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Abstract—The Tugu Adipura intersection in Bandar Lampung is a vital traffic hub connecting four major 
roads. Rapid population growth and increasing vehicle numbers challenge traffic flow and urban quality of 
life. Despite its importance, there is limited research using predictive models to analyze traffic patterns at 
complex intersections in mid-sized Indonesian cities. This study addresses that gap by examining traffic growth 
on four connected roads using deep learning models. Traffic data were collected hourly from June 1, 2021, to 
July 31, 2023. A comparative analysis of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
models was conducted, with SGD and Adam as optimizers. Results show the GRU model with Adam achieved 
the lowest RMSE (0.23) on road section 1, indicating its superior ability to model short-term fluctuations and 
non-linear growth in traffic volume. The study offers practical implications for traffic management by 
highlighting GRU’s capacity to capture seasonal trends and rapid growth, supporting proactive infrastructure 
planning and congestion mitigation strategies. These findings demonstrate the value of data-driven 
approaches in enhancing transportation systems in growing urban areas. 

 
Keywords: GRU, intersection, LSTM, roads, traffic prediction. 

 
Intisari— Simpang Tugu Adipura di Kota Bandar Lampung merupakan simpul lalu lintas penting yang 
menghubungkan empat jalan utama. Pertumbuhan penduduk dan peningkatan jumlah kendaraan 
menimbulkan tantangan terhadap kelancaran lalu lintas dan kualitas hidup masyarakat. Meskipun peran 
simpang ini vital, masih sedikit penelitian yang menggunakan model prediktif untuk menganalisis pola 
pertumbuhan lalu lintas di simpang kompleks di kota menengah Indonesia. Penelitian ini bertujuan mengisi 
celah tersebut dengan menganalisis pertumbuhan lalu lintas di empat ruas jalan menggunakan model 
pembelajaran mendalam. Data lalu lintas dikumpulkan setiap jam dari 1 Juni 2021 hingga 31 Juli 2023. 
Analisis komparatif dilakukan terhadap model Long Short-Term Memory (LSTM) dan Gated Recurrent Unit 
(GRU) dengan optimasi menggunakan algoritma SGD dan Adam. Hasil menunjukkan bahwa model GRU 
dengan Adam menghasilkan RMSE terendah (0,23) pada ruas jalan 1, menunjukkan keunggulan dalam 
memodelkan fluktuasi jangka pendek dan pertumbuhan non-linear. Temuan ini memiliki implikasi praktis 
dalam manajemen lalu lintas, terutama dalam mendeteksi tren musiman dan pertumbuhan, sehingga 
mendukung perencanaan infrastruktur dan strategi mitigasi kemacetan secara proaktif. Pendekatan 
berbasis data ini terbukti efektif untuk perencanaan transportasi di wilayah perkotaan yang berkembang. 
 
Kata Kunci: GRU, persimpangan, LSTM, jalan, prediksi lalu lintas. 
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INTRODUCTION 
 

In the context of urban growth and 
population increase, especially in large urban city 
center areas, space resources are increasingly 
becoming a significant limitation [1]. This 
phenomenon is triggered by high urban activity and 
population mobility, which has an impact on the 
accessibility and efficiency of transportation in the 
city center [2][3]. Traffic, as an integral element in 
the urban transportation system, plays a crucial role 
in determining the level of city accessibility. The 
minimal obstacles to vehicles in traveling indicate 
that the level of transportation accessibility is good 
and can support community mobility and urban 
activities [3]. Therefore, accurate and efficient 
transportation planning is a must to create and 
maintain optimal accessibility in limited urban 
space. Traffic prediction aims to predict future road 
traffic conditions from historical traffic data, which 
is very important for urban planning and 
construction [4]. Accurate traffic pattern prediction 
is an important element in optimal transportation 
planning. Given the complexity of spatial 
phenomena that influence traffic, such as public 
interest, transit connections, and similarities in 
historical traffic patterns, a holistic and innovative 
approach is needed [5]. 

Bandar Lampung City is the urban center of 
Lampung Province which has several intersections, 
one of which is the Tugu Adipura intersection. The 
Tugu Adipura intersection is included in an 
important traffic node in the context of urban 
mobility in Bandar Lampung because it connects 4 
roads, namely Jl. Jendral Sudirman, Jl. Raden Intan, 
Jl. Diponegoro, and Jl. Ahmad Yani. The increasing 
traffic density in this area, accompanied by 
population growth and an increase in the number of 
vehicles, poses significant challenges to the smooth 
flow of traffic and the quality of life of the 
community. In 2022, the level of congestion or 
degree of saturation at the Tugu Adipura 
intersection is predicted to not meet the standards 
of the Indonesian Road Capacity Manual (MKJI) [6]. 
Management is needed to overcome this 
transportation problem. This research aims to 
develop a predictive model that can project traffic 
patterns at the Tugu Adipura intersection. It is 
hoped that the research results will provide insight 
for authorities in designing more efficient traffic 
management strategies, as well as provide a basis 
for better decision making in urban traffic 
management. 

In terms of making predictions, there are 
various algorithms that have unique and special 
abilities. One of them is Long Short-Term Memory 

(LSTM), a type of recurrence architecture 
specifically designed to handle the vanishing 
gradient problem in recurrent neural networks 
(RNN) [7][8][9]. The Long Short Term Memory 
algorithm is an algorithm resulting from further 
development of RNN with 3 additional gates (forget 
gate, input gate and output gate) as a regulator of 
information flow when studying long-term 
dependencies and certain information in the data to 
make predictions. LSTM capabilities are very 
effective in understanding and predicting complex 
patterns in time series data [7]. Gated Recurrent 
Unit (GRU), as another variant of RNN, also focuses 
on dealing with the vanishing gradient problem [8]. 
The gate recurrent unit has a simpler architecture 
than LSTM because it only has 2 gates (reset gate 
and update gate) to regulate the flow of information 
in the neural network, making GRU able to 
overcome overfitting problems when learning 
model learning [8][9]. The parameters that will be 
identified in this research are intersection roads, 
time, and number of vehicles, where the 
intersection roads that will be evaluated are roads 
two, three, and four. Data taken from June 2021 to 
July 2023. Data is taken every day where the 
observation range is once every 1 hour. 

Several related studies have been carried out 
by Dey P, et al, where the researchers compared the 
performance of the forecasting results of the RNN, 
LSTM and GRU algorithms in predicting stock prices 
using different data trends with the results of the 
mean absolute error of RNN being 5.26118, LSTM 
being 6.20282 and GRU being 3.70209 for the data 
with high variance, then for data with low variance 
RNN is 0.64351, LSTM is 0.53824 and GRU is 
0.55344 [10]. Another research conducted by 
Shahid F, Zameer A & Muneeb M with the title 
"Predictions for COVID-19 with deep learning 
models" carried out a comparison between LSTM 
and GRU to predict cases of infection, death and 
recovery using COVID-19 case data from various 
regions of the world with the results, LSTM has an 
MAE value predicting infected cases of 2.0463 and 
deaths of 0.0095 while the MAE GRU value of 
infected cases is 2.8553, deaths are 0.0321 and 
recoveries are 7.04867 [11].  Another research 
conducted by Karyadi, Y and Santoso, H by the 
application of the LSTM and LSTM Bidirectional 
models showed better results than the Gated 
Recurrent Unit (GRU) model in handling air quality 
time series data. Performance evaluation using 
RMSE on both LSTM and Bidirectional LSTM models 
shows a smaller comparison compared to the 
standard deviation of the test dataset [9]. The next 
research is from A. Nilsen, who predicted LQ45 
stock prices and the model was evaluated using 
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Root Mean Square Error, Mean Square Error, and 
Mean Absolute Error. In this research, the same 
hyperparameters are used for all models, namely 
{epoch=200, batch size=32, and units=24}. From the 
average Root Mean Square Error (RMSE), Mean 
Square Error (MSE), and Mean Absolute Error 
(MAE) produced from the three models, it is 
concluded that the GRU model has better accuracy 
than the Recurrent Neural Network (RNN) model 
and Long Short-Term Memory (LSTM) [12]. 

This research presents a novelty in applying 
time series prediction models—specifically Long 
Short-Term Memory (LSTM) and Gated Recurrent 
Unit (GRU)—in a comparative study at a four-way 
intersection in a mid-sized Indonesian city, namely 
the Tugu Adipura intersection in Bandar Lampung. 
Unlike previous studies that mainly focused on 
stock price forecasting, air quality, or pandemic case 
predictions, this study emphasizes the complexity 
of urban traffic dynamics, which are influenced by 
daily fluctuations and seasonal patterns. LSTM and 
GRU were selected due to their proven ability to 
capture long-term dependencies in time series data 
and their effectiveness in addressing the vanishing 
gradient problem commonly found in standard 
Recurrent Neural Networks (RNNs). LSTM uses a 
more complex architecture with three gates (input, 
forget, and output), while GRU offers a simpler 
structure with two gates (reset and update), making 
it more computationally efficient in certain cases. 
Classical models such as ARIMA or Support Vector 
Regression (SVR) are considered less flexible in 
capturing the nonlinear and seasonal 
characteristics of road traffic data, thus deep 
learning approaches provide a more adaptive and 
suitable solution for the data characteristics in this 
study [13]. 

In this research, researchers want to 
determine the algorithm that has the lowest 
prediction error value when applied to time series 
data related to road density. To measure the model 
that has been developed, measurements using 
RMSE are used [14]. The selection of these two 
algorithms is based on the fact that LSTM and GRU 
are developments of neural networks for modeling 
time series data, as has been proven in previous 
research by Dey P, et al regarding forecasting on 
time series data objects [10]. Different levels of 
forecasting success in previous research are 
acknowledged to be influenced by the complexity of 
the data, the amount of data, and the characteristics 
of the object being predicted. Therefore, it is hoped 
that this research can contribute to helping other 
researchers in choosing a suitable prediction 
algorithm for road density objects. This research 

aims to compare the performance of LSTM and GRU 
algorithms in predicting road traffic density at the 
Adipura Intersection, Bandar Lampung City, using 
time series data. It seeks to determine which model 
provides the lowest prediction error (RMSE) and to 
offer a reliable reference for selecting and 
developing effective machine learning models for 
traffic prediction tasks, both in terms of resource 
efficiency and model performance. 

 
MATERIALS AND METHODS 

 
The flow of research carried out in this research 

can be seen in the flow diagram in Figure 1. The 

research will start from the problem identification 

stage, literature study, data collection, data 

preprocessing, data pre-processing, modeling, testing 

and performance comparison. 

 
Source: (Research Results, 2025) 

Figure 1. Research Flow 

 

Problem identification 
The problem identification stage involves a 

background search to find the root cause of the 
problem being faced. This research was triggered by 
the lack of comparative research regarding LSTM 
and GRU algorithms in predicting road density. 
Heavy traffic in strategic locations has a serious 
impact on human life, encouraging the urgency of 
carrying out this research to understand and 
overcome the increasing losses. 

 
Study literature 

At this stage researchers will look for 
information related to Long Short Term Memory 
and Gated Recurrent Unit algorithms from various 
sources ranging from journals, books and other 
trusted sources. 
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Data collection 
The data collection stage is the process 

where researchers collect the data needed to carry 
out research. The data used in this research comes 
from on-site observations from June 1, 2021 to July 
31, 2023. The data collected is of the time series 
type with 8 parameters, namely Data Recap Time, 
Road, Number of Vehicles, Year, Month, Date, Hour, 
Day.  

 
Table 1. An Examples of Data 

Data 
Collection 
Time 

2021-
11-01 
00:00:00 

2021-
11-01 
01:00:00 

2021-
11-01 
02:00:00 

2021-
11-01 
03:00:00 

Road 1 1 1 1 
Number of 
Vehicles 

12 10 7 5 

Year 2023 2023 2023 2023 
Month 11 11 11 11 
No Date 1 1 1 1 
Time 0 1 2 3 
Hari Monday Monday Monday Monday 

Source: (Research Results, 2025) 

 
Pre-processing 

The data pre-processing stage aims to 
prepare and process raw data so that it can be used 
effectively in training learning models according to 
research needs [15]. This process involves a series 
of steps to improve data quality, overcome 
imperfections, and align the data structure with the 
needs of the analysis model. The following are the 
objectives of the data pre-processing stages [16]: 
1. Cleaning Data 

Eliminate noise, outliers, or irrelevant data to 
improve data quality. This includes the 
identification and handling of missing or anomalous 
values [17]. 
2. Normalization 

Aligning data scales to have a similar range of 
values ensures that features have a balanced impact 
on the model. 
3. Data Transformation 

Perform additional transformations or 
normalization if necessary, such as changing the 
data distribution. 

 
Modeling 

At the modeling stage, researchers will 
design a learning model using the LSTM and GRU 
algorithms. The initial step involves building a 
machine learning model architecture, where 
training parameters for each algorithm are 
determined [18]. After the model architecture is 
complete, the process continues to the training 
stage by inputting data to train the machine, with 
the aim of detecting patterns and important 
relationships between the data to make predictions. 

Evaluation of machine learning model performance 
involves analysis of accuracy and root mean square 
error (RMSE). Researchers monitor learning by 
checking loss, RMSE, and mean square error at each 
epoch. The model training process continues until it 
reaches the desired performance level. 
Performance tuning involves adjusting 
architectural parameters, such as varying learning 
rate or hyperparameter values, to improve 
validation, reduce loss, and update weights to 
optimize the loss function during the learning 
process. 

In this study, both GRU and LSTM models were 
developed using deep architectures with stacked 
recurrent layers to improve the model’s capacity for 
capturing complex temporal dependencies. Each 
model used five recurrent layers with a decreasing 
number of units (150 to 50), designed to gradually 
distill information across time steps. A tanh 
activation function was used to ensure non-linearity 
while maintaining stability in the gradient flow. 
Dropout layers with a dropout rate of 0.2 were 
inserted between layers to mitigate overfitting by 
randomly deactivating neurons during training. The 
models were trained for a maximum of 50 epochs 
with an early stopping mechanism (patience of 10, 
min_delta 0.001) to avoid overfitting and reduce 
unnecessary training time. 

The optimizer used in the final model 
compilation was Adam, as it combines the 
advantages of momentum and adaptive learning 
rates, making it more robust for training deep 
networks on time series data with sparse and noisy 
gradients. SGD with momentum was also tested in 
preliminary runs to benchmark its performance, but 
Adam was ultimately favored for its faster 
convergence and better generalization in this case. 
A batch size of 120 was selected based on empirical 
testing to balance between convergence speed and 
memory efficiency. 

Root Mean Square Error (RMSE) was selected 
as the primary evaluation metric because it gives 
higher penalization to larger errors, which is critical 
in traffic forecasting applications where large 
deviations can lead to misleading conclusions for 
traffic management. RMSE also maintains the same 
unit as the predicted variable, which makes 
interpretation straightforward for decision-makers. 
 
Long short-term memory 

LSTM is a modification of RNN which is 
equipped with memory and several types of gates, 
such as input gate, forget gate, and output gate. 
LSTM's ability to understand data patterns allows it 
to learn information from more than 1000 previous 
steps, depending on the complexity of the network. 
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Due to its unique gate structure, LSTM can 
overcome the long-term dependency problem and 
process time series data more effectively than 
conventional RNNs. LSTM architecture and diagram 
notation can be seen in figures 2 and 3 [19]. 

 
Source: (Research Results, 2025) 

Figure 2. LSTM Architecture Flow Diagram 

 
Source: (Research Results, 2025) 

Figure 3. LSTM Diagram Notation 

 
In the diagram 3, each line carries a complete 

vector, from the output of one node to the input of 
another node. Pink circles depict pointwise 
operations, such as vector addition, while yellow 
squares represent the learned layers of the neural 
network. Converging lines indicate a merge, while 
branching lines indicate a copy of its content and the 
copy going to a different location. In this context, 
each line in the diagram depicts the flow of 
information, and the color and shape of elements 
such as pink circles and yellow squares indicate the 
operations and layers of the neural network 
involved. A line merge represents combining 
information from different sources, while a line 
branch represents a copy of the information that 
can then be used in a different location. This 
provides a visual representation of how information 
flows and is processed in a neural network 
architecture such as LSTM. 

Forget gate in Long Short-Term Memory 
(LSTM) architectures play a crucial role in 
determining which information will remain stored 
and which will be discarded during time series data 
processing. This process begins by receiving two 
types of information: hidden state from the previous 
cell and new information from the current input. 
These two pieces of information are then combined 
and processed via the sigmoid function. The sigmoid 
function produces an output between 0 and 1. A 
value close to 0 indicates that the information will 
be ignored or discarded, while a value close to 1 
indicates that the information is considered 
important and needs to be stored in the cell state. In 
other words, the greater the output of the sigmoid 
function, the more likely it is that the information 
remains in the cell's memory. Selecting relevant 
information to retain or ignore is critical in the 

context of time series data. Forget gate allows LSTM 
to adaptively decide whether information in a 
memory cell needs to be updated or forgotten. This 
allows LSTM to overcome the vanishing gradient 
problem and maintain a balance between 
remembering long-term information and 
maintaining flexibility in the face of changes in input 
data. Thus, the forget gate is one of the key 
components that supports the effectiveness of 
LSTM in processing and predicting time series data. 
The forget gate layer can be seen in Figure 4. 

 
Source: (Research Results, 2025) 

Figure 4. Forget Gate Layer 

 
The function formula for forget gate can be seen in 
formula 1 [20]. 
 

𝑓𝑡 =  𝜎(𝑊𝑓 ∗

[ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  

(1) 

 
Input gate will receive two types of 

information, namely hidden state from the previous 
cell and new information from the current input. 
Next, these two pieces of information will be 
combined and processed using the sigmoid function 
and tanh function. The output of the sigmoid 
function will convert the values into a range of 0 to 
1, which determines which information will be 
updated. A value close to 0 indicates that the 
information is considered unimportant, while a 
value close to 1 indicates that the information is 
considered important. Meanwhile, the output of the 
tanh function, which is a value of -1 to 1, is used to 
help cells learn information better. The input gate 
layer can be seen in Figure 5. 

 
Source: (Research Results, 2025) 

Figure 5. Input Gate Layer 



 

 

VOL. 10. NO. 4 MAY 2025. 
 . 

DOI: 10.33480/jitk.v10i4.6569. 
 

  

793 

The sigmoid layer will determine which values will 
be entered into the cell state. The sigmoid layer 
formula can be seen in formula 2. 

𝑖𝑡 =  𝜎(𝑊𝑖 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (2) 

 
The Tanh Layer functions to determine how many 
new candidates will be included in the cell state. The 
tanh layer formula can be seen in formula 3. 

 

�̃�𝑡 = tanh (𝑊𝑐 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 (3) 

 
Cell State is additional memory owned by 

the LSTM unit and is absent in the regular RNN unit. 
Cell State can be thought of as a long straight line at 
the top of an architectural diagram. With minor 
linear interactions with other processes, Cell State 
allows information to flow without change. This is 
what makes LSTM effective in dealing with 
vanishing gradient problems. The cell state layer 
can be seen in Figure 6. 

 
Source: (Research Results, 2025) 

Figure 6. Cell State Layer 

 
After the input gate process is complete and we 
know which information we want to enter the cell 
state using Formula 4. 

 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1+𝑖𝑡 * �̃�𝑡  (4) 

 

𝑓𝑡  * 𝐶𝑡−1 will delete the value in the cell state while 
𝑖𝑡 * 𝑐�̃� will insert new information into the cell state. 

 
Output gate plays a role in determining the 

hidden state that will be sent to the next cell [21]. To 
do this, the gate output receives two types of 
information: hidden state from the previous cell and 
new information from the current input. Next, the 
two pieces of information are combined and 
processed using the sigmoid function. The new cell 
state is then processed via the tanh function. The 
output of the tanh function is multiplied by the 
output of the sigmoid function to get the 
information that will be stored in the new hidden 
state. This new hidden state and cell state will then 
be passed to the next cell. The output gate uses a 
Sigmoid layer to determine how much of the cell 

state will flow to the output. After that, the 
information from the cell state goes through a tanh 
process, changing the value to a range of -1 to 1. The 
result is then multiplied by the output from the 
Sigmoid layer. This final value determines the 
extent to which information will be passed to the 
output; if it is close to 1, information will be passed, 
but if it is close to 0, information will be suppressed 
and will not enter the output. The gate layer output 
can be seen in Figure 7.will delete the value in the 
cell state while i_t * c ̃_t will insert new information 
into the cell state. 

 
Source: (Research Results, 2025) 

Figure 7. Output Gate Layer 

 

𝑜𝑡 =  𝜎(𝑊𝑜 ∗ [ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (6) 

 
Gated recurrent unit  
Gated Recurrent Unit (GRU) is an innovative 
architecture in recurrent neural networks that is 
intended to overcome the vanishing gradient 
problem that often occurs in sequence data. Along 
with its similarity to Long Short-Term Memory 
(LSTM), GRU also utilizes a gated unit that is capable 
of selectively updating or ignoring information 
through two main components, namely the update 
gate and reset gate. While GRU has similar 
functionality to LSTM, GRU architecture tends to be 
simpler with a lower number of parameters. These 
advantages make it a faster choice in the training 
process and more resistant to overfitting problems. 
The advantage of GRU lies in its more compact 
structure, resulting in more efficient use of 
computing resources compared to LSTM. With a 
simpler architecture, GRU offers a more effective 
and resource-saving solution for handling 
sequential data. The comparison between GRU and 
LSTM can be seen clearly in Figure X, which 
visualizes the structure and relationships between 
units in the GRU architecture. Thus, GRU becomes 
an attractive option in facing the vanishing gradient 
challenge, proving itself as an efficient and effective 
alternative in processing sequential information. An 
image of the GRU architecture can be seen in Figure 
8. 
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Source: (Research Results, 2025) 

Gated Recurrent Unit Architecture 
 

1. Reset Gate 
The reset gate in the GRU has a crucial role in 

controlling the amount of information to be deleted 
or retained from the hidden state in the previous 
timestep. The function is explained through 
Formula 7, which uses input from h_(t-1) and x_t to 
produce the gate reset vector value. With this 
mechanism, GRU can selectively regulate the extent 
to which historical information will be retained in 
current data processing. In other words, the reset 
gate gives the GRU the flexibility to adjust the rate of 
deletion or retention of information, creating 
adaptive intelligence that helps in handling 
sequential data effectively. The formula for 
resetting the gate can be seen in formula 7. 

 

𝑟𝑡 =  𝜎(𝑊𝑟 ∗ 𝑥𝑡 + 𝑢𝑟 ∗ ℎ𝑡−1

+  𝑏𝑟) 

(7) 

 
W and u are the weight matrices used in the 

activation calculation, while b is the bias associated 
with the matrix. 

 
2. Update Gate 

The update gate function in recurrent network 
architectures, such as the Gated Recurrent Unit 
(GRU), is very crucial because it acts as a control 
gate that determines whether new incoming 
information will be stored or discarded. With this 
capability, update gates ensure selectivity in 
information handling, ensuring only relevant and 
significant data is passed to the next stage. The 
formula for updating the gate can be seen in formula 
8. 

𝑧𝑡 =  𝜎(𝑊𝑧 ∗ 𝑥𝑡 + 𝑢𝑧 ∗ ℎ𝑡−1

+  𝑏𝑧) 

(8) 

 
After passing the reset gate and update gate 

stages, the information in the neuron will be used to 
update the current hidden state (ℎ𝑡) value by 
calculating a new candidate value for the hidden 

state (ℎ̂𝑡) using Formula 9. 

ℎ̂𝑡 =  𝑡𝑎𝑛ℎ(𝑊ℎ ∗ 𝑥𝑡 + 𝑢ℎ( 𝑟𝑡 

∗  ℎ𝑡−1) +  𝑏ℎ) 

     (9) 

 

Then the current hidden state h_t value is obtained 

using Formula 10. 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + (𝑧𝑡 ∗ ℎ̂𝑡) (10) 

 
Data training and testing 

At this stage the data will be divided into 2, 
namely training data of 52425 data and testing data 
of 5242 data. The figures above were obtained by 
dividing 90% of the dataset for training and the 
remaining 10% for testing. 

 
RESULTS AND DISCUSSION 

 
Pre-Processing 
The Normalize function applies Z-score 
normalization to standardize the data with formula 
11. 

𝑧 =
(𝑋−𝜇)

𝜎
                             (11) 

where X is the original value, μ is the mean, and σ is 
the standard deviation. This function returns the 
normalized data along with the mean and standard 
deviation. The Difference function calculates the 
difference between the current value and the 
previous value based on a certain interval, based on 
formula 12. 
 

𝐷𝑡 =  𝑋𝑡 − 𝑋𝑡−𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙              

(12) 
 
Used in time series analysis to remove trends. This 
function produces a list of differences that can help 
in making the data stationary. The plot visualization 
results of the data before transformation can be 
seen in Figure 10. 

Data stasioner is required in some time series 
analysis methods, especially in models such as 
ARIMA (AutoRegressive Integrated Moving 
Average). After normalization, differentiation is 
carried out on the normalized data using the 
Differentiation function. Differentiation is carried 
out at certain intervals: 
1. 24*7 for df_N1, meaning for differentiation 1 

week. 
2. 24 for df_N2, meaning for differentiation of 1 day 

or 24 hours. 
3. 1 for df_N3 and df_N4, meaning for 1 hour 

differentiation. 
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Source: (Research Results, 2025) 

Figure 10. Data Visualization Before 
Transformation 

 
The plot visualization results of the data after 
transformation can be seen in Figure 11. 

 
Source: (Research Results, 2025) 

Data Visualization After Transformation 
 

Augmented Dicket-Fuller Validation 
From Figure 11 the data looks linear. To 

ensure that the data is stationary, an augmented 
dicket-fuller test is carried out. The Augmented 
Dickey-Fuller test is used to determine whether a 
time series can be considered stationary or not 
[22][23]. Stationary_check function: This function 
accepts a time series DataFrame (df) and uses ADF 
test to test stationarity. ADF test produces several 
values, such as ADF statistics (check[0]), p-value 
(check[1]), and critical values (check[4]). The 
function prints ADF statistics, p-value, and critical 
values. Based on the ADF statistical values, it is 
compared with critical values to decide whether the 
time series is stationary or not. If the ADF statistical 
value is greater than the critical value at a certain 
confidence level (for example, 1%), then the time 
series is considered non-stationary. Conversely, if 
the ADF statistical value is smaller, then the time 
series is considered stationary. 

 
FUNCTION Stationary_check(dataframe) 
    PRINT "ADF Statistic:", check[0] 

    PRINT "p-value:", check[1] 
    PRINT "Critical Values:" 
    FOR key, value IN check[4] 
        PRINT key, value (format tiga desimal) 
    IF check[0] > check[4]["1%"] 
        PRINT "Data Time Series is Non-Stationary" 
    ELSE 
        PRINT "Data Time Series is Stationary" 
 
BEGIN 
    List_df_ND ← daftar data differencing dari df_N1, df_N2, 
df_N3, df_N4 
 
    PRINT "The Result" 
    FOR each dataframe IN List_df_ND 
        PRINT new line 
        CALL Stationary_check(dataframe) 
END 

 
The results obtained are as follows. 

Checking the transformed series for stationarity: 
ADF Statistic: -15.23022618473042 
p-value: 5.334088126188849e-28 
Critical Values: 
 1%: -3.431 
 5%: -2.862 
 10%: -2.567 
Data Time Series is Stationary 

 
GRU Model 

The GRU model is built using the Keras 
Sequential API. Several GRU layers are stacked 
sequentially. Each GRU layer has 150 units, uses 
hyperbolic tangent (tanh) activation, and returns 
sequences (return_sequences=True). Dropout with 
a rate of 0.2 is applied after each GRU layer to 
prevent overfitting. Finally, a Dense layer with one 
unit is used as the output layer. The model was 
compiled using the Stochastic Gradient Descent 
(SGD) optimizer with momentum 0.9. The error 
function used is mean squared error (MSE). The 
model is trained using training data (X_Train, 
y_Train) with validation data (X_Test, y_Test). 
Training is carried out for 50 epochs with a batch 
size of 120. The EarlyStopping callback is used to 
stop training early if there is no significant increase 
in performance. 
 
LSTM Models 

The LSTM model is built using the Keras 
Sequential API. The LSTM layers are stacked 
sequentially. Each LSTM layer has 150 units, uses 
hyperbolic tangent (tanh) activation, and returns 
sequences (return_sequences=True). Dropout with 
a rate of 0.2 is applied after each LSTM layer to 
prevent overfitting. Finally, a Dense layer with one 
unit is used as the output layer. The model was 
compiled using the Stochastic Gradient Descent 
(SGD) optimizer with a momentum of 0.9 and a 
possible learning rate adjusted using lr_schedule. 
The loss function used is mean squared error (MSE). 
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The model is trained using training data (X_Train, 
y_Train) with validation data (X_Test, y_Test). 
Training is carried out for 50 epochs with a batch 
size of 120. The EarlyStopping callback is used to 
stop training early if there is no significant increase 
in performance. 
 
Road 1 (Jl. Raden Intan) 

A comparison graph between predictions and 
actual values for road section 1 using the GRU model 
with SGD optimizer can be seen in Figure 12 dan 
GRU Model with Adam optimizer can be seen in 
Figure 13. From the prediction assessment using 
GRU and SGD, the RMSE value is 0.25, while the 
RMSE value with the Adam optimizer is 0.23. 

 

 
 Source: (Research Results, 2025) 

Graph of Comparison of Predicted and Actual 
Values on Road 1 Using the GRU Model with SGD 

Optimizers 

 

 
Source: (Research Results, 2025) 

Figure 13. Graph of Comparison of Predicted and 
Actual Values on Road 1 Using the GRU Model with 

Adam Optimizers 
 

The comparison graph between the prediction 
and the actual value on road section 1 using the 
LSTM model with SGD optimizer can be seen in 
Figure 14 dan and LSTM Model with Adam 
optimizer can be seen in Figure 15. From the 
prediction assessment using LSTM, the RMSE value 
is 0.27, while the RMSE value with the Adam 
optimizer is 0.24. 

 
Source: (Research Results, 2025) 

Graph Comparison of Predicted and Actual 
Values on Road 1 Using LSTM Model with SGD 

Optimizer 
 

 
Source: (Research Results, 2025) 

Figure 15. Graph Comparison of Predicted and 
Actual Values on Road 1 Using LSTM Model with 

Adam Optimizer 

 
Road 2 Jl. Jendral Ahmad Yani 
The comparison graph between the prediction and 
the actual value on road section 2 using the GRU 
model with SGD optimizer can be seen in Figure 16 
and and GRU Model with Adam optimizer can be 
seen in Figure 17. From the prediction assessment 
using GRU, the RMSE value is 0.55, while the RMSE 
value using the Adam optimizer is 0.54. 

 
Source: (Research Results, 2025) 

Graph of Comparison of Predicted and Actual 
Values on Road 2 Using the GRU Optimizers 
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Source: (Research Results, 2025) 

Graph of Comparison of Predicted and Actual 
Values on Road 2 Using the GRU Model with Adam 

Optimizers 

 
The comparison graph between the prediction and 
the actual value on road section 2 with the GRU 
model with SGD optimizer can be seen in Figure 18 
and LSTM Model with Adam optimizer can be seen 
in Figure 19. From the prediction assessment using 
LSTM, the RMSE value is 0.59, while the RMSE value 
with the Adam optimizer is 0.53. 

 

 
Source: (Research Results, 2025) 

Graph of Comparison of Predictions and Actual 
Values on Road 2 Using the LSTM Model with SGD 

Optimizers 

 

 
Source: (Research Results, 2025) 

Graph of Comparison of Predictions and Actual 
Values on Road 2 Using the LSTM Model with 

Adam Optimizers 
 
Road 3 Jl. Diponegoro 
The comparison graph between the predicted and 
actual values on road section 3 using the GRU model 
with the SGD optimizer is presented in Figure 20, 
while that using the GRU model with the Adam 

optimizer is presented in Figure 21. Based on the 
prediction assessment using the GRU model, the 
RMSE value is 0.55, whereas the RMSE value with 
the Adam optimizer is 0.62. 
 
 

 
Source: (Research Results, 2025) 

Comparison graph of predicted and actual values 
on Road 3 using the GRU model with SGD 

optimizers 
 

 
Source: (Research Results, 2025) 

Comparison graph of predicted and actual values 
on Road 3 using the GRU model with Adam 

optimizers 

 
The comparison graph between the predicted and 
actual values for road section 3 using the LSTM 
model with the SGD optimizer is presented in Figure 
22, while the corresponding graph using the Adam 
optimizer is shown in Figure 23. The RMSE value 
obtained with the Adam optimizer is 0.59. 
 

 

 
Source: (Research Results, 2025) 

Figure 22. Comparison graph of predicted and 
actual values on Road 3 using the LSTM model with 

SGD Optimizers 
 



 

VOL. 10. NO. 4 MAY 2025 
. 

DOI: 10.33480 /jitk.v10i4.6569  

 

 
 

798 

 
Source: (Research Results, 2025) 

Figure 23. Comparison graph of predicted and 
actual values on Road 3 using the LSTM model with 

Adam optimizers 
 
Road 4 Jl. Sudirman 
The comparison graph between the predicted and 
actual values for road section 4 using the GRU model 
with the SGD optimizer is presented in Figure 24, 
while the graph using the GRU model with the Adam 
optimizer is shown in Figure 25. Based on the 
prediction assessment using the GRU model, the 
RMSE value is 0.65, whereas the RMSE value 
obtained with the Adam optimizer is 0.59. 
 

 
Source: (Research Results, 2025) 

Figure 24. Graph of Comparison of Predictions and 
Actual Values on Road 4 Using the GRU Model with 

SGD Optimizers 
 

 
Source: (Research Results, 2025) 

Figure 25. Graph of Comparison of Predictions and 
Actual Values on Road 4 Using the GRU Model with 

Adam Optimizers 

 
The comparison graph between the predicted and 
actual values for road section 4 using the LSTM 
model with the SGD optimizer is presented in 
Figure 26, while the graph using the LSTM model 

with the Adam optimizer is shown in Figure 27. 
Based on the prediction assessment using the LSTM 
model, the RMSE value is 0.65 with the SGD 
optimizer and 0.57 with the Adam optimizer. 

 

 
Source: (Research Results, 2025) 

Figure 26. Comparison graph of predicted and 
actual values on Road 4 using the LSTM model with 

SGD optimizers 

 
Source: (Research Results, 2025) 

Figure 27. Comparison graph of predicted and 
actual values on Road 4 using the LSTM model with 

Adam optimizers 
 
Results of Analysis 

In this research, traffic was identified on 4 
road sections at Simpang Tugu Adipura, Bandar 
Lampung City. The first road section is Jl. Raden 
Intan, road two is Jl. General Ahmad Yani, road 
section three is Jl. Diponegoro, and road section four 
is Jl. Sudirman. These four road sections have 
different characteristics. Jl. General Sudirman and Jl. 
Diponegoro has 4 divided 2-way lanes, while Jl. 
Raden Intan and Jl. Ahmad Yani has 3 undivided 1-
way lanes. The highest traffic is on the Jl. Raden 
Intan, this is because this road has many trading 
areas and money services spread along the road. 
Apart from that, this road also accommodates 
movement towards the Tugu Adipura Roundabout. 
Vehicles using this road can go to residential areas, 
trade and service areas, central office areas, 
educational areas, as well as Pesawaran Regency. Jl. 
General Ahmad Yani has the second highest traffic. 
Jl. General Ahmad Yani accommodated the 
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movement to Tanjung Karang District. The high 
traffic on these two road sections means that the 
lanes are made in one direction. Next Jl. Jenderal 
Sudirman, has the third highest traffic. Based on its 
land use, this road accommodates movement to the 
office center and Pesawaran Regency. Meanwhile Jl. 
Jend Sudirman has the least traffic. This is because 
this road only accommodates movement to areas 
that are not diverse. 

From the comparison of RMSE values for the 
four road sections, it was found that the lowest 
RMSE value occurred on road section 1 using the 
GRU model using Adam Optimizer, with an RMSE 
value of 0.23. The number of vehicles on road 
section one has increased more rapidly compared to 
roads two, three and four. This is because the 
movement of various kinds of activities/activities is 
concentrated through this road. Traffic on road 
section one has stronger weekly and daily 
seasonality compared to other road sections at the 
Tugu Adipura intersection because this road 
accommodates work and school activities on 
weekdays and shopping and entertainment 
activities on weekends. These various activities 
influence traffic trends because each activity is 
carried out at different hours. Meanwhile, other 
road sections have a more significant and linear 
trend, this is because there are not many activities 
accommodated by these three roads. 

The superior performance of the GRU model, 
particularly on Road 1 (Jl. Raden Intan), can be 
attributed to its simpler architecture which 
facilitates faster convergence and reduces the risk 
of overfitting when dealing with highly dynamic 
time series. GRU's gating mechanism, which 
consists only of an update gate and reset gate, 
enables it to selectively retain or discard 
information with lower computational cost, making 
it more responsive to short-term fluctuations 
commonly observed in roads with high temporal 
variability. This result is consistent with previous 
findings by Dey et al. [10], who showed that GRU 
outperformed LSTM in forecasting time series with 
high-frequency fluctuations due to its ability to 
capture local temporal structures more efficiently. 
In contrast, Karyadi and Santoso [9] observed better 
performance of LSTM in air quality prediction, 
where long-term dependencies were more 
dominant and smoother temporal patterns existed. 
In this study, the GRU model demonstrated an 
advantage in cases where traffic exhibited strong 
seasonal patterns with frequent peaks and 
troughs—such as on Road 1, which is influenced by 
weekday commuting and weekend leisure 
activities. The results also indicate that LSTM 
models, although more robust in some scenarios, 

were slightly less responsive to rapid changes in 
traffic volume. These findings emphasize the 
importance of matching model architecture to the 
characteristics of the data, and demonstrate that 
GRU can serve as an effective alternative in urban 
traffic forecasting, particularly when high-
frequency seasonality is present. 
 

CONCLUSION 
 

The test results show that the LSTM model 
produced slightly lower RMSE values than the GRU 
model on most road sections: 0.24 for LSTM and 
0.27 for GRU on Road 1, 0.558 for LSTM and 0.589 
for GRU on Road 2, 0.610 for LSTM and 0.691 for 
GRU on Road 3, and 0.652 for LSTM and 0.654 for 
GRU on Road 4. Although LSTM demonstrated a 
marginally better performance overall, the GRU 
model achieved the best result specifically on Road 
1 when trained with the Adam optimizer, attaining 
an RMSE of 0.23—the lowest among all models and 
configurations. This result highlights GRU’s strength 
in capturing traffic dynamics on roads with high-
frequency seasonal patterns and strong short-term 
fluctuations, such as Road 1 (Jl. Raden Intan), which 
is influenced by diverse urban activities. 

GRU is also favored for its simpler architecture 
and faster training time, making it well-suited for 
real-time applications and resource-constrained 
environments. While LSTM can deliver slightly 
better accuracy in some instances, GRU’s 
computational efficiency and responsiveness 
provide distinct practical benefits, especially when 
traffic patterns change rapidly within short time 
frames. Future work can build upon this study by 
integrating external variables such as weather 
conditions, public holidays, and real-time road 
events to improve predictive performance. 
Additional validation across various intersections 
or cities could enhance generalizability. Further 
exploration of hybrid deep learning models—such 
as LSTM-CNN or attention-based architectures—
may yield better pattern recognition. Testing 
alternative optimizers like RMSProp or AdaGrad 
could also contribute to more effective convergence. 
Ultimately, deploying these models in real-time 
traffic systems may enable early warning 
mechanisms and support data-driven decisions in 
urban transport management. 
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