. [6], who suggested
using standardized metrics for PWA performance
evaluation.

Soetanto et al. [15] found that PWA
provides significant improvements in terms of
loading time and resource efficiency, especially in
the context of applications that require intensive
user interaction. This finding aligns with the results
of McGill et al. [7], which shows that PWA can
optimize memory and CPU usage by up to 40%
compared to traditional web applications. Faizin et
al. [16] added that PWA also provides advantages in
terms of accessibility and user experience,
especially on devices with medium to low
specifications.

While previous studies have highlighted
the advantages of PWA, such as offline capabilities
and improved user experience, there is a lack of
comprehensive research that compares PWA and
non-PWA performance using multiple testing
methodologies [6][11]. Most existing studies rely
solely on standardized tools like Google Lighthouse,
which may not fully capture real-world
performance conditions [2][10]. This study aims to
fill this gap by providing empirical evidence of PWA
performance improvements, particularly in the
context of e-commerce platforms, where

performance and user experience are critical for
success [17].

The primary objective of this study is to
conduct a comparative analysis of Progressive Web
Apps (PWA) and traditional web applications,
focusing on performance metrics such as Core Web
Vitals, resource usage, and PWA-specific features
[6]. This research aims to provide a comprehensive
evaluation of PWA performance using both real-
world testing (via a custom Chrome extension) and
standardized testing (via Google Lighthouse). By
combining these two methodologies, the study
seeks to address the gap in existing literature and
offer a more holistic understanding of PWA
performance in the context of e-commerce
platforms [3][17]. This approach is expected to
provide new insights into PWA performance
evaluation and serve as a valuable reference for
developers in optimizing PWA implementation for
e-commerce applications in the increasingly
competitive digital era [5][16][7].

MATERIALS AND METHODS

This study uses a comparative quantitative
approach to analyze the performance of Progressive
Web Apps (PWA) and traditional web applications
(non-PWA), adopting the methodology used by
Rochim et al. [1]and Heričko et al.[2] in evaluating
web application performance. The object of the
study focused on the Tokopedia e-commerce
website (https://www.tokopedia.com/), which was
chosen because it is one of the largest e-commerce
platforms in Indonesia that has implemented PWA
technology, as analyzed in the research of Haryanto
and Elsi [13]and Muna et al.[12].

Tokopedia was selected as the study object
due to its status as one of the largest e-commerce
platforms in Indonesia, with significant traffic and a
diverse user base. The platform's implementation of
PWA technology provides an ideal case study for
analyzing the performance differences between
PWA and traditional web applications in a real-
world e-commerce context. The high traffic and
diverse user base of Tokopedia allow for a
comprehensive evaluation of PWA performance
under realistic conditions. Additionally,
Tokopedia's widespread use ensures that the
findings of this study are relevant to a broad
audience and can be generalized to other e
commerce platforms. Following the methodology of
McGill et al [7].

Performance testing was carried out with
two different tools, each with different viewport
coverage and metrics. The developed Chrome
extension tested on three viewports: desktop

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6238.

911

(1366x768), tablet (768x1024), and mobile
(375x667), while Google Lighthouse tested on two
viewports: desktop and mobile only. The metrics
used in this study are derived from the Core Web
Vitals framework proposed by Google (Google,
2020), which includes: First Contentful Paint (FCP)
is the time it takes for the first content element to
render on the screen. Time to Interactive (TTI) is
the time it takes for the page to become fully
interactive. Speed Index is a measure of how quickly
content is visually displayed during page load. Total
Blocking Time (TBT) is the total time the main
thread is blocked, preventing user input. Largest
Contentful Paint (LCP) is the time it takes for the
largest content element to render. Cumulative
Layout Shift (CLS) is a measure of layout stability
during page load.

Additionally, the study measures PWA-
specific features such as: Offline Capability is the
ability of the application to function without an
internet connection. Install Prompt refers to the
availability of prompts to install the PWA on the
user's device. Resource usage metrics are also
measured, including: Page Size is the total size of the
page resources. CPU Usage represents the
percentage of CPU resources consumed by the
application. Memory Usage refers to the amount of
memory (RAM) used by the application. These
metrics were selected based on their relevance to
PWA performance and their ability to provide a
comprehensive evaluation of user experience.

Source : (Research Results, 2024)

Figure 1. Custom Extension Testing Flow

Referring to the methodology used by Vepsäläinen
et al. [9]and Faizin et al.[16], the testing
environment was strictly controlled using devices
with the following specifications: AMD Ryzen 3
1300X Quad-Core processor, 16GB RAM, NVIDIA
GTX 750 2GB GPU, XIAOMI A27I monitor, and 30
Mbps Indihome internet connection. To ensure
consistency of the results, testing was conducted at
off-peak times (01.00 - 05.00 WIB) with a 5-minute
interval between each test and repeated three times
for each scenario and viewport, following Ribeiro et
al.'s protocol for minimizing network variability in
performance testing.

Source : (Research Results, 2024)

Figure 2. Google Lighthouse Testing Flow

The developed Chrome extension measures eleven
different metrics, expanding the scope of testing
compared to the five standard Google Lighthouse
metrics, an approach that Bennervall et al.
[3]advocate for obtaining more comprehensive
performance data. Here is a comparison of the
metrics measured by both tools.

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6238

912

Table 1. Comparison of Testing Metrics
Metrics

Category
Custom Extension

Google
Lighthouse

Core Web
Vitals

First Contentful Paint
(FCP)

First Contentful
Paint (FCP)

Time To Interactive
(TTI)

 Speed Index Speed Index

Total Blocking Time
(TBT)

Total Blocking
Time (TBT)

Largest Contentful
Paint (LCP)

Largest
Contentful
Paint (TBT)

Cumulative Layout
Shift(CLS)

Cumulative
Layout
Shift(CLS)

PWA
Features

Offline Capability

 Install Prompt
Resource
Usage

Page Size

 CPU Usage
 Memory Usage

Source : (Research Results, 2024)

Source : (Research Results, 2024)

Figure 3. Comparative Analysis Flow

In Offline Capability testing, testers disable

the internet connection to verify the application's
functionality, following Cherukuri's [10]
methodology for assessing PWA offline
performance. For the Install Prompt, testers check
the availability and response of the installation
prompt, an aspect that Mhatre and Mali [5]highlight
as critical for PWA adoption. For resource usage,
testers conduct real-time monitoring during
operation, adhering to Soetanto et al.'s [15]
approach to resource utilization measurement. The
data collection process employs several different

mechanisms. Testers use the Performance API and
PerformanceObserver to measure Core Web Vitals,
a technique recommended by Fahad and
Chowdhury [14] for accurate performance
monitoring. Custom APIs are utilized to enable
offline capabilities and install prompts in PWA
Feature testing, consistent with Leshchuk et al.'s [6]
methodology for PWA functionality assessment. For
Resource Usage, Performance APIs and browser
APIs are used to monitor resources, following
McGill et al.'s [7] protocol for comprehensive
resource tracking.

Quality control in the testing process
adopts the standards used by Te Dorsthorst[8],
covering several important aspects, from clearing
the cache before each test and using incognito mode
to avoid interference. Additionally, consistent
network condition monitoring is carried out, and
results are cross-validated between several
processes and both testing tools to ensure data
accuracy, a practice that Eunike et al. [11]emphasize
for reliable performance measurement. The test
results are documented in a comprehensive,
structured format, covering parameters such as
timestamp, viewport, and test mode (PWA/non-
PWA). This documentation also records the values
for all eleven metrics measured. After data
collection, a comparative analysis is performed
between the custom extension test results and
Google Lighthouse results, especially for the metrics
available on both testing platforms, an analytical
approach that Kumar et al. [4]recommend for
holistic performance evaluation.

RESULTS AND DISCUSSION

The study results show significant differences in
performance measurements between Progressive
Web Apps (PWA) and traditional web applications
(non-PWA) on the Tokopedia website. Testing was
conducted using two different tools: custom
extensions and Google Lighthouse, with each tool
providing a unique perspective in performance
measurement.

A. Core Web Vitals Comparison

Table 2. Core Web Vitals Test Results Using Custom

Extension
Metrics PWA

Desktop Tablet Mobile

FCP 338ms 375ms 542ms
Speed Index 1282ms 1162ms 1109ms

TBT 629ms 249ms 260ms
LCP 296ms 471ms 508ms
CLS 0 0 0
TTI 607ms 693ms 749ms

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6238.

913

Table 2. Core Web Vitals Test Results Using Custom
Extension (Cont)

Metrics Non-PWA

Desktop Tablet Mobile

FCP 375ms 542ms 389ms
Speed Index 1162ms 1109ms 1040ms

TBT 294ms 260ms 235ms
LCP 471ms 508ms 356
CLS 0 0 0
TTI 693ms 749ms 356

Source : (Research Results, 2024).

Table 3. Core Web Vitals Test Results Using Google

Lighthouse
Metrics PWA Non-PWA

Desktop Mobile Desktop Mobile

FCP 0.4s 5.3s 0.6s 5.8s
Speed Index 2.0s 7.0s 1.9s 9.3s

TBT 400ms 2620m
s

700ms 4140ms

LCP 0.8s 15.9s 0.9s 12.6s
CLS 0.108 0.028 0.0101 0.03

Source : (Research Results, 2024)

The results demonstrate that PWA exhibits
superior performance in First Contentful Paint
(FCP), with a 9.9% improvement on desktop
platforms compared to traditional web
applications. This enhancement in FCP can be
attributed to PWA's efficient caching strategies and
optimized resource loading, which allow for faster
rendering of initial content. Additionally, the
significant reduction in memory usage (29-33 MB
for PWA vs. 59-62 MB for non-PWA) is likely due to
PWA's ability to manage resources more effectively,
particularly in offline scenarios. However, the
variation in CPU usage across viewports suggests
that PWA's resource management strategies may
need further optimization for specific devices, such
as tablets.

B. PWA Features and Resource Usage

Table 4. PWA Features and Resource Usage Test

Results
Metrics PWA

Desktop Tablet Mobile

Offline Capability Support Support Support
Instal Prompt Support Support Support

Page Size 292.19kb 293.28kb 293.76kb
CPU Usage 30% 93% 10%

Memory Usage 29MB 29MB 33MB

Metrics Non-PWA

Desktop Tablet Mobile

Offline Capability Not
Support

Not
Support

Not
Support

Metrics Non-PWA

Desktop Tablet Mobile

Instal Prompt Not
Support

Not
Support

Not
Support

Page Size 283.13kb 282.96kb 285.08kb
CPU Usage 13% 23% 86%

Memory Usage 61MB 59MB 62MB

Source : (Research Results, 2024)

The results of the PWA Features and

Resource Usage tests in Table 4 reveal significant
differences in characteristics between the PWA and
non-PWA implementations. Regarding PWA
features, the Progressive Web Apps version fully
supports offline capability and install prompts
across all tested viewports. These capabilities
provide added value not available in the traditional
non-PWA version.

The superior performance of PWA in terms
of First Contentful Paint (FCP) can be attributed to
its efficient caching strategies and optimized
resource loading. The significant reduction in
memory usage (29-33MB for PWA vs. 59-62MB for
non-PWA) is likely due to PWA's ability to manage
resources more effectively, particularly in offline
scenarios. The variation in CPU usage across
viewports suggests that PWA's resource
management strategies may need further
optimization for specific devices, such as tablets.

Source : (Research Results, 2024)

Figure 4. PWA vs Non-PWA Core Web Vitals
Comparison [Core Web Vitals comparison chart]

The comparative analysis of Core Web

Vitals between PWA and non-PWA
implementations reveals several noteworthy
patterns in performance metrics. The results
demonstrate that PWA exhibits superior
performance in First Contentful Paint (FCP), with a
9.9% improvement on desktop platforms compared
to traditional web applications. This enhancement
in FCP can be attributed to PWA's efficient caching
strategies and optimized resource loading, which
allow for faster rendering of initial

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6238

914

content. Additionally, the significant reduction in
memory usage (29-33MB for PWA vs. 59-62MB for
non-PWA) is likely due to PWA's ability to manage
resources more effectively, particularly in offline
scenarios. However, the variation in CPU usage
across viewports suggests that PWA's resource
management strategies may need further
optimization for specific devices, such as
tablets.While Speed Index measurements show
slight variations across different viewports, the
PWA consistently maintains lower Total Blocking
Time (TBT) values, particularly in mobile
environments, indicating enhanced interactive
responsiveness.

The Cumulative Layout Shift (CLS)
measurements remain optimal across both
implementations, suggesting stable visual
performance during page load. These findings
contribute to the growing body of evidence
supporting the performance advantages of
Progressive Web Apps in modern e-commerce
platforms, particularly in terms of initial loading
times and interactive capabilities.

C. Custom Extension vs Google Lighthouse

Test Results Comparison

Table 5. Comparison of Core Web Vitals Test
Results on Desktop View

Metrics Custom Extension Google Lighthouse

PWA Non-PWA PWA Non-PWA

FCP 338ms 375ms 400ms
(0.4s)

600ms
(90.6s)

Speed Index 1282m
s

1162ms 2000m
s (2s)

1900ms
(1.9s)

TBT 629ms 249ms 400ms 700ms
LCP 296ms 471ms 800

(0.8s)
900ms
(0.9s)

CLS 0 0 0.108 0.101

Source : (Research Results, 2024)

Table 6. Perbandingan Hasil Pengujian Core Web
Vitals pada Mobile View

Metrics Custom Extension Google Lighthouse

PWA Non-PWA PWA Non-PWA

FCP 524
ms

389ms 5300m
s (5.3s)

5800m
(5.8s)

Speed Index 1109
ms

1040ms 7000m
s(7s)

9300ms
(9.3s)

TBT 260
ms

235ms 2620m
s

4140ms

LCP 508
ms

356ms 15900
(15.9s)

12600ms
(12.6s)

CLS 0 0 0.028 0.03

Source : (Research Results, 2024)

A comparative analysis between the two
testing tools reveals important findings. The

Custom Extension shows more optimistic First
Contentful Paint (FCP) measurement results, with a
time difference of 15-20% on desktop and nearly 10
times longer loading time on mobile view. On both
tools, PWA consistently demonstrates better FCP
performance compared to non-PWA. Google
Lighthouse consistently shows higher Speed Index
values, with the most significant difference on
mobile view (1109ms versus 7000ms for PWA). The
performance trend remains relatively consistent,
with PWA showing a better Speed Index. Total
Blocking Time (TBT) measurements vary
significantly between tools.

The Custom Extension indicates a higher
TBT on desktop PWA (629ms versus 400ms), while
Google Lighthouse reveals a more extreme TBT
difference on mobile view. These differences stem
from distinct measurement methodologies. Custom
Extension uses direct Performance API
measurements, which capture real-world
performance without artificial constraints, whereas
Google Lighthouse employs simulation and
throttling for controlled conditions.

This leads to more optimistic results from
the Custom Extension, particularly in metrics like
First Contentful Paint (FCP) and Total Blocking
Time (TBT), where real-world conditions often
yield faster performance. Conversely, Google
Lighthouse's conservative measurements provide a
stricter benchmark for optimization, highlighting
potential performance bottlenecks under
constrained conditions. This contrast underscores
the importance of using both methodologies to gain
a comprehensive understanding of PWA
performance.

Each tool offers unique advantages. Custom
Extension excels in real-world condition
measurements, tracking additional metrics like
Time to Interactive, resource usage, and
comprehensive viewport coverage. Google
Lighthouse provides controlled test conditions,
strict measurement standardization, network
condition simulations, and detailed optimization
recommendations. The study's practical
implications for PWA development are significant.
Custom Extension results better describe everyday
user experience, while Google Lighthouse is optimal
for optimization benchmarking. Combining both
tools offers a more comprehensive app
performance understanding. For performance
optimization, the study recommends focusing on
mobile view optimizations, particularly considering
Total Blocking Time's large variations, and
emphasizes the importance of testing across
conditions using multiple tools.

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6238.

915

Source: (Research Results, 2024)

Figure 5. Custom Extension vs Google Lighthouse
Measurement Results Comparison [Comparison

graph of measurement results of both tools]

Figure 5 illustrates the comparative
analysis of measurement results between the
Custom Extension and Google Lighthouse. The chart
highlights the differences in performance metrics,
particularly in mobile view, where the Custom
Extension shows more optimistic results compared
to Google Lighthouse. This visualization supports
the claim that real-world testing provides a more
accurate representation of user experience, while
standardized testing offers a controlled
environment for benchmarking and optimization.
The significant difference in FCP and TBT
measurements between the two tools underscores
the importance of using multiple methodologies to
capture a comprehensive understanding of PWA
performance.

These differences stem from distinct
measurement methodologies. Custom Extension
uses direct Performance API measurements, which
capture real-world performance without artificial
constraints, whereas Google Lighthouse employs
simulation and throttling for controlled conditions.
This leads to more optimistic results from the
Custom Extension, particularly in metrics like First
Contentful Paint (FCP) and Total Blocking Time
(TBT), where real-world conditions often yield
faster performance. Conversely, Google
Lighthouse's conservative measurements provide a
stricter benchmark for optimization, highlighting
potential performance bottlenecks under
constrained conditions. This contrast underscores
the importance of using both methodologies to gain
a comprehensive understanding of PWA
performance.

CONCLUSION

This research demonstrates the superior
performance of Progressive Web Apps (PWA)
compared to traditional web applications on the
Tokopedia platform through comprehensive testing
using both a custom extension and Google
Lighthouse. The findings reveal notable
improvements in PWA performance metrics,
particularly in First Contentful Paint and memory
efficiency. While differences emerged between the
two measurement methodologies, their combined
use provided valuable insights into application
performance across various viewports. The
successful implementation of PWA features,
including offline capabilities and install prompts,
establishes this study as a valuable reference for
web developers seeking to optimize PWA
implementation in the e-commerce sector. The dual
measurement approach utilizing real-world testing
and standardized evaluation offers a robust
framework for assessing PWA performance and
user experience enhancements.

REFERENCE

[1] R. V. Rochim, A. Rahmatulloh, R. R. El-Akbar,

and R. Rizal, “Performance Comparison of
Response Time Native, Mobile and
Progressive Web Application Technology,”
2023. doi: 10.37058/innovatics.v5i1.7045.

[2] T. Heričko, B. Šumak, and S. Brdnik,
"Towards representative web performance
measurements with Google Lighthouse," in
Proc. 7th Student Computer Science
Research Conf., Sep. 2021, p. 39.

[3] M. Bennervall, S. Berglund, and T. Mejoft, “A
Comparison Of Progressive Web Apps And
Mobile Web Apps For websites with
dynamic content,” 2024.

[4] P. Kumar, M. Katoch, A. Verma, and S.
Badotra, “An Analysis on Usability of
Progressive Web Applications in Business
Management,” in Proceedings of the IEEE
International Conference Image Information
Processing, Institute of Electrical and
Electronics Engineers Inc., 2023, pp. 501–
507. doi:
10.1109/ICIIP61524.2023.10537697.

[5] A. Mhatre and S. Mali, “Progressive Web
Applications, a New Way for Faster Testing
of Mobile Application Products,” in 2023 3rd
Asian Conference on Innovation in
Technology, ASIANCON 2023, Institute of
Electrical and Electronics Engineers Inc.,
2023. doi:
10.1109/ASIANCON58793.2023.10269806.

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6238

916

[6] S. O. Leshchuk, Y. S. Ramskyi, A. V Kotyk, and
S. V Kutsiy, “Design a progressive web
application to support student learning,”
2022. [Online]. Available:
https://ramsky.fi.npu.edu.ua/

[7] T. McGill, O. Bamgboye, X. Liu, and C. S.
Kalutharage, “Towards Improving
Accessibility of Web Auditing with Google
Lighthouse,” in Proceedings - International
Computer Software and Applications
Conference, IEEE Computer Society, 2023,
pp. 1594–1599. doi:
10.1109/COMPSAC57700.2023.00246.

[8] D. This, “Analysis of the impact of JavaScript
design patterns on page performance in web
applications Analysis of the impact of
JavaScript design patterns on page
performance in web applications Master
Thesis Joris te Dorsthorst,” 2024.

[9] J. Vepsäläinen, A. Hellas, and P. Vuorimaa,
“Overview of Web Application Performance
Optimization Techniques,” 2024, [Online].
Available:
http://arxiv.org/abs/2412.07892

[10] B. R. Cherukuri, “Progressive Web Apps (
PWAs): Enhancing User Experience through
Modern Web Development,” no. December,
2024, doi: 10.21275/MS241022095359.

[11] E. Eunike, R. Sanjaya, and A. D. Widiantoro,
“Application of Progressive Web Apps
(PWA) on PT SKA’s E-Commerce Website,” J.
Bus. Technol., vol. 3, no. 1, 2023, [Online].
Available: http://testing.ska-
indonesia.com/wp-admin/

[12] S. Shibul Muna, “Tokopedia and Shopee
Marketplace Performance Analysis Using
Metrix Google Lighthouse,” 2022, doi:

10.52088/ijesty.v1i4.312.
[13] D. Haryanto and Z. R. Saputra Elsi, “Analisis

Performance Progressive Web Apps Pada
Aplikasi Shopee,” J. Ilm. Inform. Glob., vol. 12,
no. 2, 2021, doi: 10.36982/jiig.v12i2.1944.

[14] J. Muman, “Progressive Web Apps: An
optimistic approach to traditional
application development,” IJSDR2101020
Int. J. Sci. Dev. Res., 2021, [Online]. Available:
www.ijsdr.org

[15] C. Soetanto, I. Prawartana, S. Leonardo, M. S.
Anggreainy, Yasri, and Gintoro, “Progressive
Web Application (PWA) Development for
Outfit Management System,” in 2022 5th
International Conference on Computer and
Informatics Engineering, IC2IE 2022,
Institute of Electrical and Electronics
Engineers Inc., 2022, pp. 303–308. doi:
10.1109/IC2IE56416.2022.9970123.

[16] M. A. Faizin, M. Nevin, and U. L. Yuhana,
“Indonesia E-Government Website
Performance and Accessibility Evaluation
using Automated Tool Lighthouse,” in 2024
2nd International Conference on Software
Engineering and Information Technology,
ICoSEIT 2024, Institute of Electrical and
Electronics Engineers Inc., 2024, pp. 210–
215. doi:
10.1109/ICoSEIT60086.2024.10497521.

[17] K. Chan-Jong-Chu et al., “Investigating the
Correlation between Performance Scores
and Energy Consumption of Mobile Web
Apps,” in ACM International Conference
Proceeding Series, Association for
Computing Machinery, Apr. 2020, pp. 190–
199. doi: 10.1145/3383219.3383239.

