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Abstract— Flower classification is an essential activity in multiple fields, including healthcare, cosmetics, 
agriculture, and environmental monitoring. Deep learning has achieved notable success in intricate picture 
categorization problems, especially through the utilization of lightweight convolutional neural network (CNN) 
architectures like MobileNet and MobileNetV2. This work assesses and contrasts the efficacy of four prevalent 
optimizers Adam, RMSProp, SGD, and Nadam on datasets of flower and herbal leaf images. Experiments were 
performed using a uniform training configuration on a CPU-based system devoid of GPU acceleration, 
evaluating both model efficacy and computational efficiency. Evaluation criteria including accuracy, precision, 
recall, F1-score, and loss were utilised, augmented by confusion matrix analysis. The findings indicate that 
MobileNetV2 regularly surpasses the baseline MobileNet, with RMSProp attaining the highest accuracy 
(99.52%) and the lowest loss (0.0126) on the herbal dataset. In the flower dataset, RMSProp achieved the 
highest accuracy of 96.67%. Moreover, MobileNetV2 necessitated increased memory and extended training 
duration, while delivering superior classification performance overall. These findings underscore the 
significance of optimizer selection and model architecture in lightweight deep learning applications, especially 
for deployment on resource-limited devices. 
 
Keywords: deep learning, flower classification, MobileNetV2, optimization algorithms 
 
Intisari— Klasifikasi bunga adalah kegiatan penting di berbagai bidang, termasuk perawatan kesehatan, 
kosmetik, pertanian, dan pemantauan lingkungan. Deep Learning telah mencapai kesuksesan luar biasa 
dalam masalah kategorisasi gambar yang rumit, terutama melalui penggunaan arsitektur CNN ringan seperti 
MobileNet dan MobileNetV2. Dalam penelitian ini, empat pengoptimal yang sering digunakan (Adam, 
RMSProp, SGD, dan Nadam) dievaluasi dan dibandingkan untuk kumpulan data gambar bunga dan daun 
herbal. Eksperimen ini dilakukan dengan konfigurasi pelatihan seragam pada sistem berbasis CPU tanpa 
akselerasi GPU untuk menilai efektivitas model dan efisiensi komputasi. Kriteria evaluasi seperti akurasi, 
presisi, recall, skor F1, dan loss digunakan, dilengkapi dengan analisis Confusion Matrix. Penelitian ini 
menunjukkan bahwa MobileNetV2 secara konsisten melampaui MobileNet dasar, dengan RMSProp mencapai 
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akurasi tertinggi (99,52%) dan loss terendah (0,0126) pada dataset herbal. Dalam dataset bunga, RMSProp 
mencapai akurasi tertinggi yaitu 96,67% dan loss (0.1071). Selain itu, MobileNetV2 memerlukan peningkatan 
memori dan durasi pelatihan yang lebih lama, sambil memberikan kinerja klasifikasi yang unggul secara 
keseluruhan. Hasil ini menunjukkan bahwa arsitektur model dan pemilihan optimizer sangat penting untuk 
aplikasi pembelajaran mendalam ringan, terutama pada perangkat dengan sumber daya terbatas.  
 
Kata Kunci: pembelajaran mendalam, klasifikasi bunga, MobileNetV2, algoritma optimisasi 
 

INTRODUCTION 
 

Flower classification is an essential activity in 
multiple fields, including healthcare, cosmetics, 
agriculture, and environmental monitoring [1], [2]. 
Manual classification is difficult because of 
significant intra-class heterogeneity in color, shape, 
and texture [3], [4]. Automated recognition systems 
employing visual attributes can augment plant 
growth monitoring and facilitate early disease 
identification, hence enhancing production and 
decision-making [5], [6]. 

The increasing interest in flower picture 
classification has prompted the development of 
innovative methodologies such as parameter 
selection and optimization methods in intricate 
image classification tasks to improve model 
performance and accuracy [7], [8]. Precise 
identification facilitates several applications, 
including agricultural surveillance, species 
delineation, and the development of botanical 
products [9], [10]. The implementation of 
autonomous flower classification systems will 
enhance digitization and efficiency across various 
industries, thereby providing support to them [11], 
[12]. 

Because of their strong feature extraction 
capabilities, Convolutional Neural Networks (CNNs) 
have demonstrated remarkable effectiveness in 
picture categorization tasks [13], [14].  The efficacy 
of CNNs is significantly affected by training setups, 
especially the selection of optimizer [15], [16]. 
Optimizers are algorithms that adjust neural 
network weights to reduce the loss function during 
training [17]. Every optimizer employs a distinct 
methodology for weight modification, influencing 
convergence rate, stability, and overall model 
efficacy [18]. Frequently utilized optimizers are 
Stochastic Gradient Descent (SGD), Adam (Adaptive 
Moment Estimation), Nadam (Nesterov-accelerated 
Adam), and RMSProp (Root Mean Square 
Propagation), each providing unique benefits in 
learning rate modulation and momentum 
management [19]. 

MobileNet and MobileNetV2 are streamlined 
convolutional neural network designs intended for 
mobile and embedded vision applications [20]. 
MobileNet employs depthwise separable 

convolutions to minimize computing expenses [21], 
[22], but MobileNetV2 enhances performance by 
integrating inverted residual blocks and linear 
bottlenecks, so promoting improved gradient flow 
and feature learning without augmenting model 
complexity [23], [24].  

Notwithstanding architectural enhancements, 
the choice of optimization algorithm continues to be 
a pivotal element influencing CNN performance 
[25], particularly for compact architectures 
designed for implementation on resource-limited 
device [26], [27]. Furthermore, whereas several 
research have utilized CNNs for flower classification 
[28]. few have rigorously examined the effects of 
various optimizers on performance using 
standardized datasets and controlled training 
environments [29]. 

Flower classification is among the most 
coveted subjects in older literature. For example, 
the research in [30], using CNN and SVM for flower 
image classification. The CNN model performed well 
achieving 91.6% accuracy and 78.3% for SVM. 
Another research One of the most sought-after 
topics regarding earlier works is flower 
classification. For instance, the work in [31], applied 
CNN with Nadam optimization for flower 
classification, the performance of both from-scratch 
and transfer learning methodologies on the 
Oxford17 and Oxford102 datasets attained 60%, 
84%, and 42%, 64%, respectively.  

A further experiment focused on herbal plant 
leaf categorization is provided to better assess the 
model's generalization capabilities. This 
comparative assignment evaluates the model's 
robustness across various plant morphologies, 
despite flower categorization being the primary 
focus [32], [33]. 

This paper examines the efficacy of four 
optimization algorithms SGD, Adam, Nadam, and 
RMSProp utilized in MobileNet and MobileNetV2 
architectures. The goal is to evaluate how optimizer 
selection affects generalization abilities, 
convergence traits, and classification accuracy. To 
evaluate robustness, experiments are performed on 
two datasets: a floral image dataset and a bespoke 
herbal leaf dataset. The incorporation of herbal 
leaves facilitates additional examination of the 
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model's adaptation to analogous but 
morphologically diverse classification tasks [34].  

Given this context, this work examines 
different optimizer and architecture combinations, 
offering insights into the trade-offs between 
computational efficiency and performance as well 
as useful recommendations for deploying 
lightweight deep learning models in actual 
categorization scenarios. 
 

MATERIALS AND METHODS 
 

This study sought to assess the efficacy of 
MobileNetV2 in classifying flower images by 
employing optimization strategies to enhance 
model accuracy. This research aims to produce a 
more precise, stable, and efficient flower 
classification model, thereby advancing deep 
learning technology for object recognition through 
image classification.  
 
Data Collection 

This study leveraged data from the Kaggle 
platform, consisting of a dataset of 1,200 flower 
photos classified into three categories: daisy, rose, 
and tulip, used for algorithm training. This work 
incorporates supplementary data obtained from the 
Mendeley Data platform, featuring a dataset of 
1,050 herbal leaf photos classified into three 
categories: kemangi (basil), jambu biji (guava), and 
nangka (jackfruit). 
 
Data Preprocessing  

This study employed a dataset of flower 
images classified into three categories, daisy, rose, 
and tulip, as well as a dataset of herbal leaf images 
categorized into three groups: kemangi (basil), 
jambu biji (guava), and nangka (jackfruit). 

The total number of flower images used is 
1,200, and the total number of herbal leaf used is 
1,050, with the distribution presented in Table 1. 

Table 1. Number of Images 
No Images Type Number of Images 

 

1 Flower daisy 400 
2 Flower rose 400 
3 Flower tulip 400 

Total 1,200  

1 Herbal leaf kemangi (basil) 350 
2 Herbal leaf jambu biji (guava) 350 
3 Herbal leaf nangka (jackfruit) 350 

Total 1,050   

Source : (Research Result, 2025) 
 

Table 1 displays flowers data obtained from 
Kaggle:(https://www.kaggle.com/datasets/imspar
sh/flowers-dataset) and herbal leaf data from 
Mendeley Data 
(https://data.mendeley.com/datasets/s82j8dh4rr

/1), with the data pre-categorized by type. The 
images represent of each type of flower images and 
herbal leaf images, is shown in Figure 1. 
 

 
(a) 

 
(b) 

Source : (a) (Kaggle.com, 2021) 
 (b) (Mendelay Data.com, 2022) 
Figure 1. Sample of Image Flowers & Herbal Leaves 

 
Figure 1 displays samples of floral photos from 

the collection, specifically daisy, rose, and tulip. The 
dataset additionally comprises herbal leaves for 
comparison, specifically kemangi (basil), jambu biji 
(guava), and nangka (jackfruit). The dataset is 
equitably distributed among six classes and exhibits 
considerable diversity in color and shape. This 
combination facilitates a more comprehensive 
evaluation of the model's generalization capability 
across diverse plant species. 
 
Research Framework 

This study was conducted through several 
systematic stages. Each stage was designed to 
ensure that the model development process was 
structured, efficient, and aligned with deep learning 
best practices. The research process has multiple 
primary steps, as depicted in Figure 2 below. 

Figure 2 illustrates that the research workflow 
commences with the acquisition of two datasets: a 
flower and herbal leaf dataset obtained. All images 
undergo preprocessing processes before comparing 
the two architectures, MobileNet and MobileNetV2. 
The grid search method sought to assess the 
influence of each optimizer on validation accuracy, 
with the ideal model chosen according to the 
highest validation performance. Four optimizers 
Adam, RMSProp, Stochastic Gradient Descent (SGD), 
and Nadam are assessed to evaluate the influence of 
optimization strategies on model performance. The 
conventional classification metrics of accuracy, 
precision, recall, and F1-score are utilized to assess 
the trained models. The model's performance was 
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subsequently assessed, analyzed, interpreted, and 
conclusions derived from the results. 

 

 
Source : (Research Result, 2025) 

Figure 2. Research Framework 
 
1. Data Collection  

The dataset of flower images  classified into 
three categories, daisy, rose, and tulip was collected 
from reliable sources. Besides the flower image 
collection, this work provides a supplementary 
dataset consisting herbal leaf images sorted into 
three categories, kemangi (basil), jambu biji 
(guava), and nangka (jackfruit). The dataset 
underwent a verification process to ensure quality 
for model training 

 
2. Preprocessing Data 

All images undergo preprocessing phases, 
which encompass resizing, normalization of pixel 
values, and the use of data augmentation 
techniques, including rotation, zooming, and 
horizontal flipping, prior to model implementation.  
These measures aim to diversify the dataset and 
mitigate the risk of overfitting during training.   The 
dataset was subsequently partitioned into training, 
validation, and testing sets.  

 
3. Model Achitecture Design 

This research compares two lightweight 
convolutional neural network architectures: 
MobileNet and MobileNetV2. MobileNet and 
MobileNetV2 are lightweight convolutional neural 
network (CNN) architectures designed for efficient 
image categorization, especially on mobile and 
embedded devices. Their primary aim is to attain 

great precision with minimum computing expense, 
rendering them appropriate for real-time 
applications.   
 
4. Optimizer Configuration and Hyperparameter 

Tuning  

This study evaluated four optimizers: Adam, 
RMSProp, SGD, and Nadam. All optimizers were 
configured by a manual grid search with a learning 
rate of 0.0001, utilizing SGD with a momentum of 
0.9, and a batch size of 32. These setups guaranteed 
uniform assessment across optimizers and 
architectures.The identical model architecture and 
training pipeline were employed to evaluate each 
combination of optimizer and learning rate. This 
method allows for a fair and consistent comparison 
of all optimizer settings [35].  
 
5. Optimizer Algorithm 

An optimizer is an algorithm employed in the 
training phase of a neural network to adjust the 
model's weights and reduce the loss function. 
Diverse optimizers employ distinct methodologies 
to modify learning rates and gradients. The 
MobileNetV2 model was constructed using a 
modified architecture designed for multi-class 
classification tasks to enhance accuracy while 
maintaining computational efficiency. 

Adam (Adaptive Moment Estimation) 
integrates the advantages of two additional variants 
of Stochastic Gradient Descent: Momentum and 
RMSProp. It calculates adaptive learning rates for 
each parameter by preserving exponentially 
decaying averages of previous gradients 
(momentum) and squared gradients. Adam is 
extensively utilized for its rapid convergence and 
resilience across many issues [36]. 

RMSProp (Root Mean Square Propagation) 
adjusts the learning rate for each parameter by 
dividing the gradient by a running average of its 
previous magnitudes. This mitigates oscillations 
and enhances convergence in a non-stationary 
environment [37]. RMSProp is very proficient at 
training recurrent or deep networks, particularly 
when dealing with noisy or sparse input. 

Stochastic Gradient Descent (SGD) is the most 
fundamental and conventional optimization 
algorithm. It adjusts model weights according to the 
gradient of the loss function relative to each 
parameter for a randomly chosen batch [38]. 

Nadam (Nesterov-accelerated Adaptive 
Moment Estimation) is an enhancement of Adam 
that incorporates Nesterov momentum into its 
update mechanism. This enables it to anticipate the 
gradient's direction, enhancing stability and 
possibly accelerating convergence speed. Nadam 
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occasionally outperforms Adam, particularly in 
scenarios with sparse or highly dynamic gradients. 
Despite its computational efficiency, it frequently 
converges slowly and may become trapped in local 
minima, particularly in intricate deep learning 
problems [39]. 

  
6. Evaluate Model Performance 

The model's performance was evaluated using 
accuracy, confusion matrix, and classification 
report. In comparison to the original MobileNetV2 
architecture and the baseline MobileNet, the 
proposed MobileNetV2 model, which incorporates 
additional layers and modifications, demonstrated 
superior accuracy [40]. 
 
7. Model Comparisson 

We assess the effectiveness of two lightweight 
convolutional neural network (CNN) architectures, 
MobileNet and MobileNetV2, using two datasets: 
one containing images of flowers (daisy, rose, and 
tulip) and the other comprising images of herbal 
leaves (kemangi (basil), jambu biji (guava), and 
nangka (jackfruit)). The evaluation criteria 
encompass the confusion matrix, which illustrates 
the efficacy of a classification model by presenting 
true positives, false positives, true negatives, and 
false negatives. The F1-score, recall, accuracy, 
precision, and loss function as evaluative metrics 
[41].  
 
MobileNet Architecture 

MobileNet introduces the concept of 
depthwise separable convolution, which divides a 
standard convolution into two separate operations: 
depthwise convolution and pointwise convolution. 
This significantly reduces the parameter count and 
processing cost compared to traditional 
convolutions, while preserving a similar level of 
accuracy. 

Depthwise convolution employs a single filter 
for each input channel, enabling the acquisition of 
spatial information. Pointwise convolution employs 
(1×1) filters and subsequently integrates the 
outputs across channels.  

This architectural decision decreases the 
computational expense by roughly 8 to 9 times in 
comparison to conventional CNNs. Nonetheless, 
MobileNet exhibits certain constraints in its deeper 
layers owing to the absence of shortcut (residual) 
connections, which may impede gradient flow and 
the acquisition of intricate patterns [42], [43]. 
Figure 3 depicts the architecture.  

 

 
Source :  (Research Result, 2025) 

Figure 3. MobileNet Architecture 
 
Figure 3. exemplifies a fundamental transfer 

learning strategy, characterized by rapid training, 
utilization of unaltered pretrained models, and 
appropriateness as a benchmark for comparison 
with the suggested technique. 

 
Proposed Method 

This study utilizes the pretrained MobileNetV2 
model (omitting the top classification layers) and 
incorporates custom layers, including Global 
Average Pooling (GAP), a Dropout layer for 
regularization, a fully connected (Dense) layer with 
ReLU activation, and a softmax layer for multi-class 
classification. 

MobileNetV2 was introduced with two notable 
architectural innovations: the linear bottleneck and 
the inverted residual block [44]. The inverted 
residual structure employs shortcut connections to 
link narrow layers (bottlenecks) while temporarily 
augmenting the number of channels in the 
intermediate layers. Simultaneously, to retain 
essential feature information in a low-dimensional 
space, the linear bottleneck removes non-linearity 
at the last projection layer of each block. Due to 
these enhancements, MobileNetV2 surpasses its 
predecessor while utilizing fewer parameters [45].  

This architecture is trained using four 
optimizers (SGD, Adam, Nadam, RMSProp) to 
evaluate their effect on convergence and 
classification performance. A visual comparison of 
MobileNet, and the proposed method MobileNetV2 
is shown in Figure 4, illustrating architectural 
evolution and enhancement in feature extraction 
and efficiency. 
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Source :  (Research Result, 2025) 

Figure 4. Comparison Architecture of 
MobileNet With MobileNetV2 (Proposed 

Method) 
 
Figure 4 depicts a more aggressive and 

adaptable transfer learning technique, 
encompassing: fine-tuning of initial layers, 
application of dropout and dense layers, and 
execution of regularization and training oversight to 
mitigate overfitting. The outcomes are expected to 
exceed the baseline owing to the model's enhanced 
adaptability to the target dataset, especially in the 
categorization of complex visual patterns such as 
flowers andherbal leaves. 

 
RESULTS AND DISCUSSION 

 
This section delineates and examines the 

experimental outcomes derived from the training 
and assessment of the MobileNet and MobileNetV2 
architectures employing diverse optimization 
strategies. The assessment centers on contrasting 
model efficacy between two distinct datasets: floral 
images and herbal leaf images. Essential 
performance parameters, including as accuracy, 
precision, recall, and F1-score, are employed to 
evaluate the efficacy of each optimizer Adam, 

RMSProp, SGD, and Nadam across both CNN 
architectures. Furthermore, the convergence 
behavior of training is analyzed via accuracy and 
loss plots, while confusion matrices are employed to 
assess model generalization and misclassification 
patterns. This investigation aims to identify the 
ideal mix of design and optimizer that maximizes 
classification performance while ensuring 
computing economy. 
 
Image Data Pre-Processing Results 

This section delineates the outcomes of the 
preprocessing phase, encompassing the 
distribution of the datasets. The dataset was 
partitioned into testing (20%), validation (20%), 
and training (80%), as illustrated in Table 2.  
 

Table 2. Images Data Splitting 
No Data Spliting Class Amount 
1 

Training 

Daisy 320 
2 Rose 320 
3 Tulip 320 
4 Kemangi 280 
5 Jambu Biji 280 
6 Nangka 280 
7 

Validation 

Daisy 80 
8 Rose 80 
9 Tulip 80 

10 Kemangi 70 
11 Jambu Biji 70 
12 Nangka 70 
13 

Testing 

Daisy 80 
14 Rose 80 
15 Tulip 80 
16 Kemangi 70 
17 Jambu Biji 70 
18 Nangka 70 

Source : (Research Result, 2025) 
 
Table 2 delineates the allocation of image data 

among training, validation, and testing sets for 
both floral and herbal leaf classifications. 

The dataset is composed of six classes, three 
from the flower category daisy, rose, and tulip and 
three from the herbal leaf category kemangi (basil), 
jambu biji (guava), and nangka (jackfruit). 

For the training set, each flower class contains 
320 images, while each herbal class includes 280 
images. The validation set consists of 80 images per 
flower class and 70 images per herbal class. 
Similarly, the testing set includes 80 images for each 
flower class and 70 images for each herbal class. 

This allocation results ensures a balanced and 
representative distribution across all classes, 
enabling reliable model evaluation and 
generalization assessment during experiments. 
 
Image Data Classification Result 

This section delineates the outcomes of the 
classification tasks executed utilizing the MobileNet 
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and MobileNetV2 designs across two distinct 
datasets: floral and herbal leaves.  

 
Loss and Accuracy Curve  

Prior to model training, all picture data 
underwent a sequence of preprocessing procedures 
to ensure uniformity and improve the model's 
generalization capability. The procedures involved 
downsizing all photos to 224×224 pixels, 
normalizing pixel values to a range of [0,1], and 
implementing data augmentation methods 
including rotation, zooming, and horizontal flipping. 

The objective of preprocessing was to 
standardize the input data, mitigate the danger of 
overfitting, and enhance classification efficacy. The 
results demonstrate the significance of optimization 
strategies for classification tasks employing deep 
learning, as evidenced by the model convergence 
illustrated in Figure 5. 

 

 
(a) Accuracy/Loss MobileNet 

 
(b) Accuracy/Loss MobileNetV2  

Source : (Research Result, 2025) 
Figure 5. Training And Validation Accuracy/Loss 

for Flower using MobileNet & MobilenetV2  

Figure 5 illustrates the accuracy and loss 
trajectories of MobileNet &  MobileNetV2 
employing four distinct optimizers. The training 
and validation curves for both datasets demonstrate 
that RMSProp consistently delivers superior 
performance across all metrics. It achieves faster 
convergence, minimal loss, and stable validation 
accuracy, especially on the herbal dataset where 
other optimizers exhibited fluctuations or 
divergence. Adam and Nadam also perform well but 
are prone to validation instability. SGD, while 
slower, eventually converges but underperforms 
compared to adaptive methods. These results affirm 
the effectiveness of adaptive optimizers, 
particularly RMSProp, in fine-tuning lightweight 
CNN architectures like MobileNetV2 for multiclass 
plant classification tasks.  

 
Confusion Matrix  

The confusion matrix offers essential insights 
into the efficacy of a classification model, 
emphasizing potential mistake areas. Analyzing the 
confusion matrix reveals false positives, false 
negatives, and correct classifications, all essential 
for improving the model's accuracy. If the model 
consistently produces false negatives, it suggests 
that the classification threshold may need 
adjustment, or that additional techniques like data 
augmentation could be advantageous, as illustrated 
in Figure 6. 

 

 
(a) Confusion Matrix MobileNet  Flower 

 
(b) Confusion Matrix MobileNet  Herbal Leaf 
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(c) Confusion Matrix MobileNetV2 Flower 

 

(d) Confusion Matrix MobileNetV2  Herbal Leaf 

Source : (Research Result, 2025) 
Figure 6. ConfusionMatrix MobileNet & 

MobilenetV2 (a,b,c,d) 
 
Figure 6 presents a comparison of 

classification accuracy per class based on the 
confusion matrix outputs for both MobileNet and 
MobileNetV2 models, using four different 
optimizers. Overall, MobileNetV2 consistently 
shows higher correct classification counts across 
most classes, especially for flower datasets. 
RMSProp and Adam optimizers exhibit strong and 
stable performance in both datasets, while Nadam 
shows some instability, particularly on the herbal 
dataset for the nangka (jackfruit) class. This 
underscores the significance of optimizer selection 
in attaining consistent performance across various 
data categories. 

 
Model Performance Evaluation 

The report encompasses essential evaluation 
measures including Precision, Recall, F1-Score, and 
Support for each class. These indicators elucidate 
the efficacy of each model in differentiating across 
classes, managing class imbalances, and ensuring 
consistency in forecasts. Through the analysis of 
these variables, we may more effectively evaluate 
the strengths and limitations of each optimizer for 
class-wise performance, particularly in practical 

classification contexts where balanced precision 
and recall are essential. The classification outcomes 
presented in Table 3. 
 

Table 3. Classification Result of MobileNet & 
with MobileNetV2  

MobileNetV2  
Flower Dataset  

Optimizer 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Loss 
 

RMSProp 96.67 96.90 96.67 96.68 0.1071 
Adam 96.25 96.42 96.25 96.26 0.1535 

Nadam 93.75 94.24 93.75 93.65 0.1140 
SGD 92.50 93.34 92.50 92.45 0.2189 

Herbal Leaf Dataset  

Optimizer 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Loss 
 

RMSProp 99.52 99.53 99.52 99.52 0.0126 
Adam 99.05 99.05 99.05 99.05 0.0209 
Nadam 99.05 99.07 99.05 99.05 0.0209 
SGD 97.14 97.29 97.14 97.15 0.1781 

MobileNet  
Flower Dataset  

Optimizer 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Loss 
 

RMSProp 85.83 85.81 85.83 85.79 0.3868 
Nadam 85.42 85.37 85.42 85.38 0.4225 
Adam 83.75 83.89 83.75 83.72 0.4113 
SGD 83.33 83.33 83.33 83.33 0.4341 

Herbal Leaf Dataset  

Optimizer 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Loss 
 

RMSProp 94.76 94.88 94.76 94.74 0.2527 
Adam 94.29 94.41 94.29 94.25 0.3573 
SGD 93.81 93.80 93.81 93.80 0.3140 
Nadam 93.33 93.35 93.33 93.30 0.3470 

Source : (Research Result, 2025) 
 

The classification results in Table 3 illustrates 
that across both MobileNet and MobileNetV2 
architectures, RMSProp consistently achieved the 
best overall performance, especially in terms of 
accuracy and loss. The MobileNetV2 model 
performed significantly better than the MobileNet 
baseline across all evaluation metrics, particularly 
on the Herbal Leaf Dataset. Additionally, training on 
the herbal dataset yielded higher accuracies 
compared to the flower dataset across all 
configurations, suggesting that the herbal dataset 
may be easier to classify or more consistent in 
features.  
 
Model Comparisson 

A thorough assessment of the MobileNet and 
MobileNetV2 models' performance was performed 
through an investigation of essential classification 
parameters. The subsequent figures provide a 
comparative analysis of the performance of the two 
models on the Flower and Herbal datasets. The 
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parameters of accuracy, precision, recall, and F1-
score were evaluated across multiple optimizers, 
including Adam, SGD, RMSProp, and Nadam, to 
deliver a comprehensive assessment of their 
efficacy. The results underscore the trade-offs 
between model complexity and performance, 
offering critical insights for the selection of an ideal 
model in a specific context, as illustrated in Figure 7. 

 
(a) Comparison Performance of Flower Dataset 

 
(b)  Comparison Performance of Herbal Dataset 

Source : (Research Result, 2025) 
Figure 7. Comparison Performance of MobileNet & 

MobileNetV2 (a,b) 
 

Figure 7 displays the accuracy, precision, 
recall, and F1-score for both models in classifying 

images of daisy, rose, tulip, kemangi (basil), jambu 
biji (guava), and nangka (jackfruit). The 
performance is categorized by the optimizer 
employed during training, demonstrating 
MobileNetV2's exceptional performance across all 
criteria. The findings unequivocally illustrate 
MobileNetV2's superior performance, attaining 
near-optimal scores with specific optimizers, 
particularly RMSProp. 

All training tests were executed on a CPU-only 
computer utilizing an Intel Core i3-1115G4 
processor with 8 GB of RAM, devoid of GPU 
acceleration.  Thus, the training durations reported 
in this study indicate CPU-based execution 
efficiency.  The durations are anticipated to be 
considerably diminished when utilizing a dedicated 
GPU system (e.g., NVIDIA CUDA-enabled devices), as 
illustrated in Figure 8. 

 

 
Source : (Research Result, 2025) 

Figure 8. Training Time per Optimizer & Dataset 
 

Figure 8 illustrates the S, which highlights that 
MobileNetV2 requires more training time and 
memory compared to MobileNet. On average, 
MobileNetV2 takes approximately 610 seconds and 
utilizes 900 MB of memory, while MobileNet 
completes training in about 410 seconds with 600 
MB of memory. These differences emphasize 
MobileNetV2’s higher model complexity and 
capacity, but also its greater resource demands, 
especially in CPU-only environments. 

A detailed analysis of the graph shows that 
performance varies depending on the optimizer and 
dataset combination. For MobileNetV2, the longest 
training time was achieved with the SGD optimizer 
on the Flower dataset (around 950 seconds), while 
the shortest time was with the RMSProp optimizer 
on the Herbal dataset (around 250 seconds). In 
contrast, MobileNet's training times tend to be more 
consistent and faster, with an average below 500 
seconds. 

In terms of model size, MobileNetV2 models 
are larger (approximately 900 MB) due to their 
deeper and more expressive architecture, whereas 
MobileNet models are more lightweight (600 MB), 
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making them better suited for memory-constrained 
environments. 

These results provide valuable insight into 
the trade-offs between accuracy, training duration, 
and memory efficiency. These findings are 
particularly relevant when deploying deep learning 
models in resource-limited or edge-computing 
environments.  

 
CONCLUSION 

 
This work assessed four optimization 

algorithms Adam, RMSProp, SGD, and Nadam on 
MobileNet and MobileNetV2 architectures utilizing 
flower and herbal leaf picture datasets.  The 
investigation, performed on a CPU-only system 
(Intel i3-1115G4, 8GB RAM), evaluated 
performance metrics and computational efficiency.  
MobileNetV2, combined with RMSProp, achieved an 
accuracy of 99.52% and an insignificant loss of 
0.0126.  The flower dataset attained an accuracy of 
96.67% with a loss of 0.1071 for the identical 
configuration.  MobileNetV2 required an average 
training time of 9–10 minutes and approximately 
900 MB of memory, whereas MobileNet used just 6–
7 minutes and about 600 MB of memory, however 
provided superior classification outcomes, 
particularly in scenarios with significant intra-class 
similarity.  

The herbal dataset exhibited superior macro 
F1-scores compared to the floral dataset across all 
optimizers, indicating it provides more discernible 
characteristics.  he findings highlight the 
importance of selecting an effective CNN 
architecture and a suitable optimizer, particularly in 
resource-constrained environments.  Future 
research may explore hybrid optimizers, learning 
rate scheduling, Bayesian hyperparameter 
optimization (e.g., Optuna), and more lightweight 
models such as EfficientNet or ShuffleNet.  
Incorporating explainable AI (e.g., Grad-CAM), data 
augmentation, and real-time deployment on edge 
devices (e.g., Raspberry Pi, Jetson Nano) would 
markedly enhance model interpretability and 
functionality.  
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