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Abstract— Herbal plants have various health benefits, but their type identification remains challenging for 
the general public. This study aims to improve the accuracy of herbal plant leaf classification using 
Convolutional Neural Network (CNN) based on MobileNetV2 architecture. To enhance model performance, 
various optimization techniques including fine-tuning, batch normalization, dropout, and learning rate 
scheduling were implemented. The experimental results showed that the proposed optimized model achieved 
an accuracy of 100%, significantly outperforming previous studies that used standard MobileNet with an 
accuracy of 86.7%. While these perfect results warrant additional validation with more diverse datasets to 
confirm generalizability, this study contributes to the development of a more accurate herbal plant 
classification system that is readily accessible to the general public. Future work should explore model 
performance under varying environmental conditions and with expanded plant species datasets. 
 
Keywords: classification, CNN, deep learning, herbal plant, mobilenetv2.  

 
Intisari— Tanaman herbal memiliki berbagai manfaat kesehatan, namun identifikasi jenisnya masih menjadi 
tantangan bagi masyarakat umum. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi daun 
tanaman herbal menggunakan Convolutional Neural Network (CNN) berbasis arsitektur MobileNetV2. Untuk 
meningkatkan performa model, dilakukan berbagai teknik optimasi seperti fine-tuning, batch normalization, 
dropout, dan learning rate scheduling. Hasil eksperimen menunjukkan bahwa model yang diusulkan mencapai 
akurasi sebesar 100%, lebih tinggi dibandingkan penelitian sebelumnya yang menggunakan MobileNet 
standar dengan akurasi 86.7%. Meskipun hasil sempurna ini memerlukan validasi tambahan dengan dataset 
yang lebih beragam untuk mengkonfirmasi generalisasi, penelitian ini memberikan kontribusi dalam 
pengembangan sistem klasifikasi tanaman herbal yang lebih akurat dan mudah diakses oleh masyarakat luas. 
Penelitian selanjutnya sebaiknya menguji performa model dalam berbagai kondisi lingkungan dan dengan 
dataset spesies tanaman yang lebih luas. 
 
Kata Kunci: klasifikasi, CNN, pembelajaran mendalam, tanaman herbal, mobilenetv2. 
 

INTRODUCTION 
 

Herbal plants have a very important role in 
various aspects of life, especially in the medical, 
agricultural, and nutritional field [1]–[3]. The global 
herbal medicine market was valued at USD 151.91 
billion in 2023 and is expected to grow at a CAGR of 
11.9% from 2024 to 2032, highlighting the 
increasing importance of these plants in modern 

healthcare systems [4][5]. As one of the main 
sources of natural ingredients, herbal plants are 
widely used in traditional medicines, health 
supplements, and beauty products [6][7]. However, 
accurate identification of herbal plants presents 
significant challenges, especially when 
distinguishing between different plant species with 
similar leaf characteristics [8][9]. Misidentification 
can lead to inappropriate use, potentially causing 
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adverse health effects or reducing the efficacy of the 
resulting products [10]. 

Indonesia, with its rich biodiversity, 
possesses approximately 30,000 plant species, of 
which around 9,600 are known to have medicinal 
properties [11][12]. Despite this abundance, many 
local communities lack the expertise to correctly 
identify these plants, limiting their potential 
utilization and economic value. The traditional 
method of plant identification relies heavily on 
expert knowledge, which is not readily available to 
the general public [13]. This creates a significant 
gap between the availability of herbal resources and 
their proper utilization [14]. 

With the rapid advancement of technology, 
image recognition based on artificial intelligence 
(AI) has emerged as a promising solution to address 
these challenges [15]. Convolutional Neural 
Networks (CNNs), a specialized deep learning 
architecture designed for visual data processing, 
have demonstrated remarkable performance in 
various computer vision tasks [16]–[19]. CNNs 
excel in image classification, object detection, and 
image segmentation by automatically learning 
hierarchical feature representations from pixel data 
[20]. However, the deployment of CNNs is often 
hindered by their high computational requirements, 
making them impractical for resource-constrained 
devices such as smartphones or IoT devices [21]. 

To address this limitation, Google 
researchers developed MobileNet, a lightweight 
CNN architecture specifically designed for mobile 
and embedded vision applications [22]. The original 
MobileNet (V1) used depthwise separable 
convolutions to dramatically reduce computational 
costs while maintaining reasonable accuracy [23]. 
Building on this foundation, MobileNetV2 was 
introduced in 2018 with significant architectural 
improvements, including the incorporation of 
inverted residual structures and linear bottlenecks 
[24]. These enhancements enabled MobileNetV2 to 
achieve higher accuracy while maintaining 
computational efficiency, making it particularly 
suitable for deployment on devices with limited 
processing capabilities [25]. 

Despite these advances, achieving optimal 
detection accuracy with MobileNetV2 requires 
further optimization through techniques such as 
hyperparameter tuning, transfer learning, and data 
augmentation [26]. Previous studies have applied 
MobileNet architectures to plant classification 
problems [27], but these implementations often 
used default configurations without substantial 
optimization, resulting in suboptimal performance. 

The comparative analysis of existing studies 
reveals a significant research gap: while 

MobileNetV2 offers theoretical advantages over its 
predecessor, its full potential for herbal plant 
classification remains unexplored. Previous work 
by Purnama [27] utilized the original MobileNet 
architecture for herbal plant detection, achieving an 
accuracy of 86.7%, which, while promising, leaves 
substantial room for improvement. Additionally, 
existing studies have not adequately addressed the 
unique challenges posed by the visual similarities 
among different herbal plant species. 

This study aims to fill this gap by 
systematically optimizing the MobileNetV2 
architecture to improve the accuracy of herbal plant 
leaf image classification. By implementing targeted 
optimization techniques such as fine-tuning, batch 
normalization, dropout regularization, and adaptive 
learning rate scheduling, we seek to enhance the 
model's ability to distinguish between visually 
similar plant species. The proposed approach not 
only addresses the technical challenges of plant 
classification but also considers the practical 
constraints of deploying such systems on mobile 
devices, making herbal plant identification more 
accessible to the general public. 

 
MATERIALS AND METHODS 

 
This research adopted a quantitative 

experimental design to investigate the optimization 
of the MobileNet architecture for the classification 
of herbal plant leaf images. The study involved four 
main components:  
 
A. Dataset Collection and Preparation 

The dataset used in this study consists of herbal 
plant leaf images collected from publicly available 
repositories and supplemented with specially 
selected samples to increase diversity. Building 
upon previous research conducted by Purnama 
[14], we employed more specific image 
segmentation techniques to isolate leaf structures 
from background elements. The dataset comprises 
five distinct classes of herbal plants common in 
Indonesian traditional medicine: Starfruit Leaves 
(Averrhoa bilimbi), Ginger Leaves (Zingiber 
officinale), Basil Leaves (Ocimum basilicum), Cat's 
Whiskers Leaves (Orthosiphon aristatus), and Aloe 
Vera Leaves (Aloe vera). 

Figure 1 presents representative samples from 
each class in the dataset. These images illustrate the 
visual diversity and characteristic features of each 
plant species that the model must learn to 
distinguish: 
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(a) Starfruit 
Leaves 

(b) Ginger 
Leaves 

(c) Basil 
Leaves 

 
 

(d) Cat's Whiskers 
Leaves 

(e) Aloe Vera Leaves 

 
Source: (Research Results, 2025) 

Figure 1. Herbal Leaf Plant Data 
 

Figure 1. Representative samples from the 
herbal plant dataset: (a) Starfruit Leaves – 
characterized by their oval shape and smooth 
edges; (b) Ginger Leaves - displaying elongated 
shape with parallel venation; (c) Basil Leaves - 
exhibiting serrated edges and distinctive venation 
patterns; (d) Cat's Whiskers Leaves - showing 
characteristic pointed tips; (e) Aloe Vera Leaves - 
featuring thick, succulent structure with spiny 
edges. 

The complete dataset comprised 1,295 images, 
which were split into three subsets: 1,165 images 
(90%) for training, 65 images (5%) for validation, 
and 65 images (5%) for testing. This partitioning 
strategy ensures sufficient data for model training 
while reserving independent samples for validation 
and final evaluation [28] [29][30]. To address 
potential class imbalance issues, we implemented 
stratified sampling to maintain equal 
representation of each plant class across all subsets 
[31]. 

The data collection process involved capturing 
images under varying lighting conditions, angles, 
and backgrounds to enhance model robustness. 
Images were manually reviewed to ensure quality 
and proper labeling. The physical collection process 
is documented in Figure 2, illustrating the 
standardized approach to sample acquisition. 

  

 

(a) Starfruit 
Leaves 

(b) Ginger 
Leaves 

(c) Basil 
Leaves 

  
(d) Cat's Whiskers 

Leaves 
(e) Aloe Vera Leaves 

Source: (Research Results, 2025) 
Figure 2. Real Documentation of Plants 
 
Figure 2. Documentation of herbal plant leaf 

collection and image acquisition process. Leaf 
images are cut to obtain leaf shapes that are easy to 
identify. For each type of herbal plant, several leaf 
pieces are taken which will later be used for the 
model training process. The goal is to remove excess 
noise in plants, so that the classification process is 
accurate and precise. 
 
B. Data Preprocessing and Augmentation 

To enhance model generalization and mitigate 
overfitting, we applied comprehensive data 
preprocessing and augmentation techniques 
[32][33]. First, all images were resized to 224×224 
pixels to match the input dimensions required by 
MobileNetV2 while reducing computational 
complexity. Pixel values were normalized to the 
range [0, 1] by dividing by 255 to facilitate model 
convergence. Data augmentation was implemented 
using TensorFlow's ImageDataGenerator with the 
following parameters: Random rotation: ±40 
degrees, Width and height shift: 20%,  Shear 
transformation: 20%, Zoom range: 30%, Horizontal 
flipping: enabled. 

These augmentation techniques artificially 
expanded the training dataset by creating modified 
versions of the original images, thereby improving 
the model's ability to generalize to unseen data [34]. 
Importantly, augmentation was applied only to the 
training set, while validation and test sets were 
processed with simple rescaling to maintain their 
integrity for unbiased evaluation [35]. 

 
C. MobileNetV2 Architecture and Proposed 

Optimizations 

MobileNetV2 represents a significant 
advancement over the original MobileNet 
architecture [36]. While both models utilize 
depthwise separable convolutions to reduce 
computational complexity, MobileNetV2 introduces 
several key innovations [37]. Unlike traditional 
residual connections that go from wide to narrow 
and back to wide, MobileNetV2 uses an inverted 
design where the input is first expanded to a higher 
dimension, then filtered with lightweight depthwise 
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convolution, and finally projected back to a 
lowdimensional representation [38]. MobileNetV2 
removes the non-linearity (ReLU) in the narrow 
layers to preserve feature information that would 
otherwise be lost due to ReLU's zero-mapping of 
negative values [39]. Enhanced residual 
connections that allow better gradient flow during 
backpropagation, facilitating training of deeper 
networks. MobileNetV2 achieves up to 30-40% 
reduction in operations while maintaining similar 
accuracy compared to MobileNetV1 [40]. These 
architectural improvements make MobileNetV2 
particularly suitable for our herbal plant 
classification task, where capturing fine-grained 
differences between similar-looking leaves is 
crucial [41]. 

Our proposed model architecture leverages 
transfer learning with MobileNetV2 as the base 
network. The implementation involved loading the 
pre-trained MobileNetV2 model (trained on 
ImageNet), excluding its top classification layers, 
and adding custom layers optimized for our specific 
classification task. Figure 3 illustrates the research 
framework, highlighting the key stages from data 
preprocessing to model evaluation 

 
Start

Data Collection

Pre-Processing 
Data

Proposed Method

Performance 
Analysis

Analysis of 
Results

Finish

Implementation of 
CNN

Mobile Net 
Baseline

Custom 
MobileNet

Custom 
MobileNet

Split Data
(Traning & Validation 70%, 

Testing 30%)

 
 

Source: (Research Results, 2025) 
Figure 3. Research Framework 

 
Figure 3. Research framework depicting 

the complete workflow from data acquisition to 

model evaluation. The process includes data 
collection, preprocessing, model development with 
MobileNetV2, training with optimization 
techniques, and comprehensive evaluation using 
multiple performance metrics. 
 Our proposed architecture consists of a 
Base Model in the form of a pre-trained 
MobileNetV2 (without top layers), with the first 100 
layers frozen to maintain general feature extraction 
capabilities, while the last 10 layers are made 
trainable for domain-specific adaptation, 
complemented by a Custom Classification Head that 
includes a Global Average Pooling Layer that 
reduces the spatial dimensionality while preserving 
feature channel information, a Dense Layer with 
256 neurons and ReLU activation, a Dropout Layer 
with a rate of 0.5 to prevent overfitting, and an 
Output Layer with 5 neurons using Softmax 
activation (one for each plant class).  Figure 4 
provides a visual comparison between the baseline 
MobileNet architecture and our proposed 
optimized model 

224 x 224 x 3

13 Depthwise 
Separable Conv

Average Pooling 7x7

1000 Neurons, 
Softmax

1000 Class, Softmax

All can be trained

Default Learning 
Rate

Default Crossentropy

224 x 224 x 3

The last 10 layers can 
be trained

GlobalAveragePooling
2D

256 neurons (ReLU) + 
Dropout 0.5

5 Class, Softmax

The last 10 layers can 
be trained

Learning rate (1e-4), 
Adam Optimizer

Categorical 
Crossentropy

Input Image

Features 
Extractor

Pooling

Fully 
Connected

Output 
Layer

Trainable 
Layers

Optimizatio
n

Loss 
Function

MobileNet 
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Proposed 
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(a)        (b) 

Source: (Research Results, 2025) 
Figure 4. Comparison of MobileNet Baseline (a) 

with Proposed Model (b) 
 

Figure 4. Architectural comparison: (a) 
Baseline MobileNetV1 with standard configuration; 
(b) Our proposed optimized MobileNetV2 model 
featuring selective layer freezing, global average 
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pooling, enhanced dropout regularization, and 
class-specific output layer. The diagram highlights 
the key differences in layer organization and 
optimization techniques. 

Table 1 summarizes the technical differences 
between the baseline MobileNetV1 and our 
proposed optimized MobileNetV2 model: 

 
Table 1. Comparison of MobileNet Baseline with 

Proposed Model 

Layer 
Baseline 
MobileNet V1 

Proposed Model 

Input 224x224x3 224x224x3 
Feature 
Extractor 

13 Depthwise 
Separable Conv 

Inverted Residual Blocks; 
only the last 10 layers 
trainable 

Pooling Average Pooling 
7x7 

GlobalAveragePooling2D 

Fully 
Connected 
Layer 

1000 neurons, 
Softmax 

256 neurons (ReLU) + 
Dropout 0.5 

Output Layer 1000 class, 
Softmax 

5 Class, Softmax 

Trainable 
Layers 

All can be 
trained 

The last 10 layers can be 
trained 

Optimization Default learning 
rate 

Learning rate (1e-4), Adam 
Optimizer with decay 

Loss 
Function 

Default 
(crossentropy) 

Categorical Crossentropy 

Source: (Research Results, 2025) 
 
D. Model Training and Optimization 

The model was compiled utilizing the Adam 
optimizer with an initial learning rate of 1e-4 and 
categorical crossentropy loss function, 
implementing several optimization techniques to 
prevent overfitting and improve generalization, 
including transfer learning with pre-trained 
ImageNet weights, selective layer freezing, dropout 
regularization at a 0.5 rate, batch normalization for 
stable activations, learning rate scheduling, and 
early stopping based on validation performance; 
training was conducted over 100 epochs with a 
batch size of 16 to balance efficiency with memory 
constraints, utilizing a ModelCheckpoint callback to 
save the best-performing model based on validation 
accuracy. The training process was executed on a 
Dell Intel Core i7 8th Gen, RAM 16 GB, TensorFlow 

2.8.0, Python 3.12. 
 

E. Model Evaluation 

Model performance was evaluated on the 
independent test set data the model had never seen 
during training or validation to ensure an unbiased 
assessment of its generalization capabilities. We 
computed accuracy, the proportion of correctly 
classified instances, to gauge overall correctness; 
precision, the ratio of true positives to all predicted 
positives, to measure the reliability of positive 

predictions; recall, the ratio of true positives to all 
actual positives, to assess the model’s sensitivity; 
and the F1‑score, the harmonic mean of precision 
and recall, to balance these two metrics in a single 
value. Finally, a confusion matrix was generated to 
visualize classification performance across all 
classes, highlighting where the model most often 
confused one class for another. 
 

RESULTS AND DISCUSSION 
 

A. Training Performance Analysis 

The training process of our optimized 
MobileNetV2 model demonstrated excellent 
convergence characteristics, with both training and 
validation metrics showing consistent 
improvement over the course of 100 epochs. Figure 
5 illustrates the progression of training and 
validation accuracy throughout the training process 

 
Source: (Research Results, 2025) 

Figure 5. Training Accuracy 
 

Figure 5. Training and validation accuracy 
curves over 100 epochs. The graph demonstrates 
rapid initial improvement followed by convergence 
to near-perfect accuracy for both training (blue line) 
and validation (orange line) sets. The consistent 
high performance on the validation set suggests 
effective generalization without significant 
overfitting. 

As shown in Figure 5, training accuracy 
increased rapidly from an initial value of 63.52% to 
100% by the final epoch. Similarly, validation 
accuracy improved from 75.38% to 98.46%. The 
close alignment between training and validation 
accuracy curves indicates that the model effectively 
learned generalizable features rather than merely 
memorizing the training data. The rapid 
convergence can be attributed to the combination of 
transfer learning from pre-trained weights and the 
effective architecture of MobileNetV2, which is 
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specifically designed to capture hierarchical 
features efficiently. 

Figure 6 presents the corresponding loss 
curves for both training and validation sets. 

 
Source: (Research Results, 2025) 

Figure 6. Training Validation Loss 
 
Figure 6. Training and validation loss curves 

over 100 epochs. Both curves show a steady decline, 
with training loss (blue line) approaching zero and 
validation loss (orange line) stabilizing at 
approximately 0.04. The minor fluctuations in 
validation loss without corresponding accuracy 
degradation suggest the model maintains 
generalization capability throughout training. 

The loss curves demonstrate a consistent 
decrease throughout training, with training loss 
declining from 0.9514 to near-zero values by the 
end of training. Validation loss followed a similar 
trend, decreasing from 0.4418 to 0.0394. The minor 
fluctuations observed in the validation loss curve, 
particularly after epoch 50, may indicate slight 
overfitting to the training data. However, the 
continued strong performance on validation 
accuracy suggests that these fluctuations did not 
significantly impact the model's generalization 
capabilities. 

Notably, the model achieved perfect validation 
accuracy (100%) intermittently during training, 
first appearing around epoch 10 and becoming 
more frequent in later epochs. This performance is 
particularly impressive considering the visual 
similarities between some of the plant species in our 
dataset, such as the elongated shapes of Ginger and 
Cat's Whiskers leaves. 

The incorporation of dropout regularization 
(with a rate of 0.5) in our architecture played a 
crucial role in preventing severe overfitting despite 
the high training accuracy. By randomly disabling 
50% of neurons during each training iteration, 
dropout forced the network to learn redundant 
representations, enhancing its robustness and 
generalization capabilities. 

 
B. Test Set Evaluation 

The final evaluation on our independent test 
set yielded remarkable results, with the model 
achieving 100% accuracy and a negligible loss value 
of 7.5788e-06. Table 2 presents a comprehensive 
comparison between our optimized MobileNetV2 
model and the baseline MobileNetV1 from previous 
research 

 
Table 2. Performance Comparison between the 

Baseline And Optimized Models 
Model Accuracy Precision Recall F1-Score 
MobileNet 
Baseline 

86,7% 86,4% 26% 76% 

Custom 
MobileNet 

100% 100% 100% 100% 

 
The confusion matrix for the test set evaluation 

is presented in Figure 7, providing a class-wise 
breakdown of classification performance. 

 
Source: (Research Results, 2025) 

Figure 7. Confusion matrix 
 

Figure 7. Confusion matrix for test set 
classification results. The perfect diagonal pattern 
indicates that all test samples were correctly 
classified into their respective classes, with no 
misclassifications occurring across the five herbal 
plant categories. This visualization confirms the 
model's robust discrimination ability even between 
visually similar plant species. 

The confusion matrix confirms that all test 
samples were correctly classified into their 
respective classes, with no misclassifications 
observed. This level of performance is exceptional, 
particularly given the visual similarities between 
some of the plant species in our dataset.  
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Figure 8 presents examples of actual 
prediction results, showing representative samples 
from each class along with their predicted labels 

 

True : Starfruit Leaves 
Pred : Starfruit Leaves 

True : Ginger 
Leaves 

Pred : Ginger 
Leaves 

True : Basil Leaves 
Pred : Basil Leaves 

 
 

 

True : Cat's Whiskers 
Leaves 

Pred : Cat's Whiskers 
Leaves 

True : Aloe Vera Leaves 
Pred : Aloe Vera Leaves 

 

 

Source: (Research Results, 2025) 
Figure 8. Test Prediction Result 

 
Figure 8. Sample test predictions showing 

representative images from each class with their 
corresponding true and predicted labels. All 
samples were correctly classified, demonstrating 
the model's ability to identify distinct 
morphological features of each plant species despite 
variations in image quality, orientation, and 
background. 
 

CONCLUSION 
 

This study demonstrates that targeted 
optimizations to the MobileNetV2 architecture—
selective layer freezing, dropout regularization, and 
carefully scheduled learning rates—can 
dramatically improve herbal plant leaf classification 
accuracy. Evaluated on an independent test set not 
seen during training or validation, our optimized 
MobileNetV2 achieved 100 % accuracy, 
outperforming the 86.7 % accuracy reported for the 
standard MobileNetV1. Key contributions include 
(1) a systematic approach that balances 
classification accuracy with computational 
efficiency, (2) empirical evidence that MobileNetV2 
surpasses MobileNetV1 on fine‑grained plant‑leaf 
tasks, (3) a practical demonstration of deploying 
these models on resource‑constrained mobile 
devices, and (4) a comprehensive evaluation 
framework encompassing class‑specific metrics and 
visualization of model decisions. These advances 
have significant implications for botanical research, 
herbal‑medicine applications, agriculture, and 
education: by embedding highly accurate plant 
identification into mobile apps, we can help 

non‑experts access expert‑level knowledge about 
regional herbal resources. Future work should 
expand to more visually similar species, test 
robustness under diverse environmental 
conditions, incorporate multi‑modal inputs 
(flowers, stems, fruits), explore model‑compression 
techniques (quantization, pruning, distillation), 
develop richer explainable‑AI methods, investigate 
federated learning for privacy‑preserving 
continuous improvement, and compare 
MobileNetV2 against other efficient architectures 
(EfficientNet, ShuffleNet, MnasNet) to further 
advance mobile plant‑identification systems. 
 

REFERENCE 
 

[1] A. K. Gupta et al., “A trans-disciplinary agro-
ecology strategy to grow medicinal plants,” 
J. Ayurveda Integr. Med., vol. 16, no. 1, p. 
100985, 2025. 

[2] H. El-Ramady et al., “Plant Nutrition for 
Human Health: A Pictorial Review on Plant 
Bioactive Compounds for Sustainable 
Agriculture,” Sustain., vol. 14, no. 14, 2022. 

[3] H. S. Elshafie, I. Camele, and A. A. Mohamed, 
“A Comprehensive Review on the Biological, 
Agricultural and Pharmaceutical Properties 
of Secondary Metabolites Based-Plant 
Origin,” Int. J. Mol. Sci., vol. 24, no. 4, 2023. 

[4] N. K. Kumar and R. Pandey, “Traditional 
Medicine Review The Anthropological Study 
of Traditional Medicine in South Africa: 
Unveiling Complexities, Nurturing 
Traditions Rajendran Govender Role of 
Standardization and Quality Control in 
Manufacturing of Herbal Medicines Book 
rEviEw Acc,” vol. 3, no. 2, 2023. 

[5] M. Amir, M. Vohra, R. G. Raj, I. Osoro, and A. 
Sharma, “Adaptogenic herbs: A natural way 
to improve athletic performance,” Heal. Sci. 
Rev., vol. 7, no. March, p. 100092, 2023. 

[6] A. A. Elkordy, R. R. Haj-Ahmad, A. S. Awaad, 
and R. M. Zaki, “An overview on natural 
product drug formulations from 
conventional medicines to nanomedicines: 
past, present and future,” J. Drug Deliv. Sci. 
Technol., vol. 63, no. 1, pp. 1–14, 2021. 

[7] P. Bolouri et al., “Applications of Essential 
Oils and Plant Extracts in Different 
Industries,” Moleculas, vol. 27, no. 24, pp. 1–
17, 2022. 

[8] M. Wang, H. Lin, H. Lin, P. Du, and S. Zhang, 
“From Species to Varieties: How Modern 
Sequencing Technologies Are Shaping 
Medicinal Plant Identification,” Genes 
(Basel)., vol. 16, no. 1, pp. 1–18, 2025. 



 

VOL. 10. NO. 4 MAY 2025 
. 

DOI: 10.33480 /jitk.v10i4.6498 
 

 

 

866 

[9] O. A. Malik, N. Ismail, B. R. Hussein, and U. 
Yahya, “Automated Real-Time Identification 
of Medicinal Plants Species in Natural 
Environment Using Deep Learning 
Models—A Case Study from Borneo Region,” 
Plants, vol. 11, no. 15, 2022. 

[10] H. Wang, Y. Chen, L. Wang, Q. Liu, S. Yang, 
and C. Wang, “Advancing herbal medicine: 
enhancing product quality and safety 
through robust quality control practices,” 
Front. Pharmacol., vol. 14, no. September, pp. 
1–16, 2023. 

[11] R. Cahyaningsih, “GENETIC CONSERVATION 
AND SUSTAINABLE USE OF INDONESIAN 
MEDICINAL PLANTS,” Univ. Birmingham, 
vol. 75, no. 17, pp. 399–405, 2021. 

[12] M. S. Ikrar Musyaffa, N. Yudistira, M. A. 
Rahman, A. H. Basori, A. B. Firdausiah 
Mansur, and J. Batoro, “IndoHerb: Indonesia 
medicinal plants recognition using transfer 
learning and deep learning,” Heliyon, vol. 10, 
no. 23, p. e40606, 2024. 

[13] A. Ahmad, D. Saraswat, and A. El Gamal, “A 
survey on using deep learning techniques 
for plant disease diagnosis and 
recommendations for development of 
appropriate tools,” Smart Agric. Technol., 
vol. 3, no. June 2022, p. 100083, 2023. 

[14] S. Saggar et al., “Traditional and Herbal 
Medicines: Opportunities and Challenges,” 
Pharmacognosy Res., vol. 14, no. 2, pp. 107–
114, 2022. 

[15] Z. Ahmad, S. Rahim, M. Zubair, and J. Abdul-
Ghafar, “Artificial intelligence (AI) in 
medicine, current applications and future 
role with special emphasis on its potential 
and promise in pathology: present and 
future impact, obstacles including costs and 
acceptance among pathologists, practical 
and philosoph,” Diagn. Pathol., vol. 16, no. 1, 
pp. 1–16, 2021. 

[16] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, 
and M. Parmar, A review of convolutional 
neural networks in computer vision, vol. 57, 
no. 4. Springer Netherlands, 2024. 

[17] N. Sindhwani, R. Anand, S. Meivel, R. Shukla, 
M. P. Yadav, and V. Yadav, “Performance 
Analysis of Deep Neural Networks Using 
Computer Vision,” EAI Endorsed Trans. Ind. 
Networks Intell. Syst., vol. 8, no. 29, pp. 1–11, 
2021. 

[18] Zewen Li, Fan Liu, Wenjie Yang, Shouheng 
Peng, and Jun Zhou, “A survey of 
convolutional neural networks: analysis, 
applications, and prospects,” IEEE Trans. 
neural networks Learn. Syst., vol. 33, no. 12, 

pp. 6999–7019, 2021. 
[19] G. Li et al., “Practices and applications of 

convolutional neural network-based 
computer vision systems in animal farming: 
A review,” Sensors, vol. 21, no. 4, pp. 1–42, 
2021. 

[20] T. Turay and T. Vladimirova, “Toward 
Performing Image Classification and Object 
Detection with Convolutional Neural 
Networks in Autonomous Driving Systems: 
A Survey,” IEEE Access, vol. 10, pp. 14076–
14119, 2022. 

[21] F. Modu, R. Prasad, and F. Aliyu, 
“Lightweight CNN for Resource-constrained 
BCD System using Knowledge Distillation,” 
IEEE Access, vol. 13, no. March, pp. 57504–
57529, 2025. 

[22] M. Maaz et al., “EdgeNeXt: Efficiently 
Amalgamated CNN-Transformer 
Architecture for Mobile Vision 
Applications,” Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. 
Lect. Notes Bioinformatics), vol. 13807 LNCS, 
pp. 3–20, 2023. 

[23] E. Prasetyo, R. Purbaningtyas, R. D. Adityo, 
N. Suciati, and C. Fatichah, “Combining 
MobileNetV1 and Depthwise Separable 
convolution bottleneck with Expansion for 
classifying the freshness of fish eyes,” Inf. 
Process. Agric., vol. 9, no. 4, pp. 485–496, 
2022. 

[24] Y. Gulzar, “Fruit Image Classification Model 
Based on MobileNetV2 with Deep Transfer 
Learning Technique,” Sustainability, vol. 15, 
no. 3, 2023. 

[25] S. K. Bharadwaj, R. Jha, J. Kumar, D. K. 
Mishra, V. Shinde, and V. K. Jadon, 
“COMPARATIVE STUDY OF MOBILENETV2, 
SIMPLE CNN AND VGG19 FOR IMAGE 
CLASSIFICATION,” J. Data Acquis. Process., 
vol. 15, no. 1, pp. 37–48, 2024. 

[26] G. Gondhalekar et al., “Enhancing Image 
Classification Performance through 
Transfer Learning and Adaptive 
Augmentation : A MobileNetV2 Approach,” 
3rd Int. Conf. Optim. Tech. F. Eng., no. 
January, p. 11, 2024. 

[27] I. N. Purnama, “Herbal Plant Detection Based 
on Leaves Image Using Convolutional Neural 
Network With Mobile Net Architecture,” 
JITK (Jurnal Ilmu Pengetah. dan Teknol. 
Komputer), vol. 6, no. 1, pp. 27–32, 2020. 

[28] H. R. Maier et al., “On how data are 
partitioned in model development and 
evaluation: Confronting the elephant in the 
room to enhance model generalization,” 



 

 

VOL. 10. NO. 4 MAY 2025. 
 . 

DOI: 10.33480/jitk.v10i4.6498 
 

  

867 

Environ. Model. Softw., vol. 167, no. June, p. 
105779, 2023. 

[29] A. Lal, A. Sharan, K. Sharma, A. Ram, D. K. 
Roy, and B. Datta, “Scrutinizing different 
predictive modeling validation 
methodologies and data-partitioning 
strategies: new insights using groundwater 
modeling case study,” Environ. Monit. Assess., 
vol. 196, no. 7, 2024. 

[30] E. Lopez, J. Etxebarria-Elezgarai, J. M. Amigo, 
and A. Seifert, “The importance of choosing 
a proper validation strategy in predictive 
models. A tutorial with real examples,” Anal. 
Chim. Acta, vol. 1275, no. June, p. 341532, 
2023. 

[31] J. Sadaiyandi, P. Arumugam, A. K. Sangaiah, 
and C. Zhang, “Stratified Sampling-Based 
Deep Learning Approach to Increase 
Prediction Accuracy of Unbalanced Dataset,” 
Electron., vol. 12, no. 21, pp. 1–16, 2023. 

[32] K. Maharana, S. Mondal, and B. Nemade, “A 
review: Data pre-processing and data 
augmentation techniques,” Glob. Transitions 
Proc., vol. 3, no. 1, pp. 91–99, 2022. 

[33] T. Kumar, A. Mileo, R. Brennan, and M. 
Bendechache, “Image Data Augmentation 
Approaches: A Comprehensive Survey and 
Future directions,” vol. 12, no. September, 
2023. 

[34] C. Shorten and T. M. Khoshgoftaar, “A survey 
on Image Data Augmentation for Deep 
Learning,” J. Big Data, vol. 6, no. 1, 2019. 

[35] K. Medvedieva, T. Tosi, E. Barbierato, and A. 
Gatti, “Balancing the Scale: Data 
Augmentation Techniques for Improved 
Supervised Learning in Cyberattack 

Detection,” Eng, vol. 5, no. 3, pp. 2170–2205, 
2024. 

[36] R. Indraswari, R. Rokhana, and W. 
Herulambang, “Melanoma image 
classification based on MobileNetV2 
network,” Procedia Comput. Sci., vol. 197, pp. 
198–207, 2021. 

[37] A. Tripathi, T. Singh, R. R. Nair, and P. 
Duraisamy, “Improving Early Detection and 
Classification of Lung Diseases With 
Innovative MobileNetV2 Framework,” IEEE 
Access, vol. 12, no. June, pp. 116202–
116217, 2024. 

[38] R. Rashid, W. Aslam, R. Aziz, and G. Aldehim, 
“A Modified MobileNetv3 Coupled With 
Inverted Residual and Channel Attention 
Mechanisms for Detection of Tomato Leaf 
Diseases,” IEEE Access, vol. 13, no. March, pp. 
52683–52696, 2025. 

[39] M. J. Adamu et al., “Efficient and Accurate 
Brain Tumor Classification Using Hybrid 
MobileNetV2–Support Vector Machine for 
Magnetic Resonance Imaging Diagnostics in 
Neoplasms,” Brain Sci., vol. 14, no. 12, 2024. 

[40] B. A. Kumar and M. Bansal, “Face Mask 
Detection on Photo and Real-Time Video 
Images Using Caffe-MobileNetV2 Transfer 
Learning,” Appl. Sci., vol. 13, no. 2, 2023. 

[41] B. J. Bipin Nair, B. Arjun, S. Abhishek, N. M. 
Abhinav, and V. Madhavan, “Classification of 
Indian Medicinal Flowers using 
MobileNetV2,” Proc. 18th INDIAcom; 2024 
11th Int. Conf. Comput. Sustain. Glob. Dev. 
INDIACom 2024, no. February, pp. 1512–
1518, 2024. 

 


