

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6628

868

ZTSCAN: ENHANCING ZERO TRUST RESOURCE DISCOVERY WITH
MASSCAN AND NMAP INTEGRATION

Reikal Taupaani1; Ruki Harwahyu2*

Departement of Electrical Engineering, Faculty of Engineering1,2

University of Indonesia, Depok, Indonesia1,2
https://ee.ui.ac.id1,2

reikal.taupaani@ui.ac.id1, ruki.h@ui.ac.id2*

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract— Implementing Zero Trust Architecture (ZTA) requires a comprehensive understanding of network
assets as a fundamental step in implementing security policies. This study proposes ZTscan, an automated tool
to increase the efficiency of network asset resource discovery. This proposed tool is then made open source in
Github for anyone to evaluate and extend. The research constructs a GNS3-based testing scenario to evaluate
the performance of the proposed tool against other scanning tools, including standalone Nmap, Masscan,
RustScan, and ZMap. The evaluation focuses on three key metrics: accuracy, scanning speed, and generated
data throughput. Experimental results demonstrate that ZTscan achieves 100% accuracy, matching
Nmap_Pingsyn while outperforming faster tools such as Masscan, ZMap, and RustScan in precision. ZTscan
completes scans 10.64%, faster than Nmap TCP SYN scan while maintaining comparable high accuracy. In
terms of throughput, ZTscan reaches a stable peak throughput that is 13.8% lower than Nmap TCP SYN scan
without causing disruptive traffic spikes. The findings of this study serve as a reference for resource discovery
strategies in ZTA implementation, particularly in scenarios that require fast and accurate network scanning
while minimizing potential disruptions or network interference.

Keywords: network scanning, Nmap, masscan, resource discovery, zero trust architecture.

Intisari— Menerapkan Zero Trust Architecture (ZTA) menuntut pemahaman menyeluruh terhadap aset
jaringan sebagai langkah awal dalam penerapan kebijakan keamanan. Penelitian ini mengusulkan ZTscan,
yang merupakan alat otomatis untuk meningkatkan efisiensi dalam proses resource discovery aset jaringan.
Alat yang diusulkan ini kemudian dibuat open source di Github agar dapat dievaluasi dan dikembangkan oleh
siapa saja. Penelitian ini membangun skenario uji berbasis GNS3 untuk mengevaluasi kinerja metode yang
diusulkan dibandingkan dengan alat pemindaian lainnya, yaitu Nmap standalone, Masscan standalone,
RustScan dan Zmap. Evaluasi dilakukan berdasarkan tiga metrik utama: keakuratan hasil, kecepatan
pemindaian, dan throughput data yang dihasilkan. Hasil eksperimen menunjukkan bahwa ZTscan mencapai
akurasi 100%, sejajar dengan Nmap_Pingsyn, sementara mengungguli alat yang lebih cepat seperti Masscan,
ZMap, dan RustScan. ZTscan menyelesaikan pemindaian 10,64% lebih cepat daripada pemindaian TCP SYN
Nmap dengan akurasi yang sebanding. Dalam hal throughput, ZTscan mencapai puncak throughput stabil
yang 13,8% lebih rendah dibandingkan pemindaian TCP SYN Nmap tanpa menyebabkan lonjakan trafik yang
mengganggu. Hasil penelitian ini dapat menjadi referensi dalam strategi resource discovery untuk
implementasi ZTA, terutama dalam skenario yang membutuhkan pemindaian jaringan yang cepat dan akurat
dengan menekan potensi terjadinya disrupsi atau gangguan jaringan.

Kata Kunci: pemindaian jaringan, Nmap, masscan, penemuan sumber daya, arsitektur tanpa kepercayaan.

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6628.

869

INTRODUCTION

Various types of attacks, such as web
defacement, ransomware infections, and personal
data theft, reflect the weak cybersecurity posture in
Indonesia. The Cybersecurity Landscape report [1],
notes that one of the main causes of the high
number of cyberattacks is misconfiguration, which
occurs when IT administrators fail to implement or
properly configure adequate security controls on IT
assets. For example, an unsegmented internal
network becomes an easy target for attackers to
conduct lateral movement and malware
propagation [2],[3]. So far, network security
solutions have primarily focused on protecting
against external threats using a perimeter-based
approach, such as employing EDR (Endpoint
Detection and Response), IDS (Intrusion Detection
Systems), and NGFW (Next-Generation Firewalls)
[4],[5],[6]. However, this approach is less effective
in addressing threats operating within an
unsegmented internal network [7],[8],[9].
Therefore, securing internal network traffic
requires a more comprehensive approach, namely
by implementing ZTA at the network level
[10],[11],[12].

ZTA (Zero Trust Architecture) is a modern
network security paradigm that eliminates implicit
trust in entities within the network [13].
Implementing ZTA requires full visibility of all
network assets as an initial step [14]. However,
many organizations face challenges in adopting ZTA
due to limitations in identifying and inventorying
network assets, especially those that have not yet
established a mature cybersecurity posture and still
rely on traditional perimeter-based security models
[7]. To determine the state of network assets,
resource discovery techniques are used, which
involve scanning processes to identify devices
connected to the network and the services running
on them [15]. Efficient resource discovery methods
are crucial for organizations that lack an adequate
asset inventory system, enabling them to transition
to ZTA effectively.

The study [14] proposes a migration
framework towards ZTA consisting of six key steps.
One of the crucial initial steps is context assessment,
which involves understanding the current state of
network assets. One method that can be used in this
stage is resource discovery by leveraging network
scanning tools. The findings of this study also
emphasize the importance of automation in asset
identification processes, enabling organizations to
improve efficiency and accuracy in detecting and
managing network resources. Research [16]
highlights the challenges of resource discovery in

the context of ZTA. One of the primary challenges is
the significant resource requirements, both in terms
of time and cost. Additionally, the resource
discovery process can potentially cause network
disruption if the scanning tools generate excessive
traffic [17]. This issue serves as the focus of this
study, streamlining the resource discovery process
to make it more efficient, accurate, and minimally
disruptive to the network.

Several studies have already explored the
optimization of Nmap, including [18],[19], which
developed a graphical user interface (GUI) to
facilitate Nmap usage for beginners. However, their
proposed tool does not provide a performance
evaluation of Nmap, such as scanning speed,
detection accuracy, or network impact. This
limitation indicates that further research is needed,
not only to improve the usability of network
scanning tools but also to optimize their
performance and efficiency in the context of ZTA
implementation. A study by [20] investigates the
application of Nmap in network security
assessment across various companies. The study
demonstrates that Nmap is an effective tool for
identifying open ports, running services, and
operating systems used by a host. However, this
research does not specifically evaluate the impact of
scanning on network performance or its
effectiveness compared to other tools s uch as
Masscan or RustScan.

Research [21] compares the efficacy of three
port scanning tools which is Nmap, Zmap, and
Masscan, to assess accuracy and system resource
efficiency. The study finds that all three tools have
similar accuracy levels in identifying network
assets, with no significant differences in false
positives or false negatives. However, the study
focuses more on how scanning affects host
utilization rather than its overall impact on the
network. By not considering the throughput
generated by each tool, this study does not fully
reflect the real-world impact of scanning,
particularly on live networks. Study [15] applies
Metamorphic Testing (MT) to evaluate and compare
Nmap and Masscan. This study confirms the
fundamental differences between the two tools:
Nmap operates in a synchronous mode, making it
more accurate for in-depth scanning, whereas
Masscan operates asynchronously, allowing for
much faster scanning but with lower accuracy in
identifying detailed services. The results indicate
that Nmap is more suitable for in-depth security
analysis, while Masscan is more effective for large-
scale rapid probing. However, this study is limited
to these two scanning tools and does not evaluate

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6628

870

other popular alternatives in the cybersecurity
community, such as Zmap and RustScan.

Research [22] highlights that even brief
Nmap scanning activities can cause measurable
increases in CPU and memory utilization, leading to
performance degradation that persists beyond the
end of the scanning event. This finding underscores
the potential risks of network disruption from
resource discovery processes, particularly in live
operational environments. It provides critical
evidence that resource-efficient and minimally
disruptive scanning strategies are essential,
reinforcing the importance of optimizing Nmap or
similar tools in ZTA implementation efforts.
Previous studies have evaluated individual
scanning tools like Nmap, Masscan, Zmap, and
RustScan in terms of speed, accuracy, or system
resource impact. However, there remains a lack of
systematic integration between high-speed and
high-accuracy scanning methods, particularly for
supporting ZTA migration. Additionally, limited
research addresses scanning performance across
multi-subnet networks with diverse host types
while considering the network stability impact
caused by throughput. To address this gap, this
study introduces the following novelties:
1) This study proposes ZTscan, a Python-based

integration of Masscan and Nmap to combine

high-speed and in-depth scanning.

2) Evaluates ZTscan not only based on accuracy

and speed but also on network throughput

impact.

3) Tests ZTscan in a simulated multi-subnet

network with various host types for more

realistic analysis.

4) Provides a practical and efficient network

discovery solution to assist organizations with

limited infrastructure in transitioning to ZTA.

The results of this study position ZTscan as a
helpful tool for organizations aiming to implement
ZTA, particularly in the critical initial phase of
resource discovery. By seamlessly blending
Masscan’s rapid scanning with Nmap’s detailed
analysis, ZTscan enables more accurate and efficient
resource discovery while minimizing network
disruptions.

MATERIALS AND METHODS

ZTscan Proposed Method

This research proposes a tiered approach to
resource discovery by combining Masscan and
Nmap to improve network scanning efficiency and
accuracy. There are three main functions in this
scanning process: Probing, Complementing Scan,

and Deep Scan, as shown in Figure 1. The theoretical
basis for this approach is drawn from Study [15]
,[21], which evaluates and compare Nmap and
Masscan. The study confirms the fundamental
differences between the two tools: Nmap operates
in a synchronous mode, making it more accurate for
in-depth scanning, whereas Masscan operates
asynchronously, allowing for much faster scanning
but with lower accuracy in identifying detailed
services. Based on these findings, this research
leverages the strengths of both tools by using
Masscan for rapid probing (Probing) and Nmap for
detailed verification and analysis (Complementing
and Deep Scan).

1) Probing

The scanning process begins with the probing
stage, where Masscan is used to perform a quick
scan of the target subnet, for example,
192.168.0.0/20 . Masscan is chosen for its ability to
conduct large-scale scanning at high speed. At this
stage, only the 20 most commonly used ports are
checked to avoid excessive network load [23]. The
output of this stage is a list of hosts with open ports.

However, Masscan has limitations in detecting
active hosts that do not have open ports. If a host
does not respond to scanning because all its ports
are closed or a firewall blocks responses to the scan,
that host will not appear in Masscan's scan results.

Source: (Research Results, 2025)

Figure 1. ZTscan proposed method

2) Complementing Scan

To overcome the limitation of detecting hosts
without open ports, an additional scan is performed
on the target subnet. In this stage, each detected
host triggers a scan of its corresponding /24 subnet
to discover other potentially active hosts that were
not detected in the initial probing phase.

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6628.

871

The Complementing Scan is initiated in
parallel with the Deep Scan using Python
multithreading to accelerate the scanning process.
The scan of a specific subnet is conducted only once
when it is identified to prevent redundant scans.
This scan operates in fast mode (-F), scanning only
100 commonly used ports to optimize the subnet
scanning process [24].

3) Deep Scan

At this stage, each host detected from the
probing phase undergoes a more detailed scan to
identify additional open ports and running services.
This scanning process runs in parallel with the
Complementing Scan.

This stage aims to enhance accuracy and reduce
false positives by implementing the TCP SYN port
scan (-PS) using Nmap. This method allows the
scanning process to continue even if a host blocks
ICMP (ping), as commonly found in Windows
operating systems with active firewalls [24].

Implementation in Python

The implementation of the ZTscan method
combines Masscan and Nmap to optimize network
scanning for resource discovery. This
implementation uses Python to integrate both
scanning tools, automate the process, and ensure
scalability and accuracy. The script performs the
three key functions: Probing, Complementing Scan,
and Deep Scan, leveraging multiprocessing to
improve efficiency. The Python script for ZTscan is
available on GitHub[25].

The core structure of the implementation
involves calling external tools (Masscan and Nmap)
through Python’s subprocess module and handling
parallel tasks using the concurrent.futures library
for multithreading. The output of each scan is
processed and stored in a CSV file for later analysis.

Input
target_subnet : The network range to be probed
Function
1: Function probe(target_subnet):

2: Run Masscan on target_subnet

3: For each line in Masscan output:

4: Parse IP and port

5: If valid IP and port:

6: If IP not in results:

7: Start deep_scan(IP) and complementing_scan(IP)

 in parallel

8: Else:

9: Print "Host already scanned"

10: Wait for deep_scan and complementing_scan to finish

Source: (Research Results, 2025)
Figure 2. ZTscan Probing Pseudocode

The probing phase (Figure 2) begins by

executing Masscan on the specified target subnet,

scanning a limited set of common ports to quickly
identify active hosts. As Masscan produces output,
each line is parsed to extract the IP address and port
information. If the extracted IP and port are valid,
the script checks whether the IP has already been
recorded in the scan results. For new hosts, two
parallel tasks (using Python Multiprocessing) are
immediately launched: a Deep Scan to perform
detailed port and service detection on the host, and
a Complementing Scan to explore the host's /24
subnet for additional active devices. Hosts already
recorded are skipped to avoid redundant work.
Once all Masscan output has been processed, the
function waits for all deep and complementing scan
tasks to complete before concluding the probing
phase.

Input
target_host : IP address detected during the probing phase
Function
1: Function deep_scan(target_host):

2: Run Nmap on target_host

3: Parse Nmap results for open ports and subnet

4: If target_host not in scan results:

5: Write results to 'scan_result.csv'

6: Else:

7: Update scan results with new ports

8: Function complementing_scan(target_host):

9: Run Nmap on target_host + /24

10: Parse Nmap results for open ports and hosts

11: For each host in results:

12: If host not in scan results:

13: Write host and ports to 'scan_result.csv'

14: Else:

15: Update scan result with new ports

Source: (Research Results, 2025)
Figure 3. ZTscan Complementing and Deep Scan

Pseudocode

The Deep Scan function is responsible for

performing a detailed analysis of each discovered
host. It starts by running Nmap on the target host to
gather information about open ports and associated
subnet details. After parsing the Nmap output, the
script checks whether the host already exists in the
scan results. If the host is new, its scan data is
written into ‘scan_result.csv’; if it already exists, the
scan results are updated by adding any newly
discovered ports.

In parallel, the Complementing Scan function
expands discovery by scanning the entire /24
subnet of the target host using Nmap. After parsing
the subnet scan results, each host found is checked
against the existing scan records. New hosts are
added to ‘scan_result.csv’, while existing entries are
updated with any additional open ports identified.
This approach ensures that even hosts without
initially open ports are detected and recorded,

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6628

872

providing a broader and more accurate network
view.

Source: (Research Results, 2025)

Figure 4. ZTscan Output

The final output of this entire process is a list
of discovered hosts in CSV format (Figure 4),
complete with information on open ports. This
resource discovery result is essential for
implementing ZTA, as it serves as the foundation for
designing the Zero Trust network architecture [14].
This approach enables a more efficient and
systematic scanning process by leveraging
Masscan’s speed for initial probing and Nmap’s
precision for in-depth analysis. Additionally, the
complementary subnet scanning mechanism
ensures that neighboring hosts are also detected,
providing broader and more accurate scan
coverage.

Testing Scenario in GNS3

To evaluate the effectiveness of the proposed
method, this study builds a simulated scenario using
GNS3, representing an organization's internal
network topology. The evaluation compares ZTscan
with other scanning tools, namely standalone
Nmap, standalone Masscan, RustScan, and Zmap.
Each method’s performance is measured based on
three metrics: result accuracy, scanning speed, and
network throughput.

The testing is conducted in a simulated
environment with a network topology consisting of
three subnets, as shown in Figure 5. Each subnet is
assigned a /24 CIDR block and contains Lubuntu
and Windows 7 virtual machines (VMs). The
method used are Internal Scanning, where the
scanning which agents are located within the
enterprise network and scan the internal address
space (local-to-local scan) [26]. The entire scanning
process targets 192.168.0.0/21 to cover all subnets.

Source: (Research Results, 2025)

Figure 5. Testing Scenario Network Topology

The testing was conducted in a simulated

environment using GNS3 with a network topology
consisting of three subnets. Each subnet used a /24
CIDR block and contained Lubuntu and Windows 7
virtual machines (VMs). The entire scanning
process targeted 192.168.0.0/21 to cover all
subnets.

Each subnet contained hosts with unique
characteristics. Some hosts ran Lubuntu, while
others used Windows 7 with different firewall
configurations. Windows 7 (Firewall+SMB) had its
firewall enabled and port 445 open, which blocked
ICMP ping responses. Some hosts had active
services with open ports, while others had no
accessible services but still responded to ICMP ping.
Routers and Lubuntu (None) in each subnet had no
open ports, making them undetectable using port-
based scanning methods.

The scenario reflected real-world challenges
in network scanning, where not all devices
responded in the same way. Hosts with active
services and open ports were easily detected using
Masscan. Hosts that had no open services but still
responded to ICMP ping required more specific
techniques, such as Nmap TCP ping scans.

The scanning tools were executed from a Kali
Linux machine configured with 2 vCPUs and 2 GB
RAM. Each tool was tested five times in the test
topology to obtain consistent and accurate data. The
tools and commands used for comparison against
ZTscan are as follows:

1) Nmap standalone

Nmap is the most commonly used network
scanning tool for discovering hosts and services
within a network[27]. In the first approach, a basic
scan (Nmap_Basic) was executed using the
command nmap -n <target>. This scan was

conducted without performing a reverse DNS

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6628.

873

lookup, which significantly reduced the overall
scanning time by eliminating the additional step of
resolving IP addresses to domain names.

To address scenarios where ICMP echo
requests might be disabled, an alternative scanning
method was applied using the command nmap -n

-PS <20_common_ports> <target>. This
technique utilized a TCP SYN (Nmap_Pingsyn) ping
to 20 commonly used ports, allowing the scanner to
identify active hosts based on their response to
these connection attempts. By leveraging this
approach, Nmap was able to detect hosts that would
otherwise remain invisible to traditional ICMP-
based discovery methods.

2) Masscan standalone

Masscan was employed as a standalone tool
due to its exceptional speed in performing large-
scale network sweeps. Designed for high-
performance asynchronous scanning, Masscan is
capable of scanning entire network ranges in
significantly less time compared to traditional
scanners [15][28]. Masscan was executed
(Masscan_Basic) using the command sudo

masscan --rate=5000 -p

<20_common_ports> <target>. The --

rate=5000 parameter controlled the scanning

speed, allowing up to 5,000 packets per second to be
sent without compromising accuracy. This high-
speed approach enabled rapid identification of
active hosts and open ports within the target
network, making it particularly effective for large-
scale reconnaissance.

3) RustScan

RustScan was utilized for its ability to rapidly
identify open ports while seamlessly integrating
with Nmap for deeper analysis [27]. The command
executed (Rustcan_Basic) was rustscan -p

<20_common_ports> --ulimit 5000 --

accessible -a <target>. The --ulimit
5000 option increased the file descriptor limit,

allowing up to 5,000 simultaneous connections,
which significantly enhanced scanning efficiency.

4) ZMap

ZMap was designed for large-scale internet
surveys, making it one of the fastest network
scanners available. Unlike traditional scanners,
ZMap employs a stateless scanning approach,
allowing it to send probe packets without
maintaining connection states. This method
significantly reduces overhead, enabling ZMap to
scan the entire IPv4 address space in under an hour
using a single packet per port scan [29]. The

command used (Zmap_Basic) was sudo zmap -p
<20_common_ports> -q <target>. Here, -

p <20_common_ports> specifies the commonly

scanned ports, while -q enables quiet mode,
minimizing unnecessary output. This configuration
allowed ZMap to efficiently identify open ports
across a wide network range with minimal resource
consumption.

Performance Metrices

The evaluation of scanning performance in
this research is based on three key metrics:
scanning accuracy, scan time, and network
throughput during the scan. Scanning accuracy is
assessed by comparing the number of hosts and
open ports detected by each scanning tool against
the actual number present in the predefined
network scenario. This helps determine the
reliability of each tool in accurately identifying
network assets.Beyond accuracy, the efficiency of
asset detection is also a major concern. To measure
this, the scan duration is recorded from the moment
the scan starts until all hosts in the network are
detected. The performance of each tool is then
compared to determine which one identifies
network assets the fastest. During the scanning
process, network throughput is monitored to assess
the impact of scanning tools on network traffic. This
monitoring is conducted via router R1 in the
topology illustrated in Figure 5. Traffic data
generated by the scanning tools is collected and
analyzed to understand how each tool affects
bandwidth usage and network stability throughout
the scanning process.

RESULTS AND DISCUSSION

The accuracy comparison results are

illustrated in Figure 6. Nmap_Basic, with an
accuracy of 92.50%, demonstrates a high detection
rate but struggles with hosts that block ICMP ping.
Since Nmap relies on ICMP for host discovery, it
considers such hosts inactive and does not proceed
with further scanning.

Source: (Research Results, 2025)

Figure 6. Accuracy Performance Comparison

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6628

874

Masscan_Basic (77.50%) and ZMap_Basic
(73.00%) exhibit lower accuracy compared to
Nmap. This is because both tools are designed for
high-speed scanning and do not perform in-depth
port probing for each discovered host. On the other
hand, ZTscan and Nmap_Pingsyn achieved 100.00%
accuracy, successfully identifying all hosts and open
ports in the test scenario. This indicates that TCP
SYN ping (used in Nmap_Pingsyn) and ZTscan’s
approach effectively detect hosts that block ICMP by
scanning directly on target TCP ports.

These results suggest that ZTscan and
Nmap_Pingsyn are the most reliable choices for
accurate network scanning, particularly in complex
network environments where ICMP-based
discovery may fail.The research results section
contains exposure to the results of the analysis
related to the research question.

Source: (Research Results, 2025)

Figure 7. Scanning Speed Comparison

The scan speed comparison is illustrated in
Figure 7. Nmap_Basic, with a completion time of
22.854 seconds, is the fastest scanning method in
this test. This efficiency is due to its simple, direct
approach, which only scans known targets without
additional verification steps. Masscan_Basic
(46.424 seconds) and ZMap_Basic (43.956
seconds), despite being known for their high-speed
scanning capabilities, performed slower than
Nmap_Basic in this test. This is likely due to the
methodology used, where both tools still needed to
handle a broader subnet range, increasing
processing time.

RustScan_Basic recorded the longest
scanning time at 107.262 seconds. While RustScan
is typically recognized for its speed, the delay in this
scenario stems from its process of verifying each
detected host using Nmap, adding an extra layer of
analysis. Nmap_Pingsyn (61.398 seconds) and
ZTscan (54.854 seconds), while slower than
Nmap_Basic, delivered more accurate results,

particularly in complex network environments
where basic ICMP-based detection might fail.

From these results, Nmap_Basic is the fastest
tool, but its lower accuracy makes it less suitable for
comprehensive network discovery. ZTscan and
Nmap_Pingsyn provide a balance between speed
and accuracy, making them more reliable choices
for scanning scenarios that require thorough asset
detection.

Source: (Research Results, 2025)

Figure 8. Throughput Comparison

The comparison of throughput generated by

each scanning tool is shown in Figure 8.
Throughput, measured in bits per second (bps),
reflects the amount of data transmitted during the
scanning process. A higher throughput indicates
greater network traffic generated by the tool.

At the start of the scan, all tools exhibit a
sharp increase in throughput. Masscan_Basic and
ZMap_Basic record the highest peaks, reaching
544,550.4 bps and 471,158.4 bps at the 10-second
mark, respectively. This result aligns with their
design as ultra-fast asynchronous scanners that
send a large volume of packets in a short time.
ZTscan demonstrates a more moderate throughput
increase but still surpasses Nmap_Basic and
RustScan. Nmap_Pingsyn, while generating lower
throughput compared to high-speed scanners,
maintains a steady traffic rate throughout the scan.

As the scan progresses, Masscan and ZMap
experience a gradual decline in throughput after
their initial spike. This happens because most of
their packets do not receive further responses after
the initial sweep. RustScan consistently records low
throughput, indicating a more conservative
scanning approach compared to the others.
Meanwhile, ZTscan gains stability and reaches
610,081.6 bps at the 26-second mark, highlighting
its efficiency in performing thorough scans without
excessive traffic spike.

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6628.

875

In the later stage, Nmap_Pingsyn experiences
a sudden throughput spike at the 38-second mark,
peaking at 515,736.8 bps. This suggests that its TCP
SYN ping method continues working even after
other tools have completed their scans. Meanwhile,
ZTscan maintains relatively stable throughput
compared to Nmap_Pingsyn, with fewer sharp
fluctuations. Masscan, ZMap, and RustScan exhibit a
drastic drop in throughput after 30 seconds,
confirming their suitability for rapid scanning
rather than deep network analysis.

ZTscan exhibits greater stability in traffic
distribution compared to Nmap_Pingsyn, which
experiences a late-stage spike. The smoother traffic
pattern of ZTscan reduces the risk of sudden
network disruptions, which could impact active
network operations. This aligns with ZTA
requirements, where accuracy in asset
identification must be balanced with minimal
disruption to live network environments.

CONCLUSION

This research introduces ZTscan, a method

that integrates Masscan and Nmap to optimize
resource discovery within Zero Trust Architecture
(ZTA). Masscan’s speed in detecting active hosts and
open ports, combined with Nmap’s precision in
analyzing services and operating systems, allows
ZTscan to strike an optimal balance between speed,
accuracy, and scanning traffic stability. Testing
reveals that ZTscan achieves 100% accuracy,
placing it on par with Nmap_Pingsyn while
surpassing faster scanning tools like Masscan,
ZMap, and RustScan in precision. In terms of speed,
ZTscan completes scans in 54.854 seconds, faster
than Nmap_Pingless (61.398 seconds) while
maintaining comparable high accuracy. While
Nmap_Basic completes the fastest at 22.854
seconds, it does so with much lower detection
reliability. In terms of throughput, ZTscan
demonstrates a stable and moderate traffic pattern,
peaking around 610,081.6 bps without causing
disruptive spikes. Unlike Masscan_Basic and
ZMap_Basic, which exhibit early traffic surges, and
Nmap_Pingsyn, which shows late-stage throughput
instability, ZTscan maintains a consistent
transmission rate throughout most of the scanning
process. This stable behavior minimizes network
disruption risks, aligning with Zero Trust
Architecture (ZTA) requirements for secure and
reliable resource discovery.

Findings from this study position ZTscan as
an optimal resource discovery solution for ZTA,
seamlessly blending Masscan’s rapid scanning with
Nmap’s in-depth analysis while mitigating the

network instability often caused by high-intensity
scans. However, this study also has several
limitations. Testing was conducted in a controlled
and relatively small-scale network environment,
which may not fully represent performance under
large-scale or highly heterogeneous enterprise
networks. Furthermore, ZTscan currently relies on
a fixed scanning strategy and does not yet adapt its
behavior dynamically based on network conditions
or observed responses. For future research, it is
recommended to: Test ZTscan in larger and more
diverse network topologies, including multi-subnet,
VPN, and cloud-based environments, Integrate
AI/ML-based host profiling to enhance automation
in interpreting scan results and prioritizing assets
and Explore the development of adaptive scanning
strategies that dynamically adjust scan speed,
intensity, and validation techniques based on real-
time feedback from the network. By addressing
these areas, ZTscan can continue evolving into a
smarter, more scalable, and more adaptive solution,
capable of supporting robust Zero Trust initiatives
across a wider range of network conditions and
organizational needs.

ACKNOWLEDEMENT

This research is funded by the Scholarship Program
of the Ministry of Communication and Digital
Affairs.

REFERENCE

[1] Direktorat Operasi Keamanan Siber BSSN,

‘Lanskap Keamanan Siber Indonesia 2023’,
Jakarta, 2024.

[2] N. Basta, M. Ikram, M. A. Kaafar, and A.
Walker, ‘Towards a Zero-Trust Micro-
segmentation Network Security Strategy: An
Evaluation Framework’, in Proceedings of
the IEEE/IFIP Network Operations and
Management Symposium 2022: Network and
Service Management in the Era of
Cloudification, Softwarization and Artificial
Intelligence, NOMS 2022, Institute of
Electrical and Electronics Engineers Inc.,
2022. doi:
10.1109/NOMS54207.2022.9789888.

[3] Z. Adahman, A. W. Malik, and Z. Anwar, ‘An
analysis of zero-trust architecture and its
cost-effectiveness for organizational
security’, Comput Secur, vol. 122, Nov. 2022,
doi: 10.1016/j.cose.2022.102911.

[4] Z. P. Putra, R. Harwahyu, and E. Hebert,
‘Performance Evaluation Elastic Security as
Open Source Endpoint Detection and

VOL. 10. NO. 4 MAY 2025
.

DOI: 10.33480 /jitk.v10i4.6628

876

Response for Advanced Persistent Threat
Cyberattack’, International Journal of
Electrical, Computer, and Biomedical
Engineering, vol. 2, no. 2, Jun. 2024, doi:
10.62146/ijecbe.v2i2.49.

[5] R. Harwahyu, F. H. E. Ndolu, and M. V.
Overbeek, ‘Three layer hybrid learning to
improve intrusion detection system
performance’, International Journal of
Electrical and Computer Engineering, vol. 14,
no. 2, pp. 1691–1699, 2024, doi:
10.11591/ijece.v14i2.pp1691-1699.

[6] S. Lee, J.-H. Huh, and H. Woo, ‘Security
System Design and Verification for Zero
Trust Architecture’, Electronics (Basel), vol.
14, no. 4, p. 643, Feb. 2025, doi:
10.3390/electronics14040643.

[7] Y. Cao, S. R. Pokhrel, Y. Zhu, R. Doss, and G.
Li, ‘Automation and Orchestration of Zero
Trust Architecture: Potential Solutions and
Challenges’, Apr. 01, 2024, Chinese Academy
of Sciences. doi: 10.1007/s11633-023-1456-
2.

[8] N. Nahar, K. Andersson, O. Schelen, and S.
Saguna, ‘A Survey on Zero Trust
Architecture: Applications and Challenges of
6G Networks’, IEEE Access, vol. 12, pp.
94753–94764, 2024, doi:
10.1109/ACCESS.2024.3425350.

[9] P. Dhiman et al., ‘A Review and Comparative
Analysis of Relevant Approaches of Zero
Trust Network Model’, Feb. 01, 2024,
Multidisciplinary Digital Publishing Institute
(MDPI). doi: 10.3390/s24041328.

[10] W. Yeoh, M. Liu, M. Shore, and F. Jiang, ‘Zero
trust cybersecurity: Critical success factors
and A maturity assessment framework’,
Comput Secur, vol. 133, Oct. 2023, doi:
10.1016/j.cose.2023.103412.

[11] M. Medhat, S. G. Sayed, S. M. Abd-Alhalem,
and A. E. Takieldeen, ‘Whitelisting
Requirements for Effective Cyber Defense
Solutions’, in 2023 International
Telecommunications Conference, ITC-Egypt
2023, Institute of Electrical and Electronics
Engineers Inc., 2023, pp. 484–489. doi:
10.1109/ITC-Egypt58155.2023.10206403.

[12] S. Gupta Bhol, J. R. Mohanty, and P. Kumar
Pattnaik, ‘Taxonomy of cyber security
metrics to measure strength of cyber
security’, Mater Today Proc, vol. 80, pp.
2274–2279, Jan. 2023, doi:
10.1016/j.matpr.2021.06.228.

[13] S. Rose, O. Borchert, S. Mitchell, and S.
Connelly, ‘Zero Trust Architecture’,

Gaithersburg, MD, Aug. 2020. doi:
10.6028/NIST.SP.800-207.

[14] P. Phiayura and S. Teerakanok, ‘A
Comprehensive Framework for Migrating to
Zero Trust Architecture’, IEEE Access, vol.
11, pp. 19487–19511, 2023, doi:
10.1109/ACCESS.2023.3248622.

[15] Z. Zhang, D. Towey, Z. Ying, Y. Zhang, and Z.
Q. Zhou, ‘MT4NS: Metamorphic Testing for
Network Scanning’, in Proceedings - 2021
IEEE/ACM 6th International Workshop on
Metamorphic Testing, MET 2021, Institute of
Electrical and Electronics Engineers Inc.,
Jun. 2021, pp. 17–23. doi:
10.1109/MET52542.2021.00010.

[16] C. Itodo and M. Ozer, ‘Multivocal literature
review on zero-trust security
implementation’, Comput Secur, vol. 141, p.
103827, Jun. 2024, doi:
10.1016/J.COSE.2024.103827.

[17] T. Kasama, Y. Endo, M. Kubo, and D. Inoue,
‘Please Stop Knocking on My Door: An
Empirical Study on Opt-out of Internet-wide
Scanning’, IEEE Access, 2025, doi:
10.1109/ACCESS.2025.3551691.

[18] F. Mohammed, N. A. A. Rahman, Y. Yusof, and
J. Juremi, ‘Automated Nmap Toolkit’, in
ASSIC 2022 - Proceedings: International
Conference on Advancements in Smart,
Secure and Intelligent Computing, Institute
of Electrical and Electronics Engineers Inc.,
2022. doi:
10.1109/ASSIC55218.2022.10088375.

[19] J. M. Redondo and D. Cuesta, ‘Towards
improving productivity in NMAP security
audits’, Journal of Web Engineering, vol. 18,
no. 7, pp. 539–578, 2019, doi:
10.13052/jwe1540-9589.1871.

[20] J. Asokan, A. Kaleel Rahuman, B. Suganthi, S.
Fairooz, M. Sundar Prakash Balaji, and V.
Elamaran, ‘A Case Study Using Companies to
Examine the Nmap Tool’s Applicability for
Network Security Assessment’, in 12th IEEE
International Conference on Advanced
Computing, ICoAC 2023, Institute of
Electrical and Electronics Engineers Inc.,
2023. doi:
10.1109/ICoAC59537.2023.10249544.

[21] J. M. Pittman, ‘A Comparative Analysis of
Port Scanning Tool Efficacy’, Mar. 2023,
[Online]. Available:
http://arxiv.org/abs/2303.11282

[22] M. El-Hajj, ‘Leveraging Digital Twins and
Intrusion Detection Systems for Enhanced
Security in IoT-Based Smart City
Infrastructures’, Electronics (Switzerland),

VOL. 10. NO. 4 MAY 2025.
 .

DOI: 10.33480/jitk.v10i4.6628.

877

vol. 13, no. 19, Oct. 2024, doi:
10.3390/electronics13193941.

[23] R. D. Graham, ‘MASSCAN: Mass IP port
scanner’, 2024. [Online]. Available:
https://github.com/robertdavidgraham/m
asscan

[24] G. Fyodor. Lyon, Nmap network scanning :
official Nmap project guide to network
discovery and security scanning. 2009.
Accessed: Apr. 29, 2025. [Online]. Available:
https://nmap.org/book/toc.html

[25] R. Taupaani, ‘ZTScan’, Mar. 2025. [Online].
Available:
https://github.com/numburanggata/Resou
rceDiscovery#

[26] J. H. Jafarian, M. Abolfathi, and M. Rahimian,
‘Detecting Network Scanning Through
Monitoring and Manipulation of DNS
Traffic’, IEEE Access, vol. 11, pp. 20267–
20283, 2023, doi:
10.1109/ACCESS.2023.3250106.

[27] R. Aliyev, ‘A Comprehensive Spectrum of
Open Ports: A Global Internet Wide

Analysis’, in 12th International Symposium
on Digital Forensics and Security, ISDFS 2024,
Institute of Electrical and Electronics
Engineers Inc., 2024. doi:
10.1109/ISDFS60797.2024.10526469.

[28] X. Yu, Z. Hu, and Y. Xin, ‘A New Approach
Customizable Distributed Network Service
Discovery System’, Wirel Commun Mob
Comput, vol. 2021, 2021, doi:
10.1155/2021/6627639.

[29] Z. Durumeric, D. Adrian, P. Stephens, E.
Wustrow, and J. A. Halderman, ‘Ten Years of
ZMap’, in Proceedings of the 2024 ACM on
Internet Measurement Conference, New
York, NY, USA: ACM, Nov. 2024, pp. 139–

148. doi: 10.1145/3646547.3689012.

