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Abstract— Implementing Zero Trust Architecture (ZTA) requires a comprehensive understanding of network 
assets as a fundamental step in implementing security policies. This study proposes ZTscan, an automated tool 
to increase the efficiency of network asset resource discovery. This proposed tool is then made open source in 
Github for anyone to evaluate and extend. The research constructs a GNS3-based testing scenario to evaluate 
the performance of the proposed tool against other scanning tools, including standalone Nmap, Masscan, 
RustScan, and ZMap. The evaluation focuses on three key metrics: accuracy, scanning speed, and generated 
data throughput. Experimental results demonstrate that ZTscan achieves 100% accuracy, matching 
Nmap_Pingsyn while outperforming faster tools such as Masscan, ZMap, and RustScan in precision. ZTscan 
completes scans 10.64%, faster than Nmap TCP SYN scan while maintaining comparable high accuracy. In 
terms of throughput, ZTscan reaches a stable peak throughput that is  13.8% lower than Nmap TCP SYN scan 
without causing disruptive traffic spikes. The findings of this study serve as a reference for resource discovery 
strategies in ZTA implementation, particularly in scenarios that require fast and accurate network scanning 
while minimizing potential disruptions or network interference. 

 
Keywords: network scanning, Nmap, masscan, resource discovery, zero trust architecture. 

 
Intisari— Menerapkan Zero Trust Architecture (ZTA) menuntut pemahaman menyeluruh terhadap aset 
jaringan sebagai langkah awal dalam penerapan kebijakan keamanan. Penelitian ini mengusulkan ZTscan, 
yang merupakan alat otomatis untuk meningkatkan efisiensi dalam proses resource discovery aset jaringan. 
Alat yang diusulkan ini kemudian dibuat open source di Github agar dapat dievaluasi dan dikembangkan oleh 
siapa saja. Penelitian ini membangun skenario uji berbasis GNS3 untuk mengevaluasi kinerja metode yang 
diusulkan dibandingkan dengan alat pemindaian lainnya, yaitu Nmap standalone, Masscan standalone, 
RustScan dan Zmap. Evaluasi dilakukan berdasarkan tiga metrik utama: keakuratan hasil, kecepatan 
pemindaian, dan throughput data yang dihasilkan. Hasil eksperimen menunjukkan bahwa ZTscan mencapai 
akurasi 100%, sejajar dengan Nmap_Pingsyn, sementara mengungguli alat yang lebih cepat seperti Masscan, 
ZMap, dan RustScan. ZTscan menyelesaikan pemindaian 10,64% lebih cepat daripada pemindaian TCP SYN 
Nmap dengan akurasi yang sebanding. Dalam hal throughput, ZTscan mencapai puncak throughput stabil 
yang 13,8% lebih rendah dibandingkan pemindaian TCP SYN Nmap tanpa menyebabkan lonjakan trafik yang 
mengganggu. Hasil penelitian ini dapat menjadi referensi dalam strategi resource discovery untuk 
implementasi ZTA, terutama dalam skenario yang membutuhkan pemindaian jaringan yang cepat dan akurat 
dengan menekan potensi terjadinya disrupsi atau gangguan jaringan. 
 
Kata Kunci: pemindaian jaringan, Nmap, masscan, penemuan sumber daya, arsitektur tanpa kepercayaan. 
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INTRODUCTION 
 

Various types of attacks, such as web 
defacement, ransomware infections, and personal 
data theft, reflect the weak cybersecurity posture in 
Indonesia. The Cybersecurity Landscape report [1], 
notes that one of the main causes of the high 
number of cyberattacks is misconfiguration, which 
occurs when IT administrators fail to implement or 
properly configure adequate security controls on IT 
assets. For example, an unsegmented internal 
network becomes an easy target for attackers to 
conduct lateral movement and malware 
propagation [2],[3]. So far, network security 
solutions have primarily focused on protecting 
against external threats using a perimeter-based 
approach, such as employing EDR (Endpoint 
Detection and Response), IDS (Intrusion Detection 
Systems), and NGFW (Next-Generation Firewalls) 
[4],[5],[6]. However, this approach is less effective 
in addressing threats operating within an 
unsegmented internal network [7],[8],[9]. 
Therefore, securing internal network traffic 
requires a more comprehensive approach, namely 
by implementing ZTA at the network level 
[10],[11],[12]. 

ZTA (Zero Trust Architecture) is a modern 
network security paradigm that eliminates implicit 
trust in entities within the network [13]. 
Implementing ZTA requires full visibility of all 
network assets as an initial step [14]. However, 
many organizations face challenges in adopting ZTA 
due to limitations in identifying and inventorying 
network assets, especially those that have not yet 
established a mature cybersecurity posture and still 
rely on traditional perimeter-based security models 
[7]. To determine the state of network assets, 
resource discovery techniques are used, which 
involve scanning processes to identify devices 
connected to the network and the services running 
on them [15]. Efficient resource discovery methods 
are crucial for organizations that lack an adequate 
asset inventory system, enabling them to transition 
to ZTA effectively. 

The study [14] proposes a migration 
framework towards ZTA consisting of six key steps. 
One of the crucial initial steps is context assessment, 
which involves understanding the current state of 
network assets. One method that can be used in this 
stage is resource discovery by leveraging network 
scanning tools. The findings of this study also 
emphasize the importance of automation in asset 
identification processes, enabling organizations to 
improve efficiency and accuracy in detecting and 
managing network resources. Research [16] 
highlights the challenges of resource discovery in 

the context of ZTA. One of the primary challenges is 
the significant resource requirements, both in terms 
of time and cost. Additionally, the resource 
discovery process can potentially cause network 
disruption if the scanning tools generate excessive 
traffic [17]. This issue serves as the focus of this 
study, streamlining the resource discovery process 
to make it more efficient, accurate, and minimally 
disruptive to the network. 

Several studies have already explored the 
optimization of Nmap, including [18],[19], which 
developed a graphical user interface (GUI) to 
facilitate Nmap usage for beginners. However, their 
proposed tool does not provide a performance 
evaluation of Nmap, such as scanning speed, 
detection accuracy, or network impact. This 
limitation indicates that further research is needed, 
not only to improve the usability of network 
scanning tools but also to optimize their 
performance and efficiency in the context of ZTA 
implementation. A study by [20] investigates the 
application of Nmap in network security 
assessment across various companies. The study 
demonstrates that Nmap is an effective tool for 
identifying open ports, running services, and 
operating systems used by a host. However, this 
research does not specifically evaluate the impact of 
scanning on network performance or its 
effectiveness compared to other tools s uch as 
Masscan or RustScan. 

Research [21] compares the efficacy of three 
port scanning tools which is Nmap, Zmap, and 
Masscan, to assess accuracy and system resource 
efficiency. The study finds that all three tools have 
similar accuracy levels in identifying network 
assets, with no significant differences in false 
positives or false negatives. However, the study 
focuses more on how scanning affects host 
utilization rather than its overall impact on the 
network. By not considering the throughput 
generated by each tool, this study does not fully 
reflect the real-world impact of scanning, 
particularly on live networks. Study  [15] applies 
Metamorphic Testing (MT) to evaluate and compare 
Nmap and Masscan. This study confirms the 
fundamental differences between the two tools: 
Nmap operates in a synchronous mode, making it 
more accurate for in-depth scanning, whereas 
Masscan operates asynchronously, allowing for 
much faster scanning but with lower accuracy in 
identifying detailed services. The results indicate 
that Nmap is more suitable for in-depth security 
analysis, while Masscan is more effective for large-
scale rapid probing. However, this study is limited 
to these two scanning tools and does not evaluate 
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other popular alternatives in the cybersecurity 
community, such as Zmap and RustScan. 

Research [22] highlights that even brief 
Nmap scanning activities can cause measurable 
increases in CPU and memory utilization, leading to 
performance degradation that persists beyond the 
end of the scanning event. This finding underscores 
the potential risks of network disruption from 
resource discovery processes, particularly in live 
operational environments. It provides critical 
evidence that resource-efficient and minimally 
disruptive scanning strategies are essential, 
reinforcing the importance of optimizing Nmap or 
similar tools in ZTA implementation efforts. 
Previous studies have evaluated individual 
scanning tools like Nmap, Masscan, Zmap, and 
RustScan in terms of speed, accuracy, or system 
resource impact. However, there remains a lack of 
systematic integration between high-speed and 
high-accuracy scanning methods, particularly for 
supporting ZTA migration. Additionally, limited 
research addresses scanning performance across 
multi-subnet networks with diverse host types 
while considering the network stability impact 
caused by throughput. To address this gap, this 
study introduces the following novelties: 
1) This study proposes ZTscan, a Python-based 

integration of Masscan and Nmap to combine 

high-speed and in-depth scanning. 

2) Evaluates ZTscan not only based on accuracy 

and speed but also on network throughput 

impact. 

3) Tests ZTscan in a simulated multi-subnet 

network with various host types for more 

realistic analysis. 

4) Provides a practical and efficient network 

discovery solution to assist organizations with 

limited infrastructure in transitioning to ZTA. 

The results of this study position ZTscan as a 
helpful tool for organizations aiming to implement 
ZTA, particularly in the critical initial phase of 
resource discovery. By seamlessly blending 
Masscan’s rapid scanning with Nmap’s detailed 
analysis, ZTscan enables more accurate and efficient 
resource discovery while minimizing network 
disruptions.  

 
MATERIALS AND METHODS 

 
ZTscan Proposed Method 

This research proposes a tiered approach to 
resource discovery by combining Masscan and 
Nmap to improve network scanning efficiency and 
accuracy. There are three main functions in this 
scanning process: Probing, Complementing Scan, 

and Deep Scan, as shown in Figure 1. The theoretical 
basis for this approach is drawn from Study [15] 
,[21], which evaluates and compare Nmap and 
Masscan. The study confirms the fundamental 
differences between the two tools: Nmap operates 
in a synchronous mode, making it more accurate for 
in-depth scanning, whereas Masscan operates 
asynchronously, allowing for much faster scanning 
but with lower accuracy in identifying detailed 
services. Based on these findings, this research 
leverages the strengths of both tools by using 
Masscan for rapid probing (Probing) and Nmap for 
detailed verification and analysis (Complementing 
and Deep Scan). 
 
1)  Probing 

The scanning process begins with the probing 
stage, where Masscan is used to perform a quick 
scan of the target subnet, for example, 
192.168.0.0/20 . Masscan is chosen for its ability to 
conduct large-scale scanning at high speed. At this 
stage, only the 20 most commonly used ports are 
checked to avoid excessive network load [23]. The 
output of this stage is a list of hosts with open ports. 

However, Masscan has limitations in detecting 
active hosts that do not have open ports. If a host 
does not respond to scanning because all its ports 
are closed or a firewall blocks responses to the scan, 
that host will not appear in Masscan's scan results. 

 

 
Source: (Research Results, 2025) 

Figure 1. ZTscan proposed method 
 

2) Complementing Scan 

To overcome the limitation of detecting hosts 
without open ports, an additional scan is performed 
on the target subnet. In this stage, each detected 
host triggers a scan of its corresponding /24 subnet 
to discover other potentially active hosts that were 
not detected in the initial probing phase. 
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The Complementing Scan is initiated in 
parallel with the Deep Scan using Python 
multithreading to accelerate the scanning process. 
The scan of a specific subnet is conducted only once 
when it is identified to prevent redundant scans. 
This scan operates in fast mode (-F), scanning only 
100 commonly used ports to optimize the subnet 
scanning process [24]. 

 
3) Deep Scan 

At this stage, each host detected from the 
probing phase undergoes a more detailed scan to 
identify additional open ports and running services. 
This scanning process runs in parallel with the 
Complementing Scan. 

This stage aims to enhance accuracy and reduce 
false positives by implementing the TCP SYN port 
scan (-PS) using Nmap. This method allows the 
scanning process to continue even if a host blocks 
ICMP (ping), as commonly found in Windows 
operating systems with active firewalls [24]. 

 
Implementation in Python 

The implementation of the ZTscan method 
combines Masscan and Nmap to optimize network 
scanning for resource discovery. This 
implementation uses Python to integrate both 
scanning tools, automate the process, and ensure 
scalability and accuracy. The script performs the 
three key functions: Probing, Complementing Scan, 
and Deep Scan, leveraging multiprocessing to 
improve efficiency. The Python script for ZTscan is 
available on GitHub[25]. 

The core structure of the implementation 
involves calling external tools (Masscan and Nmap) 
through Python’s subprocess module and handling 
parallel tasks using the concurrent.futures library 
for multithreading. The output of each scan is 
processed and stored in a CSV file for later analysis. 

Input 
target_subnet : The network range to be probed  
Function  
1: Function probe(target_subnet): 

2:   Run Masscan on target_subnet  

3:   For each line in Masscan output: 

4:     Parse IP and port 

5:     If valid IP and port: 

6:        If IP not in results: 

7:          Start deep_scan(IP) and complementing_scan(IP) 

         in parallel 

8:          Else: 

9:         Print "Host already scanned" 

10:     Wait for deep_scan and complementing_scan to finish 

Source: (Research Results, 2025) 
Figure 2. ZTscan Probing Pseudocode 
 
The probing phase (Figure 2) begins by 

executing Masscan on the specified target subnet, 

scanning a limited set of common ports to quickly 
identify active hosts. As Masscan produces output, 
each line is parsed to extract the IP address and port 
information. If the extracted IP and port are valid, 
the script checks whether the IP has already been 
recorded in the scan results. For new hosts, two 
parallel tasks (using Python Multiprocessing) are 
immediately launched: a Deep Scan to perform 
detailed port and service detection on the host, and 
a Complementing Scan to explore the host's /24 
subnet for additional active devices. Hosts already 
recorded are skipped to avoid redundant work. 
Once all Masscan output has been processed, the 
function waits for all deep and complementing scan 
tasks to complete before concluding the probing 
phase. 

 
Input 
target_host : IP address detected during the probing phase 
Function  
1: Function deep_scan(target_host): 

2:   Run Nmap on target_host 

3:   Parse Nmap results for open ports and subnet 

4:   If target_host not in scan results: 

5:     Write results to 'scan_result.csv' 

6:   Else: 

7:     Update scan results with new ports 

8: Function complementing_scan(target_host): 

9:   Run Nmap on target_host + /24 

10:   Parse Nmap results for open ports and hosts 

11:   For each host in results: 

12:     If host not in scan results: 

13:       Write host and ports to 'scan_result.csv' 

14:     Else: 

15:        Update scan result with new ports  

Source: (Research Results, 2025) 
Figure 3. ZTscan Complementing and Deep Scan 

Pseudocode 
 
The Deep Scan function is responsible for 

performing a detailed analysis of each discovered 
host. It starts by running Nmap on the target host to 
gather information about open ports and associated 
subnet details. After parsing the Nmap output, the 
script checks whether the host already exists in the 
scan results. If the host is new, its scan data is 
written into ‘scan_result.csv’; if it already exists, the 
scan results are updated by adding any newly 
discovered ports. 

In parallel, the Complementing Scan function 
expands discovery by scanning the entire /24 
subnet of the target host using Nmap. After parsing 
the subnet scan results, each host found is checked 
against the existing scan records. New hosts are 
added to ‘scan_result.csv’, while existing entries are 
updated with any additional open ports identified. 
This approach ensures that even hosts without 
initially open ports are detected and recorded, 
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providing a broader and more accurate network 
view. 
 

 
Source: (Research Results, 2025) 

Figure 4. ZTscan Output 
 

The final output of this entire process is a list 
of discovered hosts in CSV format (Figure 4), 
complete with information on open ports. This 
resource discovery result is essential for 
implementing ZTA, as it serves as the foundation for 
designing the Zero Trust network architecture [14]. 
This approach enables a more efficient and 
systematic scanning process by leveraging 
Masscan’s speed for initial probing and Nmap’s 
precision for in-depth   analysis. Additionally, the 
complementary subnet scanning mechanism 
ensures that neighboring hosts are also detected, 
providing broader and more accurate scan 
coverage.  

 
Testing Scenario in GNS3 

To evaluate the effectiveness of the proposed 
method, this study builds a simulated scenario using 
GNS3, representing an organization's internal 
network topology. The evaluation compares ZTscan 
with other scanning tools, namely standalone 
Nmap, standalone Masscan, RustScan, and Zmap. 
Each method’s performance is measured based on 
three metrics: result accuracy, scanning speed, and 
network throughput. 

The testing is conducted in a simulated 
environment with a network topology consisting of 
three subnets, as shown in Figure 5. Each subnet is 
assigned a /24 CIDR block and contains Lubuntu 
and Windows 7 virtual machines (VMs). The 
method used are Internal Scanning, where the 
scanning which agents are located within the 
enterprise network and scan the internal address 
space (local-to-local scan) [26]. The entire scanning 
process targets 192.168.0.0/21 to cover all subnets. 

 

 
Source: (Research Results, 2025) 

Figure 5. Testing Scenario Network Topology 

 
The testing was conducted in a simulated 

environment using GNS3 with a network topology 
consisting of three subnets. Each subnet used a /24 
CIDR block and contained Lubuntu and Windows 7 
virtual machines (VMs). The entire scanning 
process targeted 192.168.0.0/21 to cover all 
subnets. 

Each subnet contained hosts with unique 
characteristics. Some hosts ran Lubuntu, while 
others used Windows 7 with different firewall 
configurations. Windows 7 (Firewall+SMB) had its 
firewall enabled and port 445 open, which blocked 
ICMP ping responses. Some hosts had active 
services with open ports, while others had no 
accessible services but still responded to ICMP ping. 
Routers and Lubuntu (None) in each subnet had no 
open ports, making them undetectable using port-
based scanning methods. 

The scenario reflected real-world challenges 
in network scanning, where not all devices 
responded in the same way. Hosts with active 
services and open ports were easily detected using 
Masscan. Hosts that had no open services but still 
responded to ICMP ping required more specific 
techniques, such as Nmap TCP ping scans. 

The scanning tools were executed from a Kali 
Linux machine configured with 2 vCPUs and 2 GB 
RAM. Each tool was tested five times in the test 
topology to obtain consistent and accurate data. The 
tools and commands used for comparison against 
ZTscan are as follows: 

 
1) Nmap standalone 

Nmap is the most commonly used network 
scanning tool for discovering hosts and services 
within a network[27]. In the first approach, a basic 
scan (Nmap_Basic) was executed using the 
command nmap -n <target>. This scan was 

conducted without performing a reverse DNS 



 

 

VOL. 10. NO. 4 MAY 2025. 
 . 

DOI: 10.33480/jitk.v10i4.6628. 
 

  

873 

lookup, which significantly reduced the overall 
scanning time by eliminating the additional step of 
resolving IP addresses to domain names. 

To address scenarios where ICMP echo 
requests might be disabled, an alternative scanning 
method was applied using the command nmap -n 

-PS <20_common_ports> <target>. This 
technique utilized a TCP SYN (Nmap_Pingsyn) ping 
to 20 commonly used ports, allowing the scanner to 
identify active hosts based on their response to 
these connection attempts. By leveraging this 
approach, Nmap was able to detect hosts that would 
otherwise remain invisible to traditional ICMP-
based discovery methods. 

 
2) Masscan standalone 

Masscan was employed as a standalone tool 
due to its exceptional speed in performing large-
scale network sweeps. Designed for high-
performance asynchronous scanning, Masscan is 
capable of scanning entire network ranges in 
significantly less time compared to traditional 
scanners [15][28]. Masscan was executed 
(Masscan_Basic) using the command sudo 

masscan --rate=5000 -p 

<20_common_ports> <target>. The --

rate=5000 parameter controlled the scanning 

speed, allowing up to 5,000 packets per second to be 
sent without compromising accuracy. This high-
speed approach enabled rapid identification of 
active hosts and open ports within the target 
network, making it particularly effective for large-
scale reconnaissance. 

 
3) RustScan 

RustScan was utilized for its ability to rapidly 
identify open ports while seamlessly integrating 
with Nmap for deeper analysis [27]. The command 
executed (Rustcan_Basic) was rustscan -p 

<20_common_ports> --ulimit 5000 --

accessible -a <target>. The --ulimit 
5000 option increased the file descriptor limit, 

allowing up to 5,000 simultaneous connections, 
which significantly enhanced scanning efficiency.  

 
4) ZMap 

ZMap was designed for large-scale internet 
surveys, making it one of the fastest network 
scanners available. Unlike traditional scanners, 
ZMap employs a stateless scanning approach, 
allowing it to send probe packets without 
maintaining connection states. This method 
significantly reduces overhead, enabling ZMap to 
scan the entire IPv4 address space in under an hour 
using a single packet per port scan [29]. The 

command used (Zmap_Basic) was sudo zmap -p 
<20_common_ports> -q <target>. Here, -

p <20_common_ports> specifies the commonly 

scanned ports, while -q enables quiet mode, 
minimizing unnecessary output. This configuration 
allowed ZMap to efficiently identify open ports 
across a wide network range with minimal resource 
consumption. 

 
Performance Metrices 

The evaluation of scanning performance in 
this research is based on three key metrics: 
scanning accuracy, scan time, and network 
throughput during the scan. Scanning accuracy is 
assessed by comparing the number of hosts and 
open ports detected by each scanning tool against 
the actual number present in the predefined 
network scenario. This helps determine the 
reliability of each tool in accurately identifying 
network assets.Beyond accuracy, the efficiency of 
asset detection is also a major concern. To measure 
this, the scan duration is recorded from the moment 
the scan starts until all hosts in the network are 
detected. The performance of each tool is then 
compared to determine which one identifies 
network assets the fastest. During the scanning 
process, network throughput is monitored to assess 
the impact of scanning tools on network traffic. This 
monitoring is conducted via router R1 in the 
topology illustrated in Figure 5. Traffic data 
generated by the scanning tools is collected and 
analyzed to understand how each tool affects 
bandwidth usage and network stability throughout 
the scanning process. 

 
RESULTS AND DISCUSSION 

 
The accuracy comparison results are 

illustrated in Figure 6. Nmap_Basic, with an 
accuracy of 92.50%, demonstrates a high detection 
rate but struggles with hosts that block ICMP ping. 
Since Nmap relies on ICMP for host discovery, it 
considers such hosts inactive and does not proceed 
with further scanning. 

 

 
Source: (Research Results, 2025) 

Figure 6. Accuracy Performance Comparison 
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Masscan_Basic (77.50%) and ZMap_Basic 
(73.00%) exhibit lower accuracy compared to 
Nmap. This is because both tools are designed for 
high-speed scanning and do not perform in-depth 
port probing for each discovered host. On the other 
hand, ZTscan and Nmap_Pingsyn achieved 100.00% 
accuracy, successfully identifying all hosts and open 
ports in the test scenario. This indicates that TCP 
SYN ping (used in Nmap_Pingsyn) and ZTscan’s 
approach effectively detect hosts that block ICMP by 
scanning directly on target TCP ports. 

These results suggest that ZTscan and 
Nmap_Pingsyn are the most reliable choices for 
accurate network scanning, particularly in complex 
network environments where ICMP-based 
discovery may fail.The research results section 
contains exposure to the results of the analysis 
related to the research question.  

 
Source: (Research Results, 2025) 

Figure 7. Scanning Speed Comparison 
 

The scan speed comparison is illustrated in 
Figure 7. Nmap_Basic, with a completion time of 
22.854 seconds, is the fastest scanning method in 
this test. This efficiency is due to its simple, direct 
approach, which only scans known targets without 
additional verification steps. Masscan_Basic 
(46.424 seconds) and ZMap_Basic (43.956 
seconds), despite being known for their high-speed 
scanning capabilities, performed slower than 
Nmap_Basic in this test. This is likely due to the 
methodology used, where both tools still needed to 
handle a broader subnet range, increasing 
processing time.  

RustScan_Basic recorded the longest 
scanning time at 107.262 seconds. While RustScan 
is typically recognized for its speed, the delay in this 
scenario stems from its process of verifying each 
detected host using Nmap, adding an extra layer of 
analysis. Nmap_Pingsyn (61.398 seconds) and 
ZTscan (54.854 seconds), while slower than 
Nmap_Basic, delivered more accurate results, 

particularly in complex network environments 
where basic ICMP-based detection might fail. 

From these results, Nmap_Basic is the fastest 
tool, but its lower accuracy makes it less suitable for 
comprehensive network discovery. ZTscan and 
Nmap_Pingsyn provide a balance between speed 
and accuracy, making them more reliable choices 
for scanning scenarios that require thorough asset 
detection. 

 

 
Source: (Research Results, 2025) 

Figure 8. Throughput Comparison 
 
The comparison of throughput generated by 

each scanning tool is shown in Figure 8. 
Throughput, measured in bits per second (bps), 
reflects the amount of data transmitted during the 
scanning process. A higher throughput indicates 
greater network traffic generated by the tool. 

At the start of the scan, all tools exhibit a 
sharp increase in throughput. Masscan_Basic and 
ZMap_Basic record the highest peaks, reaching 
544,550.4 bps and 471,158.4 bps at the 10-second 
mark, respectively. This result aligns with their 
design as ultra-fast asynchronous scanners that 
send a large volume of packets in a short time. 
ZTscan demonstrates a more moderate throughput 
increase but still surpasses Nmap_Basic and 
RustScan. Nmap_Pingsyn, while generating lower 
throughput compared to high-speed scanners, 
maintains a steady traffic rate throughout the scan. 

As the scan progresses, Masscan and ZMap 
experience a gradual decline in throughput after 
their initial spike. This happens because most of 
their packets do not receive further responses after 
the initial sweep. RustScan consistently records low 
throughput, indicating a more conservative 
scanning approach compared to the others. 
Meanwhile, ZTscan gains stability and reaches 
610,081.6 bps at the 26-second mark, highlighting 
its efficiency in performing thorough scans without 
excessive traffic spike. 
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In the later stage, Nmap_Pingsyn experiences 
a sudden throughput spike at the 38-second mark, 
peaking at 515,736.8 bps. This suggests that its TCP 
SYN ping method continues working even after 
other tools have completed their scans. Meanwhile, 
ZTscan maintains relatively stable throughput 
compared to Nmap_Pingsyn, with fewer sharp 
fluctuations. Masscan, ZMap, and RustScan exhibit a 
drastic drop in throughput after 30 seconds, 
confirming their suitability for rapid scanning 
rather than deep network analysis. 

ZTscan exhibits greater stability in traffic 
distribution compared to Nmap_Pingsyn, which 
experiences a late-stage spike. The smoother traffic 
pattern of ZTscan reduces the risk of sudden 
network disruptions, which could impact active 
network operations. This aligns with ZTA 
requirements, where accuracy in asset 
identification must be balanced with minimal 
disruption to live network environments. 

 
CONCLUSION 

 
This research introduces ZTscan, a method 

that integrates Masscan and Nmap to optimize 
resource discovery within Zero Trust Architecture 
(ZTA). Masscan’s speed in detecting active hosts and 
open ports, combined with Nmap’s precision in 
analyzing services and operating systems, allows 
ZTscan to strike an optimal balance between speed, 
accuracy, and scanning traffic stability. Testing 
reveals that ZTscan achieves 100% accuracy, 
placing it on par with Nmap_Pingsyn while 
surpassing faster scanning tools like Masscan, 
ZMap, and RustScan in precision. In terms of speed, 
ZTscan completes scans in 54.854 seconds, faster 
than Nmap_Pingless (61.398 seconds) while 
maintaining comparable high accuracy. While 
Nmap_Basic completes the fastest at 22.854 
seconds, it does so with much lower detection 
reliability. In terms of throughput, ZTscan 
demonstrates a stable and moderate traffic pattern, 
peaking around 610,081.6 bps without causing 
disruptive spikes. Unlike Masscan_Basic and 
ZMap_Basic, which exhibit early traffic surges, and 
Nmap_Pingsyn, which shows late-stage throughput 
instability, ZTscan maintains a consistent 
transmission rate throughout most of the scanning 
process. This stable behavior minimizes network 
disruption risks, aligning with Zero Trust 
Architecture (ZTA) requirements for secure and 
reliable resource discovery. 

Findings from this study position ZTscan as 
an optimal resource discovery solution for ZTA, 
seamlessly blending Masscan’s rapid scanning with 
Nmap’s in-depth analysis while mitigating the 

network instability often caused by high-intensity 
scans. However, this study also has several 
limitations. Testing was conducted in a controlled 
and relatively small-scale network environment, 
which may not fully represent performance under 
large-scale or highly heterogeneous enterprise 
networks. Furthermore, ZTscan currently relies on 
a fixed scanning strategy and does not yet adapt its 
behavior dynamically based on network conditions 
or observed responses. For future research, it is 
recommended to: Test ZTscan in larger and more 
diverse network topologies, including multi-subnet, 
VPN, and cloud-based environments, Integrate 
AI/ML-based host profiling to enhance automation 
in interpreting scan results and prioritizing assets 
and Explore the development of adaptive scanning 
strategies that dynamically adjust scan speed, 
intensity, and validation techniques based on real-
time feedback from the network. By addressing 
these areas, ZTscan can continue evolving into a 
smarter, more scalable, and more adaptive solution, 
capable of supporting robust Zero Trust initiatives 
across a wider range of network conditions and 
organizational needs. 
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