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Abstract— Poultry egg productivity is strongly influenced by various environmental factors, such as air and 
water quality. However, accurately predicting productivity remains a challenge due to the complex interplay 
of multiple environmental variables and the risk of overfitting in predictive models. This study improves egg 
productivity prediction using Logistic Regression with L1 regularization, which enhances model generalization 
by performing automatic feature selection. The research methodology includes data collection of key 
environmental indicators—Air Quality Index (AQI), Water Quality Index (WQI), and Humidex—followed by 
data preprocessing, exploratory data analysis (EDA), and model training using L1-regularized Logistic 
Regression. Model evaluation was performed using classification metrics and learning curve analysis to assess 
stability and effectiveness. Experimental results indicate that Logistic Regression without regularization 
achieved an accuracy of 90.7%, with misclassification occurring in the lower production categories. By 
applying L1 regularization, accuracy increased significantly to 97%, demonstrating its ability to reduce 
overfitting while improving classification performance. This study also compares its findings with previous 
research, such as De Col et al. (wheat epidemic prediction, 80–85% accuracy) and Jia Q1 et al. (heart disease 
prediction, 92.39% accuracy), confirming that our approach outperforms prior Logistic Regression models in 
similar predictive tasks. These findings suggest that L1 regularization is an effective solution for improving egg 
productivity prediction, particularly in scenarios with complex environmental influences. Future work will 
explore advanced ensemble learning techniques and real-time IoT-based monitoring to further enhance 
prediction accuracy and practical applicability.  

 
Keywords: egg production prediction, environmental factors, logistic regression, l1 regularization. 

 
Intisari— Produktivitas telur ayam sangat dipengaruhi oleh berbagai faktor lingkungan, seperti kualitas 
udara dan air. Namun, memprediksi produktivitas dengan akurat tetap menjadi tantangan karena 
kompleksitas interaksi variabel lingkungan serta risiko overfitting dalam model prediksi. Penelitian ini 
meningkatkan prediksi produktivitas telur dengan menggunakan Regresi Logistik dengan Regularisasi L1, 
yang meningkatkan generalisasi model melalui seleksi fitur otomatis. Metodologi penelitian mencakup 
pengumpulan data dari indikator lingkungan utama—Indeks Kualitas Udara (AQI), Indeks Kualitas Air (WQI), 
dan Humidex—dilanjutkan dengan preprocessing data, analisis eksploratif data (EDA), dan pelatihan model 
menggunakan Regresi Logistik dengan Regularisasi L1. Evaluasi model dilakukan menggunakan metrik 
klasifikasi dan analisis kurva pembelajaran untuk mengukur stabilitas serta efektivitas model. Hasil 
eksperimen menunjukkan bahwa Regresi Logistik tanpa regularisasi menghasilkan akurasi sebesar 90,7%, 
dengan kesalahan klasifikasi yang dominan pada kategori produksi rendah. Dengan menerapkan Regularisasi 
L1, akurasi meningkat secara signifikan menjadi 97%, membuktikan kemampuannya dalam mengurangi 
overfitting sekaligus meningkatkan performa klasifikasi. Studi ini juga membandingkan temuannya dengan 
penelitian sebelumnya, seperti penelitian De Col et al. (prediksi epidemi gandum, akurasi 80–85%) dan Jia Q1 
et al. (prediksi penyakit jantung, akurasi 92,39%), yang mengonfirmasi bahwa pendekatan kami mengungguli 
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model Regresi Logistik sebelumnya dalam tugas prediksi yang serupa. Temuan ini menunjukkan bahwa 
Regularisasi L1 merupakan solusi efektif untuk meningkatkan prediksi produktivitas telur, terutama dalam 
skenario yang dipengaruhi oleh faktor lingkungan yang kompleks. Penelitian selanjutnya akan 
mengeksplorasi teknik pembelajaran ansambel yang lebih canggih serta pemantauan berbasis IoT secara 
real-time guna lebih meningkatkan akurasi prediksi serta aplikabilitasnya di dunia nyata.  
 
Kata Kunci: Prediksi Produktivitas Telur, Faktor Lingkungan, Regresi Logistik, Regularisasi L1  
 

INTRODUCTION 
 

In the modern poultry industry, maintaining 
high egg production is crucial for the profitability 
and sustainability of operations [1]. Egg production 
is influenced by a wide range of factors, particularly 
environmental conditions such as air quality, water 
quality, temperature, humidity, and seasonal 
changes [2]. These environmental stressors can 
cause fluctuations in egg productivity, impacting 
not only the quantity of eggs produced but also the 
overall health and well-being of poultry [3]. Poor 
environmental conditions often lead to increased 
disease susceptibility and stress, which in turn 
reduces egg yield, causing significant economic 
losses for farmers [4]. To address these challenges, 
advancements in data analytics and machine 
learning have provided new opportunities to 
optimize farm management practices [5]. Predictive 
modeling has become an essential tool for 
anticipating production outcomes based on external 
variables such as weather patterns, pollution levels, 
and water quality indicators [6]. By leveraging these 
environmental factors, predictive models can help 
farmers make informed decisions, ensuring optimal 
conditions for poultry and ultimately improving 
production outcomes [7]. 

In recent years, machine learning has 
emerged as a powerful tool for improving 
prediction accuracy in various agricultural 
applications, including poultry farming [8]. 
Traditional regression-based models have often 
struggled to handle the complex, nonlinear 
relationships between environmental variables and 
egg production, leading to suboptimal predictive 
performance [9]. One key limitation is the presence 
of high-dimensional data, where irrelevant or 
weakly correlated features can introduce noise, 
increasing the risk of overfitting in predictive 
models. This challenge has prompted researchers to 
explore feature selection techniques and 
regularization methods to enhance model 
robustness and interpretability [10]. Among 
various regularization techniques, L1 
Regularization (Lasso Regression) has gained 
prominence for its ability to perform automatic 
feature selection by eliminating irrelevant 
predictors while retaining the most influential ones 

[11]. By applying L1 Regularization to Logistic 
Regression, this study aims to develop a more 
efficient predictive model for egg production that 
balances model accuracy and generalizability. 
Unlike traditional logistic regression models, which 
can suffer from high variance when dealing with 
correlated features, the L1-regularized model 
optimally selects key environmental indicators—
such as Air Quality Index (AQI), Water Quality Index 
(WQI), and Humidex—to improve classification 
performance [12].  

However, developing accurate and reliable 
models to predict egg production remains a 
challenge [13]. Traditional predictive models, such 
as Logistic Regression, have been widely used in 
various industries due to their simplicity and 
interpretability [14]. Nonetheless, when dealing 
with real-world agricultural datasets, these models 
often suffer from overfitting, where the model 
becomes too tailored to the training data and loses 
its ability to generalize well to new, unseen data 
[15]. This issue is particularly prevalent in datasets 
that contain a large number of features or complex, 
non-linear relationships between variables [16].  
The problem arises from the difficulty in creating a 
model that can balance between capturing relevant 
patterns in the data while avoiding overfitting [17]. 
Logistic Regression, while useful, can struggle with 
large, noisy datasets unless properly regularized 
[18]. Overfitting not only reduces the predictive 
power of the model but also leads to inaccurate 
predictions, which can mislead farm management 
decisions [19]. L1 regularization offers a solution to 
this issue by shrinking the coefficients of less 
important features to zero, effectively simplifying 
the model and reducing the risk of overfitting [20]. 
This technique is particularly beneficial for datasets 
with numerous features, as it performs automatic 
feature selection, keeping only the most relevant 
predictors. By incorporating L1 regularization into 
Logistic Regression, the model becomes more 
robust, with improved generalization to new data 
[21]. 

Despite the proven advantages of 
regularization techniques, there has been limited 
research specifically examining the effectiveness of 
L1 regularization in improving egg production 
prediction using environmental data [22]. Given the 
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complexity of agricultural environments and the 
variability of environmental factors, it is crucial to 
explore how L1 regularization can enhance 
predictive accuracy in this domain [23]. The main 
contributions of this study are twofold. First, it 
introduces the use of L1 regularization in Logistic 
Regression models for predicting egg production, 
effectively addressing the problem of overfitting 
commonly found in agricultural datasets. Second, 
this research demonstrates how L1 regularization 
significantly improves the model's ability to 
generalize to new, unseen data by performing 
automatic feature selection, leading to more 
accurate predictions in real-world agricultural 
environments. 

 
MATERIALS AND METHODS 

 
The methodology employed in this study 

consists of several essential steps, as illustrated in 
Figure 1.  Figure 1 clearly outlines the step-by-step 
methodology, beginning with the collection of 
environmental data relevant to egg production, 
followed by essential preprocessing steps such as 
handling missing values, scaling, and label encoding. 
The diagram then moves to the exploratory data 
analysis (EDA), where correlations and patterns 
among variables are explored. This is followed by 
the model training phase, where Logistic Regression 
with L1 regularization is applied. Finally, the model 
is evaluated using performance metrics and 
learning curve analysis to assess generalization and 

prevent overfitting. This figure illustrates the 
overall methodological framework used in this 
study. The process begins with data collection, 
followed by preprocessing, exploratory data 
analysis (EDA), and dataset splitting. The Logistic 
Regression model is trained with L1 Regularization 
to enhance generalization and reduce overfitting. 
The final evaluation phase includes accuracy 
metrics and learning curve analysis to assess model 
stability and effectiveness [24]. The process begins 
with the data collection of environmental factors 
such as the Air Quality Index (AQI), Water Quality 
Index (WQI), alongside other variables like 
temperature and humidity. Once the data is 
gathered, preprocessing is applied to ensure the 
dataset is clean and ready for model training.  

Preprocessing involves several key tasks: 
identifying and handling missing values, scaling 
numerical features for consistency, and converting 
the 'Production' column into numerical categories 
using a Label Encoder. After preprocessing, the 
dataset is divided into training and testing sets to 
facilitate the evaluation of the model's predictive 
performance. After that, Exploratory Data Analysis 
(EDA) was performed to examine the relationships 
between variables, visualize correlations, and 
identify outliers that may affect model accuracy. The 
next stage is to train the Logistic Regression model, 
utilizing L1 regularization to minimize overfitting 
and improve the model's ability to generalize 
effectively on unseen data.

 
Source: (Research Results, 2025) 

Figure 1. Proposed Method

Finally, the model's performance is thoroughly 
assessed using a range of evaluation metrics, 
including accuracy, precision, recall, and f1-score. 
Additionally, a learning curve analysis is performed 

to evaluate how the model's performance improves 
as the training data size increases. 

A. Dataset 



 

VOL. 10. NO. 4 MAY 2025 
. 

DOI: 10.33480 /jitk.v10i4.6409 
 

 

 

824 

The dataset used in this study, sourced from 
Kaggle, consists of 1501 records and includes 
various environmental and production variables 
that influence egg production in poultry farms. The 
humidex data, which is derived from temperature 
and humidity readings, was collected from both 
local meteorological stations and online weather 
services such as OpenWeatherMap and 
Weather.com, which provide historical and real-
time weather data through APIs. For air quality 
data, measurements were obtained from two main 
sources: environmental monitoring agencies, which 
track air quality parameters like particulate matter 
and nitrogen dioxide, and on-farm air quality 
sensors, which specifically monitor pollutants in the 
poultry environment.  

Water quality data was collected through on-
site water testing, which involved regular checks for 
factors such as pH levels, nitrates, and bacterial 
contamination. Additionally, data was obtained 
from local water authorities, which provide detailed 
reports on the quality of water from municipal 
supplies or natural sources used in poultry farming. 
The egg production data was sourced from farm 
records, including daily or weekly logs, and was 
supplemented by poultry management systems, 
software that tracks various production metrics 
such as the number of eggs produced and their 
weight. This combination of diverse data sources 
provides a comprehensive understanding of the 
environmental factors impacting egg production 
and serves as the foundation for the predictive 
modeling used in this study.  An explanation of these 
features is shown in Table 1. 

 

Table 1. Dataset features 
Feature Description 
AQI Air Quality Index, measures the level 

of air pollution.   
WQI Water Quality Index, indicates the 

quality of water.   
Humidex Humidex, a combination of 

temperature and humidity.   
Production Egg production levels, categorized as 

'High', 'Medium', or 'Low'.   

Source: (Research Results, 2025) 
 

B. Data Preprocessing 

The data preprocessing phase was essential 
to ensure that the dataset was clean, standardized, 
and ready for model training [25]. First, the dataset 
was checked for any missing values, which could 
negatively impact the model's performance. For 
numerical features like AQI, WQI, and Humidex, 
missing values were handled through imputation, 
where they were replaced with the mean or median 
of the respective feature. This approach ensured 

that no data points were lost while maintaining the 
integrity of the dataset. Next, feature scaling was 
applied to the numerical variables to standardize 
their ranges. StandardScaler was used to transform 
the values of AQI, WQI, and Humidex to have a mean 
of 0 and a standard deviation of 1. This scaling 
process helped to prevent any one feature from 
dominating the learning process and improved the 
model's performance and convergence rate. 

 

C. Exploratory Data Analysis (EDA) 

The heatmap (shown in Figure 2) illustrates the 
correlation between various environmental 
variables such as Air Quality Index (AQI), Water 
Quality Index (WQI), Humidex, and the target 
variable, Production. Figure 2 reveals significant 
relationships among the environmental variables. A 
strong positive correlation (0.79) is observed 
between AQI and Humidex, indicating that higher 
air quality levels tend to be associated with warmer 
and more humid conditions. Conversely, there is a 
strong negative correlation (-0.88) between WQI 
and Humidex, implying that water quality tends to 
decrease as humidity and temperature rise. The 
correlation values in this heatmap provide crucial 
insights that inform the feature selection and model 
development process. The heatmap provides 
insight into the relationships among key 
environmental factors [26].  

AQI and Humidex show a strong positive 
correlation (0.79), suggesting that improved air 
quality is associated with higher temperature and 
humidity levels. Meanwhile, WQI and Humidex 
exhibit a strong negative correlation (-0.88), 
indicating that lower water quality is linked to more 
humid conditions. Additionally, the weak 
correlation between AQI and production (0.15) 
suggests that air quality has a relatively minor 
impact on egg production compared to other 
variables.  Correlation values span from -1 to 1, with 
values approaching 1 representing a strong positive 
correlation, values nearing -1 indicating a strong 
negative correlation, and values close to 0 
suggesting minimal or no correlation between the 
variables. [27].   

From the heatmap, we can observe that AQI 
and Humidex show a relatively strong positive 
correlation (0.79), suggesting that as air quality 
improves, the Humidex index, which reflects 
temperature and humidity, tends to increase. On the 
other hand, there is a strong negative correlation 
between WQI and Humidex (-0.88), indicating that 
higher humidity and temperature levels are 
associated with lower water quality. A negative 
correlation is also evident between AQI and WQI (-
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0.80), implying that as air quality worsens, water 
quality tends to degrade as well.   

 
Source: (Research Results, 2025) 

Heatmap Correlation 

The relationship between Production and the 
environmental variables reveals key insights. WQI 
has a negative correlation with Production (-0.40), 
suggesting that lower water quality is associated 
with reduced egg production. Meanwhile, Humidex 
shows a moderate positive correlation with 
Production (0.38), indicating that higher humidity 
and temperature levels may be linked to an increase 
in egg production. The AQI has a weak positive 
correlation with Production (0.15), signifying a 
relatively minor influence of air quality on 
production. 

In order to better understand the 
relationship between environmental factors and 
egg production, we performed exploratory data 
analysis (EDA) focusing on key variables such as 
AQI (Air Quality Index), WQI (Water Quality Index), 
and Humidex. The following figures (Figures 1 to 4) 
illustrate the distribution and variability of these 
environmental factors across different egg 
production categories ("High," "Medium," and 
"Low"). The visualizations provide a clear picture of 
how these factors may influence production 
outcomes, offering valuable insights for further 
model development and optimization. Below is a 
detailed interpretation of each figure. 

 
Source: (Research Results, 2025) 
Figure 3. Production Category Distribution Train / 

Test Data Splitting 

Figure 3 bar plot illustrates the distribution of 
the three production categories: "High," "Medium," 
and "Low." The bar chart in Figure 3 confirms that 
the dataset is well-balanced, with nearly equal 
numbers of instances in each production category: 
High, Medium, and Low. This balance ensures fair 
model training, preventing bias toward any one 
class and allowing for more reliable generalization 
across categories. The dataset is well-balanced, with 
each category containing approximately 500 data 
points. This balanced distribution is crucial for 
ensuring that the model does not become biased 
towards one class, leading to fairer and more 
reliable predictions. The equal distribution also 
facilitates better model training, as each production 
level is adequately represented. Each category has 
nearly equal representation with approximately 
500 data points per category, which indicates a 
balanced dataset across the production categories. 
This balance is crucial for model training, ensuring 
that no category is overrepresented or 
underrepresented, thus preventing bias in model 
predictions. 

Figure 4 shows the distribution of Air Quality 
Index (AQI) values across the three production 
categories. The Medium Production category 
exhibits a higher median AQI with a wider 
interquartile range, indicating more variability in 
air quality for this group. In contrast, High and Low 
production categories tend to have more stable AQI 
conditions, suggesting that extremely good or poor 
air quality is less favorable for optimal production. 
The "Medium" production category shows a 
significantly higher median AQI, with a wide 
interquartile range, indicating more variability in 
air quality for this group. The "High" and "Low" 
production categories exhibit lower AQI values, 
suggesting that extreme production levels are 
associated with more stable air quality conditions, 
either low or relatively high. 

 
Source: (Research Results, 2025) 

Figure 4. AQI Boxplot by Production Category 

illustrates the Water Quality Index (WQI) for 
each production category. From the boxplot in 
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Figure 4, it is evident that the Medium category 
experiences the highest variability in AQI values, as 
reflected in the larger interquartile range. 
Meanwhile, the High and Low categories tend to 
cluster more closely around their medians, 
indicating more consistent air quality within those 
groups. Interestingly, the "High" production 
category corresponds to the highest WQI values, 
with a narrow range of variation, indicating optimal 
water quality conditions for maximum production. 
On the other hand, the "Medium" production 
category has the lowest WQI values, possibly 
suggesting that suboptimal water quality can 
reduce production to intermediate levels.   

Figure 5 illustrates the Water Quality Index 
(WQI) for each production category. The boxplot 
clearly shows that the High production group 
benefits from optimal water quality, with a higher 
median WQI and less variability. In contrast, the 
Medium group shows the lowest WQI scores and 
widest spread, suggesting that suboptimal water 
conditions might correlate with reduced egg 
production. The High Production category is 
associated with the highest WQI values, suggesting 
that optimal water quality supports increased egg 
production. Conversely, the Medium Production 
category has the lowest WQI values, implying that 
poor water quality negatively affects egg yield. The 
results highlight the significant impact of water 
conditions on poultry productivity. Interestingly, 
the "High" production category corresponds to the 
highest WQI values, with a narrow range of 
variation, indicating optimal water quality 
conditions for maximum production. On the other 
hand, the "Medium" production category has the 
lowest WQI values, possibly suggesting that 
suboptimal water quality can reduce production to 
intermediate levels. 

 
Source: (Research Results, 2025) 

Figure 5. Boxplot of WQI by Production Category 

Figure 6 shows for Humidex that the 
"Medium" production category tends to occur in the 
highest temperature and humidity conditions. The 
visualization highlights that extreme Humidex 
levels do not necessarily result in High production. 

Instead, High and Low production levels appear to 
benefit from more moderate temperature and 
humidity ranges, as indicated by their tighter box 
distributions and lower medians. This suggests that 
while moderate egg production thrives in warmer 
and more humid environments, extreme humidity 
levels do not necessarily lead to peak production. 
Both High and Low production categories exhibit 
lower Humidex values, reinforcing the idea that 
poultry production performs best under more 
moderate climatic conditions. Conversely, both the 
"High" and "Low" production categories are 
associated with lower Humidex values, which 
suggests that poultry production at extreme levels 
(either high or low) occurs under more moderate 
climatic conditions. 

 
Source: (Research Results, 2025) 

Figure 6. Boxplot of Humidex by Production 
Category 

D. Data Split 

After the data preprocessing steps, the dataset 
was split into training and testing sets to evaluate 
the model’s performance effectively [28]. The 
features (AQI, WQI, Humidex, and other 
environmental factors) were used as input (X), 
while the "Production" column, which represents 
the egg production levels, served as the target 
variable (y). The dataset was divided into an 80-20 
split, with 80% allocated for training the model and 
20% set aside for testing. This approach allows the 
model's performance to be evaluated on unseen 
data, reducing the risk of overfitting and offering a 
more accurate assessment of its generalization 
ability. 
 
E. Model Training 

In this study, the Logistic Regression model 
was selected for its capability to handle multi-class 
classification problems effectively and its 
interpretability [29]. Logistic Regression works by 
modeling the probability of each class as a linear 
function of the input features and applying a logistic 
function (also known as a sigmoid function) to 
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produce probabilities [30]. For a binary 
classification, the logistic regression equation is:   

𝑃(𝑦 = 1|𝑋) =
1

1+𝑒−(β0+β1𝑋1+β2𝑋2+⋯+β𝑛𝑋𝑛)                                      (1) 

Where (P(Y = 1|X))  represents the probability that 
the output class ( Y ) belongs to category 1 given 
input( X ), (β0) is the intercept (bias), (β1, β2, … , βn) 
are the coefficients for each independent feature,  
(x1, x2, … , xn) are the feature values and ( e ) is the 
base of the natural logarithm. 

For multi-class classification, Logistic 
Regression extends the probability calculation 
using the softmax function, which converts logits 
into probabilities: 

𝑃(𝑌 = 𝑘|𝑋) =
𝑒(β𝑘𝑋)

∑ 𝑒
(β𝑗𝑋)𝐾

𝑗=1

                     (2) 

Where ( K ) is the total number of output 
classes, (βk) represents the coefficient vector for 
class ( k ) and The denominator ensures that all 
class probabilities sum to 1. To prevent overfitting, 
L1 Regularization (Lasso Regression) is applied, 
which introduces a penalty term in the loss 
function: 

𝐿(β) = − ∑ [𝑦𝑖 log 𝑃𝑖 + (1 −𝑛
𝑖=1

𝑦𝑖) log(1 − 𝑃𝑖)] + λ ∑ |β𝑗|𝐿(β)𝑝
𝑗=1 =

− ∑ [𝑦𝑖 log 𝑃𝑖 + (1 − 𝑦𝑖) log(1 −𝑛
𝑖=1

𝑃𝑖)] + λ ∑ |β𝑗|𝑝
𝑗=1                                                  (3)   

Where (L(β)) is the log-likelihood loss function, (yi) 
represents the actual label for the ( i )-th 
observation, (Pi) is the predicted probability from 
the logistic function, ( λ) is the regularization 
parameter controlling the strength of the penalty 
and (βj) are the feature coefficients. 

To improve the model's performance and 
reduce overfitting, L1 Regularization (also called 
Lasso) was applied. L1 regularization introduces a 
penalty to the model based on the absolute values of 
the coefficients, which encourages sparsity by 
shrinking some coefficients to exactly zero. The 
equation for Logistic Regression with L1 
regularization is as follows: 

𝐿(β) = − ∑ [𝑦(𝑖) log (ℎβ(𝑥(𝑖))) +𝑚
𝑖=1

(1 − 𝑦(𝑖)) log (1 − ℎβ(𝑥(𝑖)))] +

λ ∑ |β𝑗|𝑛
𝑗=1                                   (4) 

Where (𝐿(β)) is the loss function (log-loss), 

(hβ(x(i))) represents the logistic function, and (λ) is 

the regularization parameter that controls the 
strength of the penalty. The second term, 

(λ ∑ |βj|)
n
j=1 , applies the L1 penalty, which helps in 

performing feature selection by setting less 
important feature coefficients to zero. Through 
GridSearchCV, the hyperparameters of the model, 
including the regularization strength 
(λ) (represented by C in the model) and the penalty 
type, were tuned to find the best configuration. The 
final model was trained with these optimized 
parameters and evaluated on the test set, yielding 
accuracy and other performance metrics. 
F. Evaluation 

During the evaluation phase, the 
performance of the Logistic Regression model was 
measured using key classification metrics such as 
accuracy, precision, recall, F1-score, and the 
confusion matrix. These metrics offered valuable 
insights into the model's effectiveness in predicting 
the various production categories (High, Medium, 
Low) based on environmental features. The 
application of L1 regularization significantly 
improved the model’s performance by preventing 
overfitting, leading to a better balance between bias 
and variance. This improvement was particularly 
visible in metrics such as the F1-score, where the 
model exhibited higher precision and recall across 
the various production categories. Additionally, 
cross-validation was employed to ensure the 
robustness and generalizability of the model. Cross-
validation divides the dataset into several folds, 
commonly 5 or 10, where the model is trained on all 
folds except one, which is used as the validation set. 
This process is repeated for each fold, and the 
average performance across all folds is calculated to 
provide a more dependable evaluation of the 
model's accuracy. The cross-validation accuracy is 
computed as: 

Cross-validation accuracy =
1

𝑘
∑ Accuracy𝑖

𝑘
𝑖=1        (5) 

where ( k ) is the number of folds, and 
(Accuracyi) is the accuracy for the (ith)fold. This 
technique ensures that the model is not overfitting 
to any particular subset of the data and helps 
evaluate the model's ability to generalize to unseen 
data. To gain a deeper understanding of the model's 
learning behavior, a Learning Curve was plotted. 
The learning curve provides a visual representation 
of how the model’s performance changes as the 
training set size increases. It shows two key plots: 
The training score reflects the model's accuracy on 
the training dataset, whereas the cross-validation 
score demonstrates the model's ability to generalize 
to new, unseen data. The learning curve equation 
can be expressed as: 
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Learning Curve = (
1

𝑛
∑ Train 𝑛

𝑖=1

Error𝑖 ,
1

𝑚
∑ Validation Error𝑗

𝑚
𝑗=1 )     (6) 

where ( n ) is the number of training 
examples and ( m ) is the number of validation 
examples. This equation tracks both the training 
error and the validation error as the model is 
trained on progressively larger subsets of the 
dataset. In our analysis, the learning curve revealed 
that with a smaller training set, the model exhibited 
high variance, resulting in lower validation accuracy 
and signs of underfitting. However, as the training 
set size increased, the *xcross-validation score** 
improved, indicating that the model was learning 
better and generalizing more effectively to unseen 
data. The use of L1 regularization further improved 
this behavior by reducing overfitting, as seen in the 
reduced gap between the training and validation 
curves. 
 

RESULTS AND DISCUSSION 
 
The results of this study demonstrate the 

effectiveness of applying Logistic Regression and L1 
regularization in predicting egg production levels 
based on environmental factors. The analysis 
compares the performance of both models, 
highlighting the impact of regularization on 
improving accuracy and other key metrics.  

The performance of the Logistic Regression 
model and its improved version with L1 
regularization were evaluated using several key 
metrics, including accuracy, precision, recall, and 
F1-score. In this dataset, Class 0 represents low egg 
production, Class 1 represents medium production, 
and Class 2 represents high production. The Logistic 
Regression model, without regularization, achieved 
an accuracy of 0.91. For Class 0 (low production), 
the model displayed perfect precision (1.00) but 
had a lower recall (0.75), resulting in an F1-score of 
0.86. In Class 1 (medium production), the model 
performed exceptionally well, achieving both 
precision and recall near 1.00, yielding an F1-score 
of 0.99. However, in Class 2 (high production), the 
model had a recall of 0.98 and precision of 0.76, 
leading to an F1-score of 0.86, indicating room for 
improvement in predicting high production levels. 

After applying L1 regularization, the model's 
accuracy improved to 0.97. For Class 0 (low 
production), the precision dropped slightly to 0.93, 
but the recall increased to 1.00, resulting in a much 
higher F1-score of 0.96. For Class 1 (medium 
production), the model maintained its strong 
performance with precision and recall values of 
1.00 and 0.99, respectively, and an F1-score of 1.00. 

In Class 2 (high production), the model’s precision 
improved significantly to 0.99, while recall slightly 
decreased to 0.91, resulting in an F1-score of 0.94. 

Before implementing L1 regularization, a 
baseline Logistic Regression model was trained and 
evaluated. The initial model achieved an accuracy of 
90.67%, highlighting its capability to predict egg 
production levels based on environmental factors. 
However, analysis of the confusion matrix revealed 
that misclassification errors were most prominent 
in the Medium production class, where a significant 
number of instances were incorrectly classified as 
Low or High. This suggests that overlapping 
environmental conditions across production 
categories made it challenging for the model to 
accurately distinguish between them. 

After implementing L1 regularization, the 
model’s accuracy increased to 97%, demonstrating 
a substantial improvement in classification 
performance. The regularization technique 
effectively reduced overfitting by setting less 
relevant feature coefficients to zero, allowing the 
model to focus on the most influential 
environmental variables. This enhancement 
resulted in a more balanced precision and recall 
across all production categories, reducing the 
number of misclassified instances. The comparison 
between the initial Logistic Regression model and 
the regularized model is summarized in the 
following table 2: 

Table 2. The comparison between the initial Logistic 
Regression model and the regularized model 

Metric 

Before 
Regularization 

(Logistic 
Regression) 

After 
Regularization 

(L1 Logistic 
Regression) 

Accuracy 90.67% 97% 
Precision (Low Production) 1.00 0.93 
Recall (Low Production) 0.75 1.00 
F1-Score (Low Production) 0.86 0.96 
Precision (Medium 
Production) 

0.98 1.00 

Recall (Medium Production) 1.00 0.99 
F1-Score (Medium 
Production) 

0.99 1.00 

Precision (High Production) 0.76 0.99 
Recall (High Production) 0.98 0.91 
F1-Score (High Production) 0.86 0.94 

Source: (Research Results, 2025) 
 
To examine the predictive performance in 

more detail, the Logistic Regression model without 
regularization initially achieved an accuracy of 
90.67%, with noticeable misclassification especially 
in the ‘High’ and ‘Medium’ production classes. 
Particularly, only 75% of the ‘High’ class examples 
and 98% of the ‘Medium’ class examples were 
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correctly predicted, while the rest were 
misclassified. 

After applying L1 regularization, the 
accuracy of the model significantly improved to 
97%. The classification report shows that 100% of 
the ‘High’ production class examples were correctly 
predicted, along with 99% of the ‘Low’ production 
class examples and 91% of the ‘Medium’ production 
class examples. This considerable increase in 
accuracy highlights the ability of the improved 
model to properly generalize and identify egg 
production categories across a wide range of 
environmental conditions. 

The numerical improvements shown in Table 
X provide strong evidence of the benefits of 
applying L1 regularization in Logistic Regression. 
However, to further validate this improvement, we 
analyze the model's learning behavior through the 
learning curve in Figure Y. The learning curve 
reinforces the numerical findings, demonstrating 
that the initial model (without regularization) 
suffered from high variance, as indicated by the 
large gap between the training and validation 
accuracy. This aligns with the low recall for Class 0 
(low production) in Table X, confirming that the 
model had difficulty generalizing for this category. 

With the L1 regularized model, the training 
and validation curves converge more smoothly, 
reflecting improved generalization ability, which 
directly corresponds to the increased recall for 
Class 0 and improved overall accuracy in Table X. 
This indicates that L1 regularization effectively 
prevented overfitting, allowing the model to 
perform consistently across all production 
categories. Additionally, the confusion matrix in 
Figure Z further supports these findings by 
highlighting the reduction in misclassified 
instances, particularly for medium and high 
production categories. This aligns with the 
precision-recall improvements seen in Table X, 
demonstrating that L1 regularization enhanced the 
model’s confidence in predicting high-production 
cases without sacrificing accuracy in other 
categories.  

The table clearly illustrates the 
improvements achieved after implementing L1 
regularization. Notably, the recall for Low 
Production increased from 0.75 to 1.00, ensuring 
fewer misclassifications in this category. Similarly, 
the precision for High Production improved 
significantly from 0.76 to 0.99, indicating that the 
model is more confident in its classifications. These 
results validate the effectiveness of L1 
regularization in enhancing model accuracy while 
improving its ability to generalize to new, unseen 
data. 

 This demonstrates that L1 regularization 
helped the model achieve better balance across all 
classes, particularly in improving the precision and 
recall for low and high production categories. The 
results of both models are summarized in the table 
3 below: 

 
Table 3. Evaluation Matrix 

Metric 
Logistic 

Regression 
L1 Regularization 

Accuracy 0.91 0.97 
Precision (Class 0) 1.00 0.93 
Recall (Class 0) 0.75 1.00 
F1-Score (Class 0) 0.86 0.96 
Precision (Class 1) 0.98 1.00 
Recall (Class 1) 1.00 0.99 
F1-Score (Class 1) 0.99 1.00 
Precision (Class 2) 0.76 0.99 
Recall (Class 2) 0.98 0.91 
F1-Score (Class 2) 0.86 0.94 

Source: (Research Results, 2025) 
 

In summary, L1 regularization proved 
effective in reducing overfitting and improving the 
model’s generalization, leading to more accurate 
predictions across all production categories. The 
improvement in accuracy from 0.91 to 0.97, along 
with the enhanced F1-scores for each class, 
highlights the benefits of regularization in 
optimizing the model’s performance. 
The learning curve shown in Figure 7 provides an 
in-depth evaluation of the Logistic Regression 
model with L1 regularization, showcasing how the 
model's performance improves as more training 
data is introduced. As shown in Figure 7, the model 
initially struggled with underfitting due to limited 
training samples, indicated by a large gap between 
training and validation performance. However, with 
more training data, the curves converge and 
stabilize near 1.0, confirming the model’s improved 
generalization and robustness. This convergence 
demonstrates the effectiveness of regularization in 
preventing overfitting and achieving consistent 
performance. Initially, the model exhibits high 
variance when trained on a small dataset, leading to 
low validation accuracy. As more training data is 
introduced, both training and cross-validation 
scores increase significantly. At around 500 
samples, they converge at approximately 0.90, 
indicating effective learning. The final stage, with 
800–1000 samples, demonstrates strong 
generalization capabilities, proving that L1 
regularization effectively prevents overfitting. 

The curve illustrates the relationship 
between the training score (red line) and the cross-
validation score (green line) across different 
training set sizes. Initially, with fewer training 
samples (100-200), both the training and cross-
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validation scores are relatively low, indicating that 
the model is struggling to fit the data effectively. As 
the amount of training data increases, particularly 
between 200 and 500 samples, there is a significant 
improvement in both scores. At around 500 
samples, the training and cross-validation scores 
converge, reaching approximately 0.90, which 
suggests that the model is learning effectively from 
the data and is generalizing well. 

 
Source: (Research Results, 2025) 

Figure 7. Learning Curve 

In the later stages, with 800 to 1,000 samples, 
both scores stabilize close to 1.0, indicating that the 
model performs well across different datasets and 
is not overfitting. The convergence of the scores 
shows that the model has learned to generalize 
appropriately, without overfitting the training data, 
which is a direct benefit of using L1 regularization. 
The small gap between the training and cross-
validation scores, along with their high values, 
confirms that the model maintains strong 
performance and balance between fitting the 
training data and generalizing to new data. This 
learning curve analysis highlights the robustness 
and efficiency of the Logistic Regression model with 
L1 regularization in this context. 

The discussion from this study demonstrates 
the effectiveness of applying Logistic Regression 
with L1 regularization to predict egg production 
based on environmental factors. The initial Logistic 
Regression model achieved an accuracy of 90.67%, 
but with the application of stronger regularization 
(L1), the model accuracy increased significantly to 
97%. This suggests that regularization plays an 
important role in improving model performance by 
overcoming overfitting and improving model 
generalization. In addition, the evaluation metrics, 
including precision, recall, and F1-score, showed 
balanced performance across all production classes, 
with the strongest performance recorded in the Low 
and Medium production categories. 

Compared to other predictive modeling 
studies using Logistic Regression, this research 

shows a marked improvement in accuracy. For 
instance, De Col et al., in their study on Predicting 
Wheat Head Blast Epidemics, achieved an accuracy 
ranging between 0.8 and 0.85. Additionally, the 
research conducted by Jia Q1 et al. on Heart Disease 
Prediction using Logistic Regression with feature 
selection reported an accuracy of 92.39%. These 
results, while notable, fall short of the 97% accuracy 
achieved in this study. The use of L1 regularization 
in this research was a key factor in this success, 
allowing the model to select the most relevant 
features and reducing the impact of noise in the 
dataset, thus enhancing the overall predictive 
accuracy. 

The findings of this study demonstrate that 
Logistic Regression with L1 regularization is highly 
effective for predicting egg production, 
outperforming similar Logistic Regression models 
applied in other domains. By employing 
regularization techniques, the model in this study 
achieved superior accuracy, highlighting the 
importance of regularization in improving 
predictive performance and offering insights into 
how Logistic Regression can be optimized for 
specific applications. 

 
 

CONCLUSION 
 

This study directly addresses the core issue 
outlined in the background, which highlights the 
difficulty of accurately predicting egg production 
due to complex environmental influences and the 
tendency of models to overfit when handling 
multiple correlated variables. By implementing L1 
regularization within a Logistic Regression 
framework, the research effectively mitigates 
overfitting and enhances model generalization. The 
proposed model focuses on key environmental 
features—Air Quality Index (AQI), Water Quality 
Index (WQI), and Humidex—allowing for more 
reliable and interpretable predictions. This solution 
responds to the research problem by offering a 
method that not only improves accuracy but also 
ensures stability and scalability for real-world 
poultry production applications. This study 
successfully addresses the challenge of predicting 
egg production based on environmental factors by 
implementing L1 regularization in Logistic 
Regression, significantly improving model 
performance. The results demonstrate that 
applying L1 regularization enhances classification 
accuracy from 90.67% to 97%, effectively reducing 
overfitting while selecting the most relevant 
environmental variables such as Air Quality Index 
(AQI), Water Quality Index (WQI), and Humidex. 
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This method provides a more generalizable model, 
ensuring balanced precision, recall, and F1-scores 
across different production levels (High, Medium, 
and Low). 

Compared to previous studies, such as De Col 
et al. (Predicting Wheat Head Blast Epidemics) and 
Jia Q1 et al. (Heart Disease Prediction using Logistic 
Regression with Feature Selection), which achieved 
accuracies of 80–85% and 92.39%, respectively, our 
approach outperforms traditional Logistic 
Regression models by leveraging L1 regularization 
for automatic feature selection. This confirms that 
reducing noise from irrelevant features significantly 
enhances prediction reliability, making it applicable 
to real-world poultry farming scenarios. The 
findings of this study directly address the issue 
highlighted in the background: traditional 
prediction models often struggle to accurately 
forecast egg production due to complex 
environmental dependencies. By integrating L1 
regularization, the proposed approach successfully 
mitigates this limitation, providing a scalable and 
interpretable solution. Future studies can extend 
this research by incorporating additional 
environmental and operational factors, such as feed 
quality, lighting conditions, and temperature 
control systems, to refine prediction accuracy 
further. Additionally, ensemble learning models 
(e.g., Random Forest, XGBoost) and deep learning 
architectures could be explored to compare their 
effectiveness against regularized Logistic 
Regression. Implementing real-time IoT-based 
monitoring systems in poultry farms could also 
enhance prediction capabilities, enabling dynamic 
adjustments to farming conditions and improving 
overall productivity and sustainability. 
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