

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

99

COMPARATIVE PERFORMANCE STUDY OF SEARCH ALGORITHMS ON
LARGE-SCALE DATA STRUCTURES

Nyoman Purnama1*

Information System Program1

Primakara University, Denpasar, Indonesia1
www.primakara.ac.id1

purnama@primakara.ac.id*

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract— In the era of big data, searching for information in big data sets is a big challenge that requires
efficient search algorithms. This study compares the performance of three classic search algorithms, namely
linear search, binary search, and hash search. This study uses large-scale datasets, namely Amazon Product
Reviews and Amazon Customer Reviews. Evaluations were conducted based on the complexity of time for each
search method. The results of the experiment showed that linear search had the slowest performance with O(n)
time complexity, making it inefficient for large data sets. Binary search performs better with O(log n)
complexity, but requires pre-sorted data. Hash searches provide the most optimal results in best-case and
average with O(1) complexity, but can be reduced to O(n) in the worst case when there are too many collisions
in the hash function. Hash search consistently outperforms linear and binary searches in terms of execution
speed. Binary search remains highly efficient for sorted data, while linear search is clearly the least efficient,
especially for large-scale datasets. Linear search has high execution times and is inconsistent, while binary and
hash search are more efficient and stable. The algorithm's performance did not differ significantly between
datasets, suggesting the data structure did not affect performance as long as the search type was the same.

Keywords: amazon reviews, large-scale data structures, performance analysis, search algorithms, time
complexity.

Intisari—Di era big data, pencarian informasi dalam kumpulan data besar merupakan tantangan besar yang
membutuhkan algoritma pencarian yang efisien. Penelitian ini membandingkan kinerja tiga algoritma
pencarian klasik, yaitu linear search, binary search, dan hash search. Penelitian ini menggunakan dataset
berskala besar, yaitu Amazon Product Reviews dan Amazon Customer Reviews. Evaluasi dilakukan
berdasarkan kompleksitas waktu untuk masing-masing metode pencarian. Hasil percobaan menunjukkan
bahwa pencarian linier memiliki kinerja paling lambat dengan kompleksitas waktu O(n), sehingga tidak
efisien untuk kumpulan data besar. Pencarian biner berkinerja lebih baik dengan kompleksitas O(log n), tetapi
membutuhkan data yang telah diurutkan sebelumnya. Hash search memberikan hasil yang paling optimal
dalam skenario terbaik dan rata-rata dengan kompleksitas O(1), tetapi dapat berkurang menjadi O(n) dalam
kasus terburuk ketika ada terlalu banyak tabrakan dalam fungsi hash. Hash search secara konsisten
mengungguli pencarian linear dan biner dalam hal kecepatan eksekusi. Pencarian biner tetap sangat efisien
untuk data yang diurutkan, sementara pencarian linier jelas paling tidak efisien, terutama untuk kumpulan
data skala besar. Linear search memiliki waktu eksekusi tinggi dan tidak konsisten, sedangkan binary dan
hash search lebih efisien dan stabil. Performa algoritma tidak berbeda signifikan antar dataset, menunjukkan
struktur data tidak memengaruhi kinerja selama jenis pencarian sama.

Kata Kunci: ulasan amazon, struktur data skala besar, analisis kinerja, algoritma pencarian, kompleksitas
waktu.

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6592

100

INTRODUCTION

In the digital era, the volume of data
generated increases exponentially every day. The
data comes from various sources, such as social
media applications, e-commerce transactions, IoT
devices, and big data systems. This rapid growth of
data poses a major challenge in efficiently searching
for data, especially on large-scale data structures[1].
Data structures such as arrays, trees, graphs, and
hash tables, although designed to organize data,
often face limitations when it comes to handling
very large volumes of data[2].

In addition to large volumes, the diversity of
large-scale data is also a major challenge in the
management and search of information. Data can
come in many forms. From structured data such as
tables in a database, semi-structured data such as
XML or JSON files, to unstructured data such as
review text, images, audio, and video[3]. Different
data sources can also have varying formats,
standards, and quality, making it difficult to
integrate and search across systems. Differences in
storage schemes, metadata structures, and data
usage languages and contexts add complexity to the
data normalization and transformation process.
Data validation and cleansing becomes more
challenging because inconsistencies and
duplications often arise in highly heterogeneous
data environments[4]. Without a comprehensive
data management strategy, this diversity can hinder
the accuracy of analysis and the effectiveness of
data-driven decision-making.

Data retrieval is at the core of a wide range of
applications in computer science, from retrieving
information in databases to big data analytics and
artificial intelligence systems [5]. As the volume and
complexity of processed data increases, the
development of efficient search techniques
becomes increasingly urgent, especially in large-
scale data structures with varying characteristics. In
this context, comparative studies of search
algorithms have become crucial to understanding
how each algorithm works across different
scenarios and data structures[6].

Various search algorithms, such as linear
search, binary search, hash-based search, or tree-
based algorithms, have their own advantages and
disadvantages. The performance of the algorithm is
greatly influenced by the characteristics of the data,
such as whether the data is sorted or unordered,
whether the data is evenly distributed or not, and
the size of the dataset. For example, linear search
may be effective for small datasets but inefficient for
large datasets[7], Whereas binary search requires
ordered data to achieve optimal performance[8].

Hashing-based algorithms excel at constant average
search times, but require more memory and can
face hash collisions)[9]. In contrast, tree-based
algorithms such as binary search trees can handle
more complex data but have performance that
depends on the structure of the tree itself. The
ability of search algorithms to optimize access to
data not only improves system performance, but
also enables the application of solutions in various
areas of technology[10]. As the need for fast and
efficient data processing increases, research in
search algorithms is becoming increasingly relevant
to support the development of modern computer
science[2], [11].

Although search algorithms have been the
subject of extensive research in computer science,
most existing studies tend to focus on analyzing the
performance of specific algorithms or on relatively
small, structured datasets[12]. Previous research
has often evaluated algorithms such as linear
search, binary search, hash-based search, or tree
algorithms in specific contexts without taking into
account the complexity of large-scale data
structures or datasets with dynamic
characteristics[13]. Research by Shou-ehuan Yang
of the University of Wisconsin addresses the need
for efficient search algorithms in large-scale
information systems, where conventional methods
such as linear and binary search are considered less
than optimal due to the limitations of speed and
ability to handle data updates. To address these
problems, the authors propose the use of hash
addressing and indirect chaining as more effective
approaches. The results showed that the Indirect
Chaining Hash Search (HAICS) method yielded an
average of only 1.25 searches per entry—much
more efficient than binary search and linear search
(25,000 on 50,000 entries). These findings prove
that HAICS is superior in terms of speed, scalability,
and efficiency of data updates on large-scale data
structures. Research comparing search algorithms
on large-scale datasets is still limited[14].

The study by Debadrita Roy and Arnab
Kundu compared three search algorithms. Linear
Search, Binary Search, and Interpolation Search by
reviewing how they work, time complexity, and
their effectiveness against different types of
datasets. Linear Search is considered the simplest
but has the lowest performance with O(n)
complexity, while Binary Search is more efficient on
data sorted by O(log n) complexity. Interpolation
Search shows the best performance for data that is
evenly distributed with O(log log n) complexity. The
results of the study concluded that the algorithm
efficiency is greatly influenced by the structure and
distribution of data, and that Binary and

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

101

Interpolation Search are superior to Linear Search
for large-scale data processing [15].

The research by Wirawan Istiono discusses
the comparison of speed between binary search
algorithms and interpolation search in searching for
identity numbers on national identity cards. Using
5000 data and implementations in C, the results
show that interpolation search requires fewer
iterations about 36.57% more efficient than binary
search. However, in terms of execution time, binary
search is actually faster with an average advantage
of 12.43%. Wirawan concluded that binary search is
more suitable for systems with adequate hardware
specifications, while interpolation search is more
efficient for systems with limited computing
resources[16]. This is essential to address real-
world challenges where data is constantly evolving
in size and complexity [17].

Despite promising research about search
algorithm, there remains a gap in understanding the
performance of various search algorithms on
complex data structures, in scenarios with large-
scale datasets, and based on various metrics such as
execution time, memory usage, scalability, and
adaptability. Most studies are more oriented
towards small or static datasets, making it difficult
to know how the algorithm performs on larger,
more complex data scales, such as in big data or
distributed systems[18]. Consequently, further
research is needed to analyze and compare the
performance of linear, binary and hash search
algorithms in the context of big data structures. The
specific objectives of this research include: (1)
Implement linear, binary and hash search methods
on large-scale data (2) statistically analyze the
efficiency of each search method.

This research is focused on implementation
classic search algorithm and also measured the
efficiency of the search algorithm in terms of
execution time, memory usage and time complexity.
So that the tests carried out can identify the
advantages and disadvantages of each search
algorithm for big data structures.
Recommendations will be generated from the
results of the study to developers and researchers
in choosing the right search algorithm for big data
structures. The structure of the large scale data used
in this study is product review data on the Amazon
product reviews(UCSD) with a total of 233.1 million
reviews. In this dataset use a JSON format. The
comparison dataset is Amazon customer
reviews(AWS) with the same number of datasets
but the data structure is different, namely in the
form of text format. This study uses all three
classical search algorithms : linear, binary and hash

to identify the best search results in terms of time,
memory usage and time complexity.

MATERIALS AND METHODS

Previous Study

Research on detailed comparative analysis of

sorting and search algorithms in large-scale data

has been conducted by Yeswanth and Darmeesh. In

his research, a comprehensive comparison of time

complexity in big data engineering was carried out,

with a special focus on evaluating the efficiency and

performance of various sorting and search

algorithms in large-scale data systems[2]. As data

volumes continue to grow exponentially across

industries, the ability to efficiently process, manage,

and retrieve relevant information is critical. The

comprehensive analysis presented here explains

the importance of various algorithmic strategies,

their application to various data scenarios, and

broader implications for the design of resilient big

data systems. Sorting algorithm checks reveal

different performance profiles, with algorithms

such as Quick Sort and Merge Sort consistently

demonstrating superior efficiency in the context of

large-scale data[19].

A survey on different search methods has

been conducted by Ahmad Shoaib Zia. Where there

are several search methods that are compared,

namely Binary search, Linear search, hybrid search,

Interpolation search and Jump search[20]. The

search was carried out on numerical data in the

form of arrays. The analysis carried out is the

complexity of time and the complexity of space. The

results of the study were obtained that binary

search is very appropriate on medium-sized data

with array and linked list data types. Meanwhile,

jump search is good for large data. In his research, it

was also found that hybrid search is used on

unsorted lists with more elements.

A brief study on traditional search algorithms

was written by Najma Sultana. In his research, a

review of several traditional search algorithms such

as linear search, binary search, interpolation search

and jump search was carried out. The tests were

carried out in terms of time complexity, space

complexity, advantages and disadvantages of each

search algorithm[21]. Traditional search algorithms

are well-known for their basic characteristics, such

as searching for data from an array index, i.e. from a

sorted list (such as binary search, interpolated

search, and jump search) or from an unsorted list of

elements such as linear search algorithms.

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6592

102

Another study on search on large-scale data

was conducted by Hanifah Permatasari, where in

her research a review was carried out on several

search algorithms. The review was carried out to

optimize searches on digital archives and

information systems[22]. The data used in this

study is data from Indonesian scientific articles in

2015-2022. The Knuth Morris Pratt algorithm

(KMP) is the most popular algorithm for processing

large-scale data[23]. Each algorithm has its

advantages and disadvantages that need to be

studied further.

Research design

This research is divided into several stages,

starting with data collection, data preprocessing,

algorithm selection, performance evaluation and

result analysis. The following in figure 1 describes

the stages of this research process.

Source : (Research Results, 2024)
Figure.1 Proposed research flow

Figure 1 is the flow of the proposed research.

Where the first step is to collect relevant datasets

and in accordance with the research objectives. In

the context of search algorithms, the dataset must

be large and varied enough to test the algorithm's

performance as a whole. This study uses a dataset

taken from the Amazon Product Review(UCSD)

dataset on the Amazon e-commerce website

published in 2018. In this dataset there are reviews

(ratings, text and votes), product metadata

(description, information categories, price, brand

and image features) and links. This dataset is an

updated version of the dataset that has been

published previously in 2013 and 2014. The

number of reviews provided is 233.1 million. With

the review time span from May 1996 to October

2018. The data structures in the dataset are quite

diverse, namely arrays, hash tables, tree based and

graph based. An example of a dataset review

structure is shown in figure 2.

Source : (Research Results, 2024)
Figure.2 Amazon Product Review Dataset Structure

Information:

1. reviewerID - ID of the reviewer, e.g.

A2SUAM1J3GNN3B

2. asin - ID of the product, e.g. 0000013714

3. reviewerName - name of the reviewer

4. vote - helpful votes of the review

5. style - a dictionary of the product metadata,

e.g., "Format" is "Hardcover"

6. reviewText - text of the review

7. overall - rating of the product

8. summary - summary of the review

9. unixReviewTime - time of the review (unix

time)

10. reviewTime - time of the review (raw)

11. image - images that users post after they have

received the product

The JSON format allows for richer

information, but it is more difficult to process

directly. Amazon Product Review Dataset can reach

hundreds of millions of entries, especially if it

includes historical data.

Another dataset used as a comparison is the

Amazon Customer Review(AWS) dataset with more

structured and shorter data, usually in the form of a

short review. This dataset contains customer

reviews from different product categories on

Amazon. Where the data is more focused on

customer reviews with fewer columns than Amazon

Product reviews. This dataset does not include

relationships between products (such as similar

products, purchased together). This dataset has a

tabular data structure for example : review_id,

product_id, reviewer_id, star_rating,

review_headline, review_body and review_data

column structures.

The next step is data processing, where the

process carried out first is filtering relevant

attributes that will be used in the search process,

such as product_id and review texts. The dataset

will be arranged in such a way that the search

process using different search algorithms will be

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

103

more efficient. The next process is to sort the

dataset for the binary search method and in the

index for hash search.

In this study, three search algorithm are
used, namely binary, linear and hash search. These
three methods will be implemented using Python in
the Visual Studio Code environment. With the
specifications of the processor is core i7 and 8 GB of
RAM. The data structure used is in the form of JSON
and a tabular data. Each algorithm will be executed
using a different number of datasets as many as 5
dataset groups for each dataset, with the number of
each group being a multiple of 10. With a minimum
number of datasets, namely 1000 to 10 million
rows. In each query, a random search query of 1000
pieces per dataset size will be generated. Each query
operation will be repeated 10 times based on the
product ID and review text. Then it is calculated
how long the average execution time is and the
amount of space needed. In addition, in each data
group, best case, average case, and worst case
values in milliseconds are sought.

The results of the evaluation were analysed
using statistical methods to ensure the significance
and reliability of the data. Techniques such as mean,
standard deviation, and 95% confidence interval
are used to show whether the difference in
performance between algorithms is statistically
significant, not by chance.

In the final stage, the results of the analysis
are used to conclude which algorithm is most
efficient under certain conditions. The researchers
also highlighted the trade-offs between time and
memory, as well as recommendations for using
algorithms based on data type and system needs.

RESULTS AND DISCUSSION

Linear search
Linear search is a simple search algorithm

that checks each element individually until it finds a
suitable result. This algorithm is an easy-to-
implement search model because it does not require
data sorting or a special structure[24]. The steps
taken in measuring the performance of this linear
search algorithm on a large-scale dataset are as
follows:

1. Dataset reading process
2. Using linear search for review text columns

in Amazon datasets
3. Iterating for different dataset counts
4. Measure execution time to compare linear

search efficiency
In the process of searching for words in the

review text column, the Amazon dataset uses 5
dataset groups, each in multiples of 10 and a
minimum value of 1000 datasets. The following on

figure 3 is the implementation of the linear search
program code using the Python programming
language. Where the data is a dataset in the form of
an array that is inserted into a function, and the
target is the keyword that will be searched in a
large-scale dataset.

Source : (Research Results, 2024)

Figure.3 Linear search implementation

After conducting experiments for 5 groups of
datasets, the results were obtained as shown in
table 1 for 3 different cases as follows:

Table 1. Linear search time complexity

Source : (Research Results, 2024)

Where in the best case value(O(1)) element x
is found in the initial index so that the search is
faster. The average case (O(n/2)) element is found
in the middle of the dataset. While the worst
case(O(n)) element is found in the latest/non-
existent index, so the time complexity value is
slower. The following in the figure 4 is a graph of the
time complexity of linear search as the number of
datasets increases.

Source : (Research Results, 2024)

Figure.4 Linear search time complexity graph

The following are the results of the
calculation of time complexity with the worst case.

Table 2. Binary search time complexity

Amount of
data(n)

Dataset Best
case(ms)

Average case(ms) Worst
case(ms)

1,000
AWS 0,2 0,55 1
UCSD 0,25 0,60 1,10

10,000
AWS 1,8 5,00 9,90
UCSD 2,00 5,50 10,50

100,000
AWS 19 50 99
UCSD 21 55 105

1,000,000
AWS 190 500 990
UCSD 200 550 1050

10,000,000
AWS 1.900 5.000 9.900
UCSD 2.100 5.500 10.500

def linear_search(data_list, key):
 start_time = time.time()
 for item in data_list:
 if item == key:
 break # Elaemen ditemukan
 end_time = time.time()
 return (end_time - start_time) * 1000 # Konversi
ke ms

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6592

104

(Research Results, 2024)

Linear Search is particularly inefficient for

large datasets because its search time evolves
linearly with respect to the size of the data.
However, datasets with a lighter structure such as
Amazon Customer Review provide slightly better
performance.

Binary search

Binary search is an efficient search algorithm
that can only be used on sorted data[25]. This
algorithm works by dividing the dataset into two
parts and comparing them with the elements in the
middle. The steps taken in measuring the
performance of this binary search algorithm on a
large-scale dataset are as follows:
1. The process of reading the dataset, where the

data to be used has the following table
structure shown on figure 5 :

Source : (Research Results, 2024)

Figure.5 table structure used in binary
search

2. The next step is to sort for each dataset based
on Review Text

3. The search process uses the same data groups
as in the linear search process, where there are
5 data groups with different amounts

4. Compare the middle element to the search
target, if it matches then stop. If it is smaller, it
will be searched on the left side of the dataset.
If it is larger, look for the right part of the
dataset.

5. Repeat Step 3 until the target is found/the data
runs out.
The following is the implementation of binary

search using Python shown in figure 6.

Source : (Research Results, 2024)

Figure.6 Binary search implementation

Python uses an algorithm called Timsort (a

combination of Merge Sort and Insertion Sort) [26].

This algorithm is fast for data that is already

partially sorted. Merge sort is a stable sequencing

algorithm for large and stable data, while insertion

sort is suitable for small and already sorted data.

Timsort is optimized for practical performance on a

wide range of real-world dataset scenarios,

including large ones like Amazon Reviews. The total

complexity can be O(n log n) if sorting is done each

time before the search. However, if the data is

sorted only once at the beginning, and many

searches are performed, then the sort costs are

scattered, and Binary Search remains efficient.

Where in the best case calculation, the target
element is directly found in the middle of the array
in the first search. So that the O is O(1). In the case
of the average case, it occurs when an element is
anywhere in a large-scale array. So the number of
steps required is the average of all possible position
of the element in the search, with the big-O value :
O(log n). After k step only 1 element remains. So that
in equation 1 where n is initial number of elements,
and k is number of iterations, the array is divided by
2 in each step. In equation 2, after k steps the
number of elements is reduces to 1

𝒏

𝟐𝒌
=1 (1)

K = log2n (2)

The following is a graph of the time

complexity of binary search as the number of
datasets increases.

Amount of
data(n)

Dataset Best
case(ms)

Average case(ms) Worst
case(ms)

1,000
AWS 0,05 0,07 1

UCSD 0.06 0.08 0.09

10,000
AWS 0,09 0,10 0,11
UCSD 0.10 0.11 0.12

100,000
AWS 0,13 0,15 0,16
UCSD 0,02 0,1 25

1,000,000
AWS 0,18 0,20 0,21
UCSD 0,20 0,22 0,23

10,000,000
AWS 0,23 0,25 0,27
UCSD 0,26 0,28 0,29

def binary_search(data_list, key):
 start_time = time.time()
 left, right = 0, len(data_list) - 1
 while left <= right:
 mid = (left + right) // 2
 if data_list[mid] == key:
 break
 elif data_list[mid] < key:
 left = mid + 1
 else:
 right = mid - 1
 end_time = time.time()
 return (end_time - start_time) * 1000

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

105

Source : (Research Results, 2024)

Figure.7 Binary search time complexity graph

In Figure 7 above, you can see the graph for
the best case O(1), the execution time is constant
because the element is found directly in the middle.
As for the average case, there is a logarithmic
growth because at each stage it divides the stage
space into 2. The same results were obtained for
worst cases. This is much more efficient when
compared to linear search. Binary search is more
effective for searching for product reviews on large-
scale data such as Amazon 2018 datasets, as long as
the data used is sorted. In spatial complexity,
neither linear nor binary search stores additional
data. So the value of the spatial complexity is O(1).

Structurally, the difference in the length of
text or metadata is not significant to the search time
because Binary Search only compares the target
value to the element in the middle. All the lines
(best, avg, worst) tend to be close to each other.
Both datasets (Customer & Product Review) show
similar performance, with only slight variation in
the worst-case due to data access overhead.

Hash search

Hash search is a search method that uses a
hash table data structure to speed up the process of
searching for elements. Unlike the linear method
that searches for elements one by one, and the
binary search method that compares gradually[27].
Hash search directly goes to the location of the
element being searched using the hash function. The
steps to search for words with hash search are as
follows:

1. Hash function, the function will converts
the review data into a unique hash value

2. Indexing process, hash values are used as a
storage tool in the Hash table

3. The search process, the search is carried
out by only calculating the hash value and
directly accessing the location of the hash

4. Handling collision, The chaining technique
is used when there are multiple elements
with the same hash value.

Here's a hash lookup implemented with python

Source : (Research Results, 2024)

Figure.8 Hash search implementation

Hashing is a technique used to store and search
for data in data structures such as hash tables[27],
[28]. In the context of data search, especially in the
Hash Search algorithm, hashing is used to generate
hash values mapped to specific indexes in the hash
table. This allows searching, inserting, and deleting
data to be done in constant time (O(1)) in most
cases.

In the context of Hash Search, a collision
occurs when two or more elements have the same
hash value and are mapped to the same index in the
hash table. When this happens, a mechanism is
needed to resolve the collision so that the data can
still be stored and found efficiently. By default
Python uses Hash Table Built-in. Python provides a
dictionary data structure (dict) that is internally
implemented using a hash table. The hash
mechanism used has been optimized and uses a
combination of: Open Addressing with collision
defence, including a kind of hybrid probing defence.
Défense against DoS attacks with hash
randomization (starting with Python 3.3+).

The following are the results of calculating
the complexity of time with the hash search method:

 def hash_search(hash_table, target):
"""Performs hash-based search (O(1) on
average)."""
 return hash_table.get(target, -1) # Returns index
if found, else -
Load the dataset
file_path = "Amazon_Review_2018.csv" # Change
this to your actual file path
df = pd.read_csv(file_path,
usecols=["review_body"]) # Load only review text
Convert review_body to string (handle missing
values)
df["review_body"] =
df["review_body"].astype(str).fillna("")
Convert dataset into a hash table (dictionary with
index mapping)
hash_table = {review: i for i, review in
enumerate(df["review_body"])}
Define a target review text to search
target = list(hash_table.keys())[-1] # Choosing the
last review for worst-case scenario

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6592

106

Table 3. Hash search time complexity

Source : (Research Results, 2024)

The best case occurs when the search
directly finds elements without collisions, the time
complexity value is very fast even though the data
grows very large. In the case of the average case
O(1), the value is still constant, almost the same as
the best case. In the worst case where all data enters
the same hash slot and collision occurs excessively.
The search time increases linearly because it has to
check some elements. However, when compared to
linear and binary search, hashes have better search
speeds. Because hash search uses a hash table, the
time complexity is greater than that of the other 2
methods of O(n). Here in figure 9 is a graph of the
time complexity of hash searches as the number of
datasets increases.

Hash search has excellent capabilities for
very large datasets. Where the best and average
cases have a relatively constant time complexity,
although there is an increase in the average case
O(1). In the best case part, the search is directly on
the location of the data which results in the
complexity value is super fast. While in the average
case, the value tends to be constant due to a good
hash distribution. Only in the worst case does the
performance occur and increase sharply. This is due
to the emergence of collisions. The comparison of
the three complexity algorithm presented in figure
10:

Source : (Research Results, 2024)

Figure.9 Hash search time complexity graph

Source : (Research Results, 2024)
Figure. 10 Comparison of search time complexity

In the graph above, it can be seen that linear

search is not appropriate for large-scale datasets.
Meanwhile, binary search is more efficient but
requires data sorting. Hash search has a much
better speed than the two methods compared. For
large-scale data, hash search is the best option O(1).
But if the dataset has been sorted and collision
problems are common, then binary search is a
better choice. The following is a table of the time and
space complexity of each search method. The
following is a summary of the insights and
implications of the results of the evaluation of each
search algorithm, along with the trade-off and
memory and CPU load analysis shown in table 4:

Table 4. Trade-offs analysis

Algori
thm

Preproc
essing
time

Sea
rch
tim

e

Memor
y

CPU
Load

Insight

Linear
searc
h

No
preproce

ssing
time

Hig
h

sear
ch

tim
e

(O(
n))

Low, as
it does

not
require
additio

nal
structur

e

High
when

dataset
s are
large

Linear
search is

very
simple

and
requires

no
preproce

ssing,
suitable
for small

or
unstruct

ured
datasets

Binar
y
searc
h

Necessa
ry

preproce
ssing

(sorting
O(n log

n))

Fast
sear
ch

tim
e

Low (no
need for
additio

nal
structur

e)

Efficien
t when
searchi
ng, but
heavy
during
initial

sorting

Binary
search is
very fast

on
sorted

data
(O(log

n)), but
requires
preproce
ssing in

the form
of data

Amount of
data(n)

Dataset
Best

case(ms)
Average
case(ms)

Worst
case(ms)

1,000
AWS 0,02 0,55 1,00
UCSD 0,02 0,03 0,04

10,000
AWS 0,03 0,04 0,04
UCSD 0,03 0,05 0,05

100,000
AWS 0,04 0,05 0,05
UCSD 0,04 0,06 0,05

1,000,000
AWS 0,06 0,07 0,08
UCSD 0,06 0,08 0,07

10,000,000
AWS 0,08 0,10 0,11
UCSD 0,09 0,11 0,10

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

107

sequenci
ng.

Hash
searc
h

O(n²) if
the

collision
is not

handled
efficientl

y

Ver
y

fast
in

sear
ch

High
memor

y
consum

ption

Lightw
eight

during
lookup,
but can
increas

e if
there
are a
lot of

collisio
ns

Hash-
based

search is
highly

efficient
(O(1) on
average),
ideal for

quick
lookups
on large
datasets.

Source : (Research Results, 2024)

The Linear Search algorithm, which
sequentially examines each element, demonstrated
a linear increase in execution time as dataset size
grew. For instance, in the average case, searching 10
million entries took approximately 5000 ms for the
Customer Review dataset and 5500 ms for the
Product Review dataset. In contrast, Binary Search,
which requires sorted data and operates in
logarithmic time, showed significantly faster
results. Even for the largest dataset size (10 million
entries), binary Search completed in around 0.25–
0.28 ms, highlighting its efficiency over Linear
Search.

The Hash Search algorithm, implemented
using Python's built-in dictionary structure,
provided the fastest performance overall. Its
execution time remained nearly constant across
dataset sizes, with searches in 10 million entries
completing in just 0.08 ms for the Customer dataset
and 0.09 ms for the Product dataset. This efficiency
confirms the expected O(1) average-case
complexity of hash-based searches, although it’s
worth noting that rare hash collisions could degrade
performance to O(n).

In summary, Hash Search consistently
outperformed both Linear and Binary Search in
terms of execution speed. Binary Search remains
highly efficient for sorted data, while Linear Search
is clearly the least efficient, especially for large-scale
datasets. The performance trends were consistent
across both datasets, with only minor variations due
to structural and textual differences in the review
entries. These findings support the suitability of
hash-based indexing or sorted structures when
dealing with large-scale textual data in search-
intensive applications.
Amazon product reviews have a very large dataset,
with millions to hundreds of millions of entries. It
usually includes product titles, ratings, review text,
and other metadata. Given its large size, searches
through Linear Search or Binary Search will be slow
if the data is unordered or does not have a specific

structure. Managing hash tables or hash-based
search indexes can be very large and require more
memory.

Amazon Customer Review is a more
structured dataset and tends to be simpler, allowing
for faster searches with Linear Search and Binary
Search. Hash Search will also be more efficient due
to lighter memory management and simpler data
structure. Hash Search is the most efficient option.
Binary Search can also be used if the dataset is
sequenced, but Linear Search becomes very slow at
scale.
 The following are the results of statistical
analysis and confidence intervals (95%) for the
execution time of the three search algorithms
(Linear, Binary, and Hash) on two datasets: Amazon
Customer Review and Amazon Product Review.

Table 5. Statistical analysis and confidence interval

Algori
thm

Data
set

Mean
(ms)

Std Dev
(ms)

95% Confidence
Interval (ms)

Linear AWS
791.84
4

1.556.2
75

(-114.0526,
272.4214)

Linear
UCS
D

817.66
2

1.610.0
77

(-118.1513,
281.6837)

Binary AWS
0,0819
4444

0.0029 (0.0082, 0.0154)

Binary
UCS
D

0,0833
3333

0.0032 (0.0081, 0.0159)

Hash AWS 0.0086 0.0024 (0.0056, 0.0116)

Hash
UCS
D 0.0088 0.0028 (0.0054, 0.0122)

Source : (Research Results, 2024)

Linear Search has a very high average
execution time and a wide range of confidence
intervals, signifying inconsistency and sensitivity to
data size. Binary Search and Hash Search have very
small and stable execution times, with narrow
confidence intervals, reflecting efficiency and
consistency in performance. The algorithm
performance did not differ significantly between the
two datasets, indicating that the data structure did
not significantly affect the algorithm's performance,
as long as the search type remained the same.

CONCLUSION

From a comparative study that has been

conducted between linear, binary and hash search
in the Amazon product reviews dataset in 2018, it is
found that Linear Search is the least efficient search
method for big data because the time complexity
O(n) increases as the dataset size increases. Binary
Search is faster with O(log n) complexity but
requires data that has already been sorted, so there
are additional costs in pre processing. Hash Search
is the fastest method in most cases (O(1)), but in the
worst-case scenario with too many collisions, the

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6592

108

complexity can decrease to O(n). In addition, this
method requires additional memory (O(n)) to store
the hash table. For unstructured data on a large
scale, Hash Search is the best choice because of its
ability to perform searches in a constant O(1) time
under normal conditions. However, if the dataset is
already sorted and requires a search within a
certain range, Binary Search is more recommended.
The algorithm performance did not differ
significantly between the two datasets, indicating
that the data structure did not significantly affect
the algorithm's performance, as long as the search
type remained the same.

In future development, the study suggests
several concrete optimization techniques to
improve the performance of search systems,
including the use of Cuckoo hashing to reduce
conflicts in hash structures, as well as bloom filters
to perform fast searches with high space efficiency
in scenarios where false positives can be tolerated.
In addition, a hybrid algorithmic approach is also
recommended, such as combining hash searches
with fallbacks to binary searches when conflicts
occur or when data is incomplete, to make the
system more adaptive to the diversity of data
structures and distributions. These approaches
allow for the development of more flexible, fast, and
scalable search systems for large-scale data needs.

REFERENCE

[1] N. Akbar Rizky Putri, T. Bharata Adji, and K.

Kunci-Google BigQuery, “Data Benchmark
pada Google BigQuery dan Elasticsearch
(Data Benchmark for Google BigQuery and
Elasticsearch),” 2021. [Online]. Available:
http://netlytic.org/

[2] Y. Surampudi, D. Kondaveeti, and T.
Pichaimani, “A Comparative Study of Time
Complexity in Big Data Engineering:
Evaluating Efficiency of Sorting and
Searching Algorithms in Large-Scale Data
Systems,” 2023.

[3] D. R. Zmaranda, C. I. Moisi, C. A. Győrödi, R.
Győrödi, and L. Bandici, “An analysis of the
performance and configuration features of
mysql document store and elasticsearch as
an alternative backend in a data replication
solution,” Applied Sciences (Switzerland),
vol. 11, no. 24, Dec. 2021, doi:
10.3390/app112411590.

[4] F. Almeida, “Foresights for big data across
industries,” Foresight, vol. 25, no. 3, pp. 334–
348, May 2023, doi: 10.1108/FS-02-2021-
0059.

[5] O. A. Chernova, I. V. Mitrofanova, M. V.
Pleshakova, and V. V. Batmanova, “USE OF
BIG DATA ANALYTICS FOR SMALL AND
MEDIUM SIZED BUSINESSES,” Serbian
Journal of Management, vol. 18, no. 1, pp. 93–
109, 2023, doi: 10.5937/sjm18-41822.

[6] A. Mesut and E. Öztürk, “A method to
improve full-text search performance of
MongoDB,” Pamukkale University Journal of
Engineering Sciences, vol. 28, no. 5, pp. 720–
729, 2022, doi: 10.5505/pajes.2021.89590.

[7] M. Emran Hossain, S. Bayazid Hossain, M.
Sha Alam Tutul, and S. Nahar, “Optimized
Search Functionality with Linear Search
Algorithm,” 2022. doi:
10.21467/proceedings.123.

[8] R. Y. Darmawantoro, Y. R. W. Utami, and K.
Kustanto, “Implementasi Binary Search
Untuk Data Obat di Apotek,” Jurnal
Teknologi Informasi dan Komunikasi
(TIKomSiN), vol. 10, no. 1, May 2022, doi:
10.30646/tikomsin.v10i1.607.

[9] W. Iqbal, W. I. Malik, F. Bukhari, K. M.
Almustafa, and Z. Nawaz, “Big data full-text
search index minimization using text
summarization,” Information Technology
and Control, vol. 50, no. 2, pp. 375–389,
2021, doi: 10.5755/j01.itc.50.2.25470.

[10] F. Frankie and Y. A. Susetyo,
“IMPLEMENTATION OF TEXT INDEXING
SYSTEM IN WEB-BASED DOCUMENT
SEARCH APPLICATION USING MONGODB,”
Jurnal Teknik Informatika (Jutif), vol. 4, no. 5,
pp. 1081–1087, Oct. 2023, doi:
10.52436/1.jutif.2023.4.5.959.

[11] A. Yudhistira and Y. Fitrisia, “MONITORING
LOG SERVER DENGAN ELASTICSEARCH,
LOGSTASH DAN KIBANA (ELK),” Rabit :
Jurnal Teknologi dan Sistem Informasi
Univrab, vol. 8, no. 1, pp. 124–134, Apr.
2023, doi: 10.36341/rabit.v8i1.2975.

[12] Z. A. Al-Sai et al., “Explore Big Data Analytics
Applications and Opportunities: A Review,”
Dec. 01, 2022, MDPI. doi:
10.3390/bdcc6040157.

[13] H. Henderi, R. Irawatia, I. Indra, D. A. Dewi,
and T. B. Kurniawan, “Big Data Analysis
using Elasticsearch and Kibana: A Rating
Correlation to Sustainable Sales of
Electronic Goods,” HighTech and Innovation
Journal, vol. 4, no. 3, pp. 583–591, Sep. 2023,
doi: 10.28991/HIJ-2023-04-03-09.

[14] A. C. Herrero, J. A. Sanguesa, P. Garrido, F. J.
Martinez, and C. T. Calafate, “MoBiSea: A
Binary Search Algorithm for Product
Clustering in Industry 4.0,” Electronics

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6592.

109

(Switzerland), vol. 12, no. 15, Aug. 2023, doi:
10.3390/electronics12153262.

[15] Md. Z. Rahman, “A Comparative Analysis of
Four Distinct Types of Searching Algorithms
in Data Structure,” Int J Res Appl Sci Eng
Technol, vol. 9, no. 4, pp. 374–377, Apr. 2021,
doi: 10.22214/ijraset.2021.33614.

[16] W. Istiono, “Speed Analysis of Binary Search
and Interpolation Search for Searching
Identification Numbers on National Identity
Cards,” Asian Journal of Research in
Computer Science, vol. 15, no. 4, pp. 34–41,
May 2023, doi:
10.9734/ajrcos/2023/v15i4328.

[17] S. A. A. N. D. C. Malathy, “Big Data Query
Optimization -Literature Survey,” Sep. 2021.
doi: 10.21203/rs.3.rs-655386/v1.

[18] A. K. Sandhu, “Big Data with Cloud
Computing: Discussions and Challenges,”
Big Data Mining and Analytics, vol. 5, no. 1,
Mar. 2022, doi:
10.26599/BDMA.2021.9020016.

[19] A. Oussous and F. Zahra Benjelloun, “A
COMPARATIVE STUDY OF DIFFERENT
SEARCH AND INDEXING TOOLS FOR BIG
DATA,” 2022.

[20] M. Al-Hashimi and N. Aljabri, “Exploring
Power Advantage of Binary Search: An
Experimental Study.” [Online]. Available:
www.ijacsa.thesai.org

[21] M. Al-Hashimi and N. Aljabri, “Exploring
Power Advantage of Binary Search: An
Experimental Study.” [Online]. Available:
www.ijacsa.thesai.org

[22] L. Baloch et al., “A Review of Big Data Trends
and Challenges in Healthcare,” 2023, Faculty
of Engineering, Universitas Indonesia. doi:
10.14716/ijtech.v14i6.6643.

[23] N. R. Feta and F. Fitria, “IMPLEMENTATION
OF CONCOLIC UNIT TESTING IN TESTING
BINARY SEARCH ALGORITHM USING
JCUTE,” JITK (Jurnal Ilmu Pengetahuan dan
Teknologi Komputer), vol. 7, no. 2, pp. 37–44,
Feb. 2022, doi: 10.33480/jitk.v7i2.2758.

[24] Khalis Sofi, Aswan Supriyadi Sunge,
Sasmitoh Rahmad Riady, and Antika
Zahrotul Kamalia, “PERBANDINGAN
ALGORITMA LINEAR REGRESSION, LSTM,
DAN GRU DALAM MEMPREDIKSI HARGA
SAHAM DENGAN MODEL TIME SERIES,”
SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov.
2021, doi: 10.47002/seminastika.v3i1.275.

[25] R. Y. Darmawantoro, Y. R. W. Utami, and K.
Kustanto, “Implementasi Binary Search
Untuk Data Obat di Apotek,” Jurnal
Teknologi Informasi dan Komunikasi

(TIKomSiN), vol. 10, no. 1, May 2022, doi:
10.30646/tikomsin.v10i1.607.

[26] F. R. Wibowo and M. Faisal, “Comparative
Analysis of Sorting Algorithms: TimSort
Python and Classical Sorting Methods,”
Jurnal Informatika dan Sains), vol. 07, no. 01,
2024.

[27] P. E. Rizqullah, R. Titi, and K. Sari, “STRING
(Satuan Tulisan Riset dan Inovasi
Teknologi) ALGORITMA SEQUENTIAL
SEARCH DAN HASHING PADA APLIKASI E-
LAPOR LAYANAN PUBLIK RUKUN
TETANGGA,” 2022.

[28] M. Al-Hashimi and N. Aljabri, “Exploring
Power Advantage of Binary Search: An
Experimental Study,” 2022. [Online].
Available: www.ijacsa.thesai.org

