
 

VOL. 10. NO. 4 MAY 2025 
. 

DOI: 10.33480 /jitk.v10i4.6541 
 

 

 

770 

DEVELOPMENT OF SKIN CANCER PIGMENT IMAGE CLASSIFICATION 
USING A COMBINATION OF MOBILENETV2 AND CBAM 

 
Juni Ismail1*; Lili Tanti2; Wanayumini3 

 
Computer Science, Faculty of Engineering and Computer Science1,2, 

Universitas Potensi Utama, Indonesia1,2 

www.potensi-utama.ac.id1,2 

juniismailll@gmail.com1*, lilitanti82@gmail.com2 
 

Computer Science, Faculty of Engineering and Computer Science3 
Universitas Asahan, Indonesia3 

www.una.ac.id3 

wanayumini@gmail.com3 

 
(*) Corresponding Author  

(Responsible for the Quality of Paper Content) 
 

 
 

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License. 

 
Abstract—Skin cancer is one of the most common types of cancer worldwide, making early detection a crucial 
factor in improving patient recovery rates. This study compares three classification methods for pigmented 
skin cancer images using a combination of VGG16 with CBAM, MobileNetV2 with CBAM, and a hybrid VGG16-
MobileNetV2 approach with transfer learning. The dataset used in this study is the Skin Cancer ISIC - The 
International Skin Imaging Collaboration (HAM10000) from Kaggle, which consists of 10,015 images covering 
seven types of skin cancer. After balancing, the dataset was reduced to 2,400 images with three main classes: 
Actinic Keratosis (AKIEC), Basal Cell Carcinoma (BCC), and melanoma (MEL), each containing 800 images. 
This study involves data preprocessing stages such as augmentation, normalization, and image resizing to 
ensure optimal data quality. The model training process was conducted using the Adam optimizer, a batch size 
of 16, and an Early Stopping mechanism to prevent overfitting. Evaluation results indicate that the 
MobileNetV2 with CBAM model achieved the best performance with a validation accuracy of 86%, followed by 
the VGG16-MobileNetV2 combination at 77%, while VGG16 with CBAM experienced overfitting with an 
accuracy of 54%. Additionally, the best-performing model demonstrated a precision of 86.53% and a recall of 
86.46%, highlighting its superior stability in detecting skin cancer compared to previous single-model 
approaches. With these results, the developed system can serve as an effective tool for medical professionals in 
performing early and more accurate skin cancer diagnoses. 

 
Keywords: CBAM, CNN, image classification, mobilenet, skin cancer, 

 
Intisari—Kanker kulit merupakan salah satu jenis kanker yang paling umum di dunia, sehingga deteksi dini 
menjadi faktor krusial dalam meningkatkan tingkat kesembuhan pasien. Penelitian ini membandingkan tiga 
metode klasifikasi untuk gambar kanker kulit berpigmen dengan menggunakan kombinasi VGG16 dengan 
CBAM, MobileNetV2 dengan CBAM, dan pendekatan hibrida VGG16-MobileNetV2 dengan transfer learning. 
Dataset yang digunakan dalam penelitian ini adalah Skin Cancer ISIC - The International Skin Imaging 
Collaboration (HAM10000) dari Kaggle, yang terdiri dari 10.015 gambar mencakup tujuh jenis kanker kulit. 
Setelah dilakukan penyeimbangan, dataset dikurangi menjadi 2.400 gambar dengan tiga kelas utama: Actinic 
Keratosis (AKIEC), Basal Cell Carcinoma (BCC), dan melanoma (MEL), masing-masing sebanyak 800 gambar. 
Penelitian ini mencakup tahap praproses data seperti augmentasi, normalisasi, dan pengubahan ukuran 
gambar untuk memastikan kualitas data yang optimal. Proses pelatihan model dilakukan menggunakan 
optimizer Adam, ukuran batch 16, dan mekanisme Early Stopping untuk mencegah overfitting. Hasil evaluasi 
menunjukkan bahwa model MobileNetV2 dengan CBAM mencapai performa terbaik dengan akurasi validasi 
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sebesar 86%, diikuti oleh kombinasi VGG16-MobileNetV2 sebesar 77%, sementara VGG16 dengan CBAM 
mengalami overfitting dengan akurasi sebesar 54%. Selain itu, model dengan performa terbaik menunjukkan 
nilai presisi sebesar 86,53% dan recall sebesar 86,46%, yang menandakan stabilitas superior dalam 
mendeteksi kanker kulit dibandingkan pendekatan model tunggal sebelumnya. Dengan hasil ini, sistem yang 
dikembangkan dapat menjadi alat yang efektif bagi para profesional medis dalam melakukan diagnosis 
kanker kulit secara dini dan lebih akurat. 
 
Kata Kunci: CBAM, CNN, klasifikasi citra, mobilenet, kanker kulit, 
 

INTRODUCTION 
 

Skin cancer is one of the most common types 
of cancer worldwide [1][2][3]. According to the 
American Cancer Society, more than 5 million cases 
of skin cancer are diagnosed each year, making it 
one of the most frequently occurring forms of 
cancer in humans [4][5][6][7]. Early detection of 
skin cancer is crucial for increasing the chances of 
recovery and reducing patient mortality rates. 
Classification of skin cancer images faces several 
challenges, including high color and texture 
variations, imbalance in the number of samples 
between classes, and difficulty in distinguishing 
similar categories. Deep learning models require 
special strategies, such as data augmentation 
techniques and model architectures that can 
effectively capture critical features. In recent 
decades, advancements in computational 
technology have significantly contributed to skin 
cancer diagnosis through complex medical image 
analysis [8][9]. One widely used approach is deep 
learning, particularly Convolutional Neural 
Networks (CNNs), which have been proven effective 
in analyzing and classifying medical images, 
including pigmented skin cancer images 
[10][11][12]. 

One of the most commonly used CNN 
architectures is VGGNet. VGGNet is well known for 
its deep structure and strong feature extraction 
capabilities [13][14][15][16]. This model utilizes 
small convolutional layers in large numbers to 
enhance feature extraction effectiveness from 
medical images [17][18][19]. In addition to VGGNet, 
MobileNet is also widely used due to its design for 
higher computational efficiency with a smaller 
model size. This model is suitable for deployment on 
resource-constrained devices without significantly 
compromising accuracy [20][21][22]. Moreover, 
the Convolutional Block Attention Module (CBAM) 
is frequently used to improve CNN performance in 
classification and segmentation tasks [23][24]. 
CBAM is an attention module consisting of two main 
components: Channel Attention and Spatial 
Attention [25][26]. This module works by adjusting 
feature weights based on their importance in both 
the channel and spatial domains, thereby enhancing 

the representation of relevant features [27][28]. By 
incorporating CBAM into CNN architectures such as 
VGGNet or MobileNet, the model can adaptively 
highlight crucial features in medical images, 
ultimately improving classification accuracy and 
feature extraction efficiency. 

The related research referenced in this study 
is the work of Fedryanto Dartiko et al., which 
developed a skin cancer classification method using 
a Convolutional Neural Network (CNN) with a 
hybrid preprocessing approach. The preprocessing 
techniques used include CLAHE, morphological 
closing, and median filtering to remove noise caused 
by fine hairs on the epidermis. The results of the 
study showed that this method achieved an 
accuracy of 78.19% with a loss of 0.5324. Although 
the results were quite good, this study still faced 
challenges such as limited data availability and 
overfitting at higher epochs [29]. Another related 
study, which serves as the primary reference for 
this research, was conducted by Luqman Hakim et 
al. [30]. Their study used a CNN model with an eight-
layer convolutional architecture and achieved an 
accuracy of 75%, with the highest precision and 
recall values in the benign class, at 0.80 and 0.82, 
respectively, and an F1-score of 0.81. However, 
their study still had limitations in improving model 
accuracy and computational efficiency. 

The primary issue addressed in this research 
is the need to enhance accuracy compared to 
previous studies. Although CNNs have been widely 
used for skin cancer image classification, challenges 
remain in improving accuracy without excessively 
increasing computational costs. To address this 
issue, this study aims to enhance the classification 
accuracy of pigmented skin cancer images by 
comparing the advantages of VGG16 with CBAM, 
MobileNetV2 with CBAM, and a combination of 
VGG16 and MobileNetV2. By comparing these three 
model combinations, the goal is to achieve higher 
accuracy without compromising computational 
efficiency. Several previous studies have used CNN 
in skin cancer classification, such as VGG16 and 
ResNet, but still face challenges in detecting subtle 
features in skin lesions. The combination models 
compared in this study have been applied in various 
studies, but often have limitations in capturing 
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important features of the image. To overcome these 
shortcomings, this study proposes a comparison of 
the combination of VGG16 and CBAM, MobileNetV2 
and CBAM, and the combination of VGG16 and 
MobileNetV2 to improve the accuracy of the model 
with the best mechanism. 

The gap between this study and previous 
research lies in the approach used to improve 
classification model accuracy. Previous studies have 
only utilized a single CNN architecture, whereas this 
study compares three combinations: VGG16 with 
CBAM, MobileNetV2 with CBAM, and the 
combination of VGG16 and MobileNetV2 to enhance 
classification accuracy without significantly 
increasing computational complexity. Additionally, 
this study will evaluate the combined model's 
performance in improving interpretability for skin 
cancer diagnosis. The uniqueness of this research 
lies in the comparative approach of VGG16 with 
CBAM, MobileNetV2 with CBAM, and the 
combination of VGG16 with MobileNetV2 in 
classifying pigmented skin cancer images. This 
approach has not been widely explored in previous 
studies and is expected to improve classification 
accuracy without sacrificing computational 
efficiency. 

This study contributes to the field of artificial 
intelligence for medical diagnosis, specifically in 
improving the accuracy of pigmented skin cancer 
image classification through a combined deep 
learning model approach. The results of this study 
are expected to assist medical professionals in 
detecting skin cancer more quickly and accurately. 

The primary objective of this research is to 
develop and evaluate a pigmented skin cancer 
classification method that enhances diagnostic 
accuracy. Specifically, this study aims to compare 
the effectiveness of three combination approaches: 
VGG16 with CBAM, MobileNetV2 with CBAM, and 
the combination of VGG16 and MobileNetV2. By 
analyzing these models, the study seeks to 
determine the most optimal architecture for 
classifying pigmented skin cancer. 

The dataset used is the Skin Cancer ISIC - The 
International Skin Imaging Collaboration 
(HAM10000) from Kaggle, consisting of 10,015 
images of three primary types of skin cancer: Basal 
Cell Carcinoma, Melanoma, and Actinic Keratosis. 

 
MATERIALS AND METHODS 

 
This study was conducted to improve the 

accuracy of pigmented skin cancer image 
classification by comparing three models: VGG16 
with CBAM, MobileNetV2 with CBAM, and a 
combination of VGG16 and MobileNetV2. The 

results of this study are expected to assist medical 
professionals in detecting skin cancer more quickly 
and accurately. The architecture of the three models 
can be seen in Figures 1, 2, and 3. 

 
Source: (Research Results, 2025) 

Figure 1. VGG16 architecture in image 
classification 

 

 
Source: (Research Results, 2025) 

Figure 2. MobileNetV2 architecture in image 
classification 

 

 
Source: (Research Results, 2025) 

Figure 3. Convolutional Block Attention Module 
Architecture 

 
VGG16, MobileNetV2, and CBAM play an 

important role in improving the accuracy of 
pigment skin cancer image classification in this 
study. VGG16, with 16 small convolutional layers 
(3x3), is able to capture spatial patterns and 
textures in depth, although it has a weakness in 
computational efficiency. MobileNetV2, which is 
designed for high efficiency, uses depth wise 
separable convolutions and inverted residual 
blocks to reduce the number of parameters without 
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sacrificing performance, making it suitable for 
implementation on devices with computational 
limitations. CBAM (Convolutional Block Attention 
Module) is added as an attention module that 
enhances feature selectivity with Channel Attention 
and Spatial Attention, helping the model to focus on 
more relevant image parts in classification. The 
combination comparison involving these three 
architectures is expected to optimally improve the 
accuracy of skin cancer classification, combining the 
advantages of deep feature extraction from VGG16, 
the efficiency of MobileNetV2, and the enhancement 
of feature representation from CBAM. 
 
Research Stages 
 

 
Source: (Research Results, 2025) 

Figure 4. Research Stages 
 

1. Data Collection 
The dataset used in this study is "Skin Cancer 

ISIC - The International Skin Imaging Collaboration 
(HAM10000)" from Kaggle. This dataset consists of 
10,015 images, but only 2,400 sample images were 
used in this study. Among the seven available 
classes in the original dataset, this research focuses 
on three major types of skin cancer: Actinic 
Keratosis (AKIEC), Basal Cell Carcinoma (BCC), and 
melanoma (MEL), in accordance with the study’s 

problem scope. Figure 5 presents examples of each 
skin cancer class used in this research. 

 
Source: (Kaggle, 2021) 

Figure 5. Sample Dataset Of 3 Classes Of Skin 
Cancer 

 
2. Data Balancing 

Before proceeding to the next steps, the dataset 
was first balanced using a balancing technique to 
ensure a more proportional distribution. The 
frequency distribution of classes before and after 
balancing can be seen in Figures 6 and 7. 

 
Source: (Research Results, 2025) 

Figure 6. Data Class Frequency Before Balancing 
 

 
Source: (Research Results, 2025) 

Figure 7. Data Class Frequency After Balancing 
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Figure 7 illustrates the dataset after the 
balancing process, which focuses only on three 
major types of skin cancer: Actinic Keratosis 
(AKIEC), Basal Cell Carcinoma (BCC), and melanoma 
(MEL). After balancing, each class contains 800 
samples, resulting in a total of 2.400 samples used 
in this study. 
 
3. Data Preprocessing 

Before being used in the deep learning model, 
the dataset undergoes a series of preprocessing 
steps to ensure its quality. Data augmentation is 
applied using various transformations, including 
rotation (±40°), horizontal and vertical shifts (0.2), 
scaling (0.2), zooming (0.3), flipping, and brightness 
adjustment. These techniques enhance data 
diversity and help reduce the risk of overfitting. 
Additionally, normalization is performed by 
rescaling pixel values from the 0–255 range to 0–1, 
making it easier for the model to learn. All images 
are also resized to 224×224 pixels, aligning with the 
requirements of the CNN architectures used in this 
study. 
 
4. Dataset Splitting 

After the preprocessing stage is completed, the 
dataset is divided into two parts 80% (1.920 
samples) for training and 20% (480 samples) for 
validation. This division maintains a balanced 
proportion for each class, ensuring fair 
representation of all skin cancer types. This 
approach allows the model to learn effectively from 
the training data while also enabling a valid 
evaluation of its generalization ability on unseen 
data. However, since no separate test set is used, the 
reported model performance on the validation set 
might be optimistically biased, as it is also involved 
in model selection and early stopping during 
training. Therefore, this data split is an important 
methodological aspect to consider in this study. This 
limitation can be addressed in future research by 
introducing a separate test set that is completely 
excluded from the training and validation 
processes. This would provide a more reliable 
evaluation of the model’s performance on entirely 
new data. 
 
5. Comparison of the Three Combination Methods 

To improve accuracy in skin cancer 
classification, this study compares three 
combination methods: VGG16 with CBAM, 
MobileNetV2 with CBAM, and a combination of 
VGG16 and MobileNetV2. Each method employs a 
different approach to feature extraction and 
attention mechanisms in identifying critical areas 

within the images. Table 1 presents the key 
comparisons among these three methods. 
 

Table 1. Three Combination Methods 

Aspect 
VGG16 + 

CBAM 
MobileNetV

2 + CBAM 

Combination 
of VGG16 & 

MobileNetV2 

Base 
Model 

VGG16 (pre-
trained 
ImageNet) 

MobileNetV2 
(pre-trained 
ImageNet) 

VGG16 & 
MobileNetV2 
(run in 
parallel) 

Trainabl
e Layer 

Last 8 layers 
Last 20 
layers 

All layers in 
both models 
remain 
trainable 

Attentio
n 
Mechani
sm 

CBAM to 
increase 
focus on 
important 
features 

CBAM to 
increase 
focus on 
important 
features 

Self-attention 
for adaptive 
weights on 
features 

Feature 
Fusion 

None (only 
one model) 

None (only 
one model) 

Concatenation 
of features of 
both models 

Learning 
Rate 

0.0001 0.0001 0.00005 

Excess 
Stable in 
feature 
extraction 

Light and fast 
in computing 

Produces a 
richer feature 
representation 

Lack 

Heavier in 
computing 
than 
MobileNetV2 

Performance 
may be lower 
if the data is 
complex 

More complex 
and requires 
greater 
resources 

Source: (Research Results, 2025) 
 
6. Model Training 

The training process for the three methods 
involves a classification stage with multiple Dense 
Layers, utilizing ReLU activation in hidden layers 
and softmax activation in the output layer to 
generate final predictions. The models are trained 
with a batch size of 16, balancing efficiency and 
memory usage. The categorical cross-entropy loss 
function is used, as it is suitable for multi-class 
classification tasks. To prevent overfitting, Early 
Stopping (patience of 20–25 epochs) is applied, 
stopping training when no significant improvement 
is detected. Additionally, ReduceLROnPlateau is 
implemented, automatically reducing the learning 
rate by a factor of 0.1 if validation performance does 
not improve. 
 
7. Evaluation and Hyperparameter Tuning 

After training, the model performance is 
evaluated using accuracy, precision, recall, F1-
score, and a confusion matrix. If the results are not 
optimal, hyperparameters are fine-tuned, including 
adjustments to the learning rate, model architecture 
modifications, and the application of regularization 
techniques such as Dropout to enhance 
performance and generalization. 
 
 



 

 

VOL. 10. NO. 4 MAY 2025. 
 . 

DOI: 10.33480/jitk.v10i4.6541. 
 

  

775 

8. Classification with the Best Model 
The best-performing model is selected based on 

validation accuracy, loss, and training stability. The 
classification process begins with feature 
extraction, where input images are processed 
through the chosen model’s architecture. Attention 
mechanisms such as CBAM or Self-Attention are 
employed to emphasize critical areas in the images. 
Extracted features are then passed through Dense 
Layers with softmax activation, producing 
probabilities for each skin cancer category. The 
model’s evaluation using a confusion matrix, 
precision, recall, and F1-score demonstrates its 
capability to distinguish between the three primary 
skin cancer types—Actinic Keratosis (AKIEC), Basal 
Cell Carcinoma (BCC), and melanoma (MEL)—with 
minimal misclassification. However, a limitation of 
this study is the absence of a separate test set, which 
could be addressed in future research to further 
validate the model’s performance on entirely 
unseen data. 
 

RESULTS AND DISCUSSION 
 
The research results represent the stage of 

obtaining outcomes from the developed model 
architecture for skin cancer classification. The first 
step in this process is data preprocessing, where 
image data is first cleaned and adjusted to be 
suitable for model training. This phase includes 
filtering, balancing, data augmentation, 
normalization, and image resizing to align with the 
CNN architecture requirements. 

The resizing process is performed using the 
resize function from libraries such as OpenCV or 
PIL. Once the images have been resized, the next 
step is dataset splitting. The dataset is divided into 
two main parts: training data and validation data. 
The splitting ratio used is 80% for training data and 
20% for validation data. The dataset distribution 
results are presented in Table 2. 

 
Table 2. Dataset Divisions Results 

Training Data Validation Data 
1.920 480 

Source: (Research Results, 2025) 
 
The next stage is data augmentation, where various 
augmentation parameters are applied to increase 
the dataset size and enhance model generalization. 
Several parameters used in this process are 
presented in Table 3. 
 

Table 3. Augmentation Parameters 
Parameter Value Description 

rotation_range 40 
Image rotation in 
degrees. 

Parameter Value Description 

width_shift_range 0.2 
Horizontal shift up to 
20% of the image 
width. 

height_shift_range 0.2 
Vertical shift up to 
20% of the image 
height. 

shear_range 0.2 
Shape distortion in 
degrees. 

zoom_range 0.3 
Zoom in or zoom out 
up to 20%. 

horizontal_flip True 
Horizontal flipping of 
the image. 

vertical_flip True 
Vertical flipping of 
the image. 

fill_mode nearest 
Pixel filling method 
for empty spaces 
after transformation. 

brightness_range 
[0.7, 
1.3] 

Brightness variation 
of the image. 

channel_shift_range 0.15 
Color channel shift 
adjustments. 

rescale 1./255 
normalization of 
pixel values in the 
image. 

Source: (Research Results, 2025) 
 

After the data augmentation process, the next 
stage is model development and training. Each 
model is trained with 150 epochs and a batch size of 
16. The training process stops at different epochs 
depending on the model's convergence. The 
training progress is visualized using graphs to 
illustrate performance trends across epochs.  

 
Source : (Research Results, 2025) 
Figure 8. VGG16 + CBAM Model Accuracy and Loss 

Graph 
 

Figure 8 presents the accuracy and loss 
trends of the VGG16 with CBAM model during 
training. In the accuracy graph (left), the model 
exhibits a gradual improvement in training 
accuracy, but validation accuracy fluctuates sharply 
after 10 epochs, peaking at 55% before overfitting 
occurs. In the loss graph (right), training loss 
remains stable and decreases over time, whereas 
validation loss fluctuates and rises significantly in 
the final epochs, indicating the model struggles with 
generalization. These results suggest overfitting, 
necessitating mitigation strategies such as 
architectural adjustments, regularization 
techniques, or additional data augmentation.  

The confusion matrix for VGG16 with CBAM 
is shown in Figure 9. 
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Source: (Research Results, 2025) 

Figure 9. Confusion Matrix VGG16 + CBAM 
 

Figure 9 displays the confusion matrix of the 
VGG16 with CBAM model for classifying three skin 
cancer types: Actinic Keratosis (AKIEC), Basal Cell 
Carcinoma (BCC), and melanoma (MEL). In the 
absolute matrix (left), the model performs well on 
AKIEC (144 correct samples) but misclassifies BCC 
as AKIEC in 131 cases. For melanoma, the model 
correctly classifies 88 samples, but frequently 
misclassifies 54 as AKIEC and 18 as BCC. The 
normalized confusion matrix (right) shows AKIEC 
achieving the highest accuracy (90%), while BCC 
struggles with only 17% accuracy, indicating 
difficulty in distinguishing BCC from AKIEC. 
melanoma reaches 55% accuracy but is still often 
confused with other classes. The high 
misclassification rate between BCC and AKIEC may 
result from similar visual characteristics between 
the two types. 

Next, Figure 10 presents the accuracy and 
loss trends of the MobileNetV2 with CBAM model 
during training. 

 
Source: (Research Results, 2025) 

Figure 10. MobileNetV2 + CBAM Model Accuracy 
And Loss Graph 

Figure 10 presents the accuracy and loss 
graphs for the MobileNetV2 with CBAM model 
during training. In the accuracy graph (left), the 
model exhibits a steady increase in both training 
and validation accuracy. The validation accuracy 
reaches 86%, indicating strong model performance 
in recognizing patterns from the dataset. While 

there are minor fluctuations in validation accuracy, 
the overall trend remains positive without 
significant overfitting. The training process stops at 
epoch 59, demonstrating that early stopping has 
been applied to prevent overfitting. In the loss 
graph (right), both training and validation loss 
gradually decrease, confirming that the model is 
effectively minimizing prediction errors. Although 
validation loss fluctuates slightly more than training 
loss, it follows a downward trend, showing that the 
model is still learning without severe performance 
degradation. By the end of training, validation and 
training loss converge, reinforcing that the model 
generalizes well to unseen data. 

Next, Figure 11 presents the confusion 
matrix for the MobileNetV2 with CBAM model to 
evaluate its classification performance across 
different skin cancer types. 

 

 
Source: (Research Results, 2025) 
Figure 11. Confusion Matrix MobileNetV2 + CBAM 

 
Figure 11 presents the confusion matrix for 

the MobileNetV2 with CBAM model, illustrating its 
classification performance. In the absolute 
confusion matrix (left), the model correctly 
classifies 137 samples of AKIEC, although 13 are 
misclassified as BCC and 10 as MEL. The BCC class 
has 144 correctly predicted samples, with 9 
misclassified as AKIEC and 7 as MEL. For the MEL 
class, 134 samples are correctly classified, but 19 
are misclassified as AKIEC and 7 as BCC. In the 
normalized confusion matrix (right), the model 
achieves an accuracy of 86% for AKIEC, 90% for 
BCC, and 84% for MEL. The highest misclassification 
rate occurs in the MEL class (12% misclassified as 
AKIEC), indicating possible feature similarities 
between these classes. Overall, the model 
demonstrates strong performance, with its highest 
accuracy in the BCC class (90%). 

Next, Figure 12 presents the accuracy and 
loss graphs for the combined VGG16 and 
MobileNetV2 model to evaluate its training 
progress. 
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Source: (Research Results, 2025) 

Figure 12. Graph of Accuracy and Loss Model 
Combination of VGG16 With MobileNetV2 

 
Figure 12 presents the accuracy and loss 

graphs for the combined VGG16 and MobileNetV2 
model during training. In the accuracy graph (left), 
the model shows a gradual improvement, reaching 
77% accuracy on the training data. However, the 
validation accuracy fluctuates sharply in the early 
epochs before stabilizing after epoch 30. In the loss 
graph (right), the training loss steadily decreases, 
indicating continuous learning. However, the 
validation loss exhibits extreme fluctuations, 
especially around epoch 30, before becoming more 
stable towards the end of training. This pattern 
suggests the presence of partial overfitting and 
highlights the model’s difficulty in generalizing to 
unseen data. 

Next, Figure 13 presents the confusion 
matrix for the combined VGG16 and MobileNetV2 
model, illustrating its classification performance 
across the three skin cancer classes. 

 

 
Source : (Research Results, 2025) 
Figure 13. Confusion Matrix Combination of VGG16 

With MobileNetV2 
 

 Figure 13 presents the confusion matrix of 
the combined VGG16 and MobileNetV2 model for 
three skin cancer classes AKIEC, BCC, and MEL. In 
the absolute confusion matrix (left), the model 
correctly classified 109 AKIEC samples but 
misclassified 37 samples as BCC and 14 samples as 
MEL. For the BCC class, the model correctly 
identified 130 samples, while 20 samples were 

misclassified as AKIEC and 10 as MEL. Meanwhile, 
the model successfully classified 132 melanoma 
samples correctly, though 15 samples were 
misclassified as AKIEC and 13 as BCC. 
In the normalized confusion matrix (right), the 
AKIEC class achieved a classification accuracy of 
68%, but it still exhibited an error rate of 23% 
misclassified as BCC and 9% as MEL. The BCC class 
attained an accuracy of 81%, with 12% 
misclassified as AKIEC and 6% as MEL. Similarly, 
the melanoma class achieved an accuracy of 82%, 
but 9% of the samples were misclassified as AKIEC 
and 8% as BCC. These results indicate that while the 
combined model performs relatively well, there are 
still misclassifications due to the similarity of visual 
features among different skin cancer classes. 
 
For a clearer comparison of the three combination 
methods, refer to the graph in Figure 14. 

 
Source: (Research Results, 2025) 

Figure 14. Comparison Chart of the Three 
Combination Methods 

 
 Figure 14 presents a comparison of the 
validation accuracy of three combination methods: 
VGG16 with CBAM, MobileNetV2 with CBAM, and 
the combination of both (VGG16-MobileNetV2). The 
graph shows that MobileNetV2 with CBAM (orange 
line) exhibits a more stable and consistent accuracy 
improvement trend compared to the other 
methods, reaching a peak of nearly 87%. The 
combination of VGG16 and MobileNetV2 (green 
line) displays greater fluctuations, but overall, it 
follows an increasing trend and achieves 
approximately 77% accuracy. Meanwhile, VGG16 
with CBAM (blue line) has the lowest performance, 
with validation accuracy stagnating at around 54% 
after approximately 10 epochs, indicating 
limitations in the learning process. 
 These results suggest that MobileNetV2 with 
CBAM has better generalization capability than the 
other methods, while the VGG16-MobileNetV2 
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combination still shows potential but requires 
improvements to reduce accuracy fluctuations. 
Compared with previous studies that only achieved 
an accuracy of 75%, the proposed method shows an 
accuracy improvement to 86%. This shows that the 
integration of CBAM with MobileNetV2 provides 
significant benefits in improving the model's 
attention to important features in skin cancer 
images. A more detailed analysis of model 
performance can be found in Table 4. 
 

Table 4. Results Of Each Combination 

Model 
Accura

cy 
Precisi

on 
Recal

l 
F1-

score 
Training 

Time 
VGG16 + 
CBAM 

53,96
% 

61,73
% 

53,96
% 

51,13
% 

23.81 
minutes 

MobileN
etV2 + 
CBAM 

86,46
% 

86,53
% 

86,46
% 

86,46
% 

39.79 
minutes 

VGG16 – 
MbileNet
V2 
Combina
tion 

77,29
% 

77,51
% 

77,29
% 

77,24
% 

51.75 
minutes 

Source: (Research Results, 2025) 
 

CONCLUSION 
 

Based on the research findings, it can be 
concluded that the performance of the combination 
models is influenced by the network architecture 
used, the number of layers, kernel size, 
augmentation techniques, and dataset balance. The 
models encountered difficulties in distinguishing 
certain classes, particularly between BCC and 
AKIEC, likely due to similarities in their visual 
features. Among the three combination methods 
tested, the MobileNetV2 with CBAM model 
demonstrated the best performance, achieving the 
highest validation accuracy of 86%. This model was 
able to produce more stable classification results 
compared to the other combinations. Meanwhile, 
the VGG16 with CBAM model struggled to reach 
high accuracy, achieving only 54%, with significant 
overfitting. The VGG16-MobileNetV2 combination 
achieved a relatively good accuracy of 77% but 
experienced fluctuations during training. These 
results indicate that selecting a lighter and more 
efficient network architecture, such as 
MobileNetV2, combined with an attention 
mechanism like CBAM, can improve skin cancer 
classification performance. For future research, it is 
recommended to explore alternative pooling 
techniques such as global pooling, further balance 
the dataset distribution, and apply fine-tuning to 
model parameters to enhance classification 
accuracy and stability. 
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