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Abstract— Lake Maninjau experiences periodic upwelling events that disrupt water quality, harm fish stocks, 
and pose socioeconomic challenges to surrounding communities. This study aimed to enhance upwelling 
prediction accuracy by integrating Vector Autoregressive (VAR) time series modelling with Support Vector 
Machine (SVM) classification. A five-year dataset (2020–2024) of daily climate variables surface temperature, 
precipitation, and wind speed was collected from NASA. Data stationarity was confirmed using Box-Cox 
transformations and Augmented Dickey-Fuller tests, while Granger Causality analysis revealed bidirectional 
relationships among the variables. The optimal forecasting model, VAR(17), was selected based on the Akaike 
Information Criterion (AIC), ensuring residuals met white-noise criteria. K-means clustering then labelled 
potential upwelling days, and these labels were employed to train SVM classifiers. An interactive dashboard 
was developed using Python and Streamlit to facilitate real-time forecasts and classification outputs. The 
VAR(17) model produced highly accurate forecasts, reflected by minimal error metrics (e.g., RMSE < 0.60). SVM 
classification of potential upwelling events achieved strong performance, consistently attaining F1-scores 
above 0.95. By merging time series forecasts with event classification, the hybrid VAR–SVM framework 
outperformed single-method approaches in identifying and predicting upwelling episodes. This integrated 
modelling strategy effectively addresses the complexity of upwelling in Lake Maninjau, enabling timely 
decision-making for fisheries management and local tourism stakeholders. Future work may incorporate 
additional environmental indicators (e.g., dissolved oxygen, pH) and extend dashboard functionalities to 
bolster sustainable resource management and community resilience. 
 
Keywords: forecasting, lake maninjau, support vector machine, time series, upwelling. 

 
Intisari— Danau Maninjau mengalami peristiwa upwelling secara berkala yang mengganggu kualitas air, 
merusak stok ikan, dan menimbulkan tantangan sosial ekonomi bagi masyarakat sekitar. Penelitian ini 
bertujuan untuk meningkatkan akurasi prediksi upwelling dengan mengintegrasikan pemodelan deret waktu 
Vector Autoregressive (VAR) dengan klasifikasi Support Vector Machine (SVM). Dataset lima tahun (2020-
2024) dari variabel iklim harian suhu permukaan, curah hujan, dan kecepatan angin dikumpulkan dari NASA. 
Stasioneritas data dikonfirmasi dengan menggunakan transformasi Box-Cox dan uji Augmented Dickey-Fuller, 
sementara analisis Kausalitas Granger menunjukkan hubungan dua arah di antara variabel-variabel tersebut. 
Model peramalan yang optimal, VAR (17), dipilih berdasarkan Akaike Information Criterion (AIC), yang 
memastikan residual memenuhi kriteria white-noise. Pengelompokan K-means kemudian memberi label pada 
hari-hari upwelling potensial, dan label-label ini digunakan untuk melatih pengklasifikasi SVM. Dasbor 
interaktif dikembangkan dengan menggunakan Python dan Streamlit untuk memfasilitasi prakiraan waktu 
nyata dan hasil klasifikasi. Model VAR (17) menghasilkan prakiraan yang sangat akurat, yang tercermin dari 
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metrik kesalahan yang minimal (misalnya, RMSE <0,60). Klasifikasi SVM untuk kejadian upwelling potensial 
mencapai kinerja yang kuat, secara konsisten mencapai nilai F1 di atas 0,95. Dengan menggabungkan 
prakiraan deret waktu dengan klasifikasi kejadian, kerangka kerja hibrida VAR-SVM mengungguli 
pendekatan metode tunggal dalam mengidentifikasi dan memprediksi episode upwelling. Strategi pemodelan 
terpadu ini secara efektif mengatasi kompleksitas upwelling di Danau Maninjau, sehingga memungkinkan 
pengambilan keputusan yang tepat waktu untuk pengelolaan perikanan dan pemangku kepentingan 
pariwisata lokal. Penelitian di masa depan dapat memasukkan indikator lingkungan tambahan (misalnya, 
oksigen terlarut, pH) dan memperluas fungsi dasbor untuk meningkatkan pengelolaan sumber daya yang 
berkelanjutan dan ketahanan masyarakat. 
 
Kata Kunci: peramalan, danau maninjau, support vector machine, deret waktu, umbalan. 
 

INTRODUCTION 
 

Upwelling is a critical oceanographic process 
where deep, nutrient-rich waters rise to the surface, 
significantly influencing marine ecosystems by 
altering nutrient distributions and promoting 
biological productivity[1]. Although commonly 
associated with ocean environments, upwelling can 
also occur in lacustrine systems, particularly in 
volcanic lakes such as Lake Maninjau in West 
Sumatra. In these lakes, upwelling is driven by 
environmental factors, including temperature 
gradients, wind patterns, and rainfall, impacting 
water quality and the distribution of aquatic 
organisms. 

Lake Maninjau, formed within a volcanic 
caldera, presents a unique ecosystem where 
upwelling events have profound ecological and 
socioeconomic implications. These events can lead 
to sudden changes in water chemistry, such as 
increased turbidity and decreased oxygen levels, 
adversely affecting fish populations and 
biodiversity[2]. The lake's health is thus directly 
linked to the well-being of the surrounding 
communities, making the understanding and 
prediction of upwelling events a matter of 
significant importance. 

The local communities around Lake 
Maninjau rely heavily on the lake for fisheries and 
tourism, both of which are sensitive to 
environmental changes induced by upwelling 
events[3]. Fisheries are a primary source of income, 
and fluctuations in fish stocks due to upwelling can 
have immediate economic consequences. Similarly, 
the lake's aesthetic appeal, crucial for tourism, can 
be diminished during upwelling events. Despite the 
critical need for accurate predictions to mitigate 
these impacts, existing forecasting methods face 
limitations in capturing the complex dynamics of 
upwelling in lake environments. 

Current prediction methods predominantly 
employ either time series analysis or machine 
learning classification techniques independently. 
Time series models like the Vector Autoregressive 

(VAR) model are effective in modeling temporal 
dependencies within environmental data but 
cannot classify specific events such as upwelling[4]. 
Conversely, machine learning classifiers such as 
Support Vector Machines (SVM) excel in 
categorizing events but often disregard temporal 
relationships essential for accurate forecasting in 
dynamic systems. SVMs operate by identifying the 
optimal hyperplane that separates different classes 
in a high-dimensional space, making them 
particularly effective for binary classification 
tasks[5], [6]. Previous research has demonstrated 
the potential of combining these methods in other 
domains, yet their application to lake upwelling 
prediction remains unexplored. 

The main research problem addressed in this 
study is the inadequacy of existing models to 
accurately predict upwelling events in Lake 
Maninjau due to their inability to simultaneously 
capture temporal dependencies and event-specific 
characteristics influenced by local environmental 
factors. These limitations hinder effective decision-
making and proactive management of the lake's 
resources by the local community and stakeholders. 

To overcome these challenges, we propose a 
novel hybrid modeling approach that integrates 
VAR time series analysis with SVM classification. 
This hybrid model aims to leverage the strengths of 
both methods: the VAR component models the 
temporal patterns in environmental data such as 
temperature, wind speed, and rainfall, while the 
SVM classifier identifies and categorizes upwelling 
events based on the patterns extracted by the VAR 
model. This combined approach is anticipated to 
enhance prediction accuracy and provide more 
reliable forecasts of upwelling events. 

The specific implementation involves 
collecting key environmental data from reputable 
sources, including NASA and local monitoring 
stations. The data undergoes preprocessing to 
address any inconsistencies or gaps. The VAR model 
is then applied to uncover temporal dependencies, 
and its outputs serve as features for the SVM 
classifier. The SVM model classifies the events into 
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upwelling or non-upwelling categories, effectively 
capturing temporal and event-specific 
characteristics. This methodology builds upon 
previous research that has successfully utilized 
hybrid models in other environmental prediction 
contexts [7], [8]. 

To ensure that the predictive insights are 
accessible and beneficial to the local community, we 
have developed an interactive dashboard using 
Python and Streamlit. The dashboard provides 
forecasts, visualizations of historical trends, and 
user-friendly interfaces for data exploration. By 
making the model's outputs readily available, the 
dashboard empowers stakeholders to make 
informed decisions, enhancing the practical impact 
of the research. The contributions of this study are 
as follows: 
1. Develop a hybrid VAR–SVM model to enhance 

the prediction accuracy of upwelling events in 
Lake Maninjau by integrating time series 
forecasting and event classification 
techniques. 

2. Implement an optimal VAR model to capture 
temporal dependencies in climate data such as 
surface temperature, precipitation, and wind 
speed, ensuring robust and reliable 
forecasting. 

3. Apply K-means clustering to label potential 
upwelling days, which are then used to train an 
SVM classifier that accurately identifies and 
classifies upwelling events. 

4. Develop an interactive forecasting dashboard 
using Python and Streamlit, providing 
stakeholders with visualizations and decision-
making support for local fisheries and tourism 
management. 

5. Contribute to sustainable resource 
management by offering predictive tools that 
help mitigate the socioeconomic impacts of 
upwelling events on local communities. 
Despite studies employing hybrid models for 

environmental forecasting, there is a notable 
scarcity of research applying such approaches to 
lake upwelling prediction. Previous studies have 
primarily focused on either time series analysis or 
machine learning classification in isolation, without 
integrating the two to capture the multifaceted 
nature of upwelling events [9], [10] This gap in the 
literature underscores the need for innovative 
models that can address temporal dynamics and 
event classification, particularly in lake ecosystems, 
where data characteristics may differ from oceanic 
environments. 

This study aims to develop and validate a 
hybrid VAR-SVM model to improve the prediction of 
upwelling events in Lake Maninjau, thereby 

addressing a critical research gap. It is hypothesized 
that such a hybrid model will surpass conventional 
methods by accurately capturing both temporal 
dependencies and event-specific dynamics 
influenced by environmental factors. The novelty of 
this research lies not only in the hybrid modeling 
approach but also in the implementation of an 
interactive dashboard, bridging the gap between 
advanced predictive analytics and practical 
community applications. By enhancing the accuracy 
and accessibility of upwelling predictions, this study 
aims to promote sustainable resource management 
and contribute to the socioeconomic well-being of 
the Lake Maninjau community. 

The predictive accuracy demonstrated by 
this study's hybrid VAR–SVM model aligns 
favorably with recent hybrid approaches utilizing 
VAR or SVM methodologies in climate and 
hydrological forecasting. In previous research, 
hybrid models integrating VAR have consistently 
exhibited low error metrics, such as in forecasting 
dam water levels, where VAR-based approaches 
achieved notably low RMSE and MAE values, 
demonstrating robustness in capturing linear 
climate-driven relationships [11]. Furthermore, 
integrating VAR with nonlinear machine learning 
methods like Artificial Neural Networks (ANN) or 
Support Vector Machines (SVM) has been shown to 
substantially reduce forecasting errors compared to 
single-method applications, highlighting the 
strength of hybrid modeling frameworks[11]. 
Specifically, semi-supervised SVM models applied 
to lake upwelling predictions reported exceptional 
classification performance, achieving an F1-score as 
high as 0.985 with approximately 99.5% precision, 
underscoring the effectiveness of SVM in accurately 
classifying complex environmental events [12].  

Similarly, in drought forecasting contexts, 
hybrid approaches incorporating SVM alongside 
signal processing methods, such as wavelet 
transformations, have consistently outperformed 
standard statistical models (e.g., ARIMA), resulting 
in significantly improved RMSE values and overall 
predictive accuracy [13]. Recent literature 
emphasizes that hybrid VAR–SVM methodologies 
consistently deliver superior accuracy and 
reliability in forecasting critical environmental 
phenomena. Thus, the results presented in this 
study, characterized by low error metrics (MAE, 
RMSE) and strong classification performance (high 
F1-score), validate the efficacy and suitability of the 
hybrid VAR–SVM approach for precise and reliable 
lake upwelling prediction.. 
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MATERIALS AND METHODS 
 

Research Design and Timing 
This study employed an observational design 

combined with a predictive modeling approach to 
analyze climate data from the Maninjau Lake region 
in Agam District, West Sumatra Province. The 
dataset covered a five-year period, from January 1, 
2020, to December 31, 2024. The results of the 
analysis were integrated into an interactive 
dashboard designed to support informed decision-
making among floating net cage fish farmers. 

The climate data were obtained from the 
official and reliable website of the National 
Aeronautics and Space Administration (NASA), 
accessible at https://power.larc.nasa.gov/ [14]. The 
data acquisition process followed a series of steps. 
First, the POWER Data Access Viewer was accessed. 
The Agroclimatology data category was selected to 
align with the study’s objectives. The temporal 
resolution was set to daily. Geographic coordinates 
were specified at a latitude of −0.399680 and a 
longitude of 100.200037. The selected time range 
spanned from January 1, 2020, to December 31, 
2024. Three key climate parameters were then 
selected: surface temperature (°C), precipitation 
(mm), and mean wind speed at a 10-meter height 
(m/s), given their relevance to upwelling processes 
[7]. Finally, the data were exported in the comma-
separated values (CSV) format to facilitate further 
processing. In total, the dataset comprised 1,827 
daily observations, providing a comprehensive 
basis for climate pattern analysis in the study area. 
 
Software and Statistical Analysis 

Data analysis utilized R software (version 
4.4.1) and Python (version 3.12). In the initial phase, 
R was employed for comprehensive data 
preprocessing and advanced statistical processes, 
including data integration and cleaning. Descriptive 
statistics were derived by calculating the minimum, 
median, mean, and maximum values to understand 
central tendencies and by determining the 
interquartile range (IQR) and standard deviation to 
capture variability. Python was then used to create 
boxplots with jitter to visualize data distributions. 

 
Research stages 

This study was structured into several 
sequential stages: data collection, data 
preprocessing, initial data splitting, diagnosing and 
selecting the best forecasting model, defining and 
integrating labels through clustering, secondary 
data splitting, building a classification model using 
Support Vector Machines (SVM), model evaluation, 

and deployment into an interactive dashboard. A 
brief methodology is presented in Figure 1. 

 

 
Source : (Research Results, 2025) 

Figure 1 Research Stages 
 

Figure 1 shows the flow of the research; in 
the data collection phase, comprehensive climate 
data, including temperature, precipitation, and 
wind speed, were obtained from NASA’s data access 
viewer. The subsequent model development had 
two primary objectives: forecasting climate 
indicators and classifying potential upwelling 
events. Initially, data underwent preprocessing, 
which included assessing data stationarity through 
the Box-Cox transformation and the Augmented 
Dickey-Fuller test. The Box-Cox transformation is 
expressed mathematically as: 

𝑇(𝑌𝑡) =  
𝑌𝑡

𝜆 − 1

𝜆
 (1) 

Where T(Yt) is the transformation function 
applied to the data Y at time t, and λ is the 
transformation parameter. After transforming the 
data and verifying stationarity, a Granger causality 
analysis was performed to investigate relationships 
among the variables [12]. The dataset was then split 
into 80% training (876 rows) and 20% test data 
(219 rows), and time series methods were applied 
to construct forecasting models. Residuals from 
each model were examined for white noise 
properties and adherence to multivariate 
assumptions. A Vector Autoregression (VAR) model 
was selected for the time series forecasting. The 
VAR model can be represented by Equation (2): 

𝑌𝑡 = 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ +
𝐴𝑝𝑌𝑡−𝑝 + 𝛼𝑡    (2) 

 
Where Yt is a vector of endogenous variables 

at time T, Ai is the coefficient matrix for lag i, p is the 
order of the VAR model, and αt is the white-noise 
residual vector. A portmanteau test was applied to 

https://power.larc.nasa.gov/
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confirm the model’s validity, ensuring the residuals 
indeed resembled white noise. 

Model selection was guided by minimizing 
the Akaike Information Criterion (AIC), which 
balances predictive accuracy and model simplicity. 
The AIC is derived from the model’s likelihood and 
imposes a penalty based on the number of 
parameters, as shown in Equation (3): 

 

AIC = -2logL + 2k (3) 

  

where L is the likelihood and k denotes the 
number of parameters, guided the selection of the 
most appropriate VAR model by balancing model 
complexity against predictive accuracy [13], [15], 
[16]. 

After identifying the best-performing VAR 
model, unlabeled forecasted data were classified 
into two clusters ('potential upwelling' and 'no 
potential upwelling') through K-means clustering. 
This algorithm partitions datasets into clusters 
based on centroid proximity, iteratively minimizing 
intra-cluster variance [19], [20], [21]. Techniques 
such as k-means have been recognized for 
improving centroid initialization and overall 
clustering quality [17], [18]. 

The new labels generated from clustering 
were integrated into the dataset, which was again 
partitioned into training (80%) and testing (20%) 
subsets. Subsequently, a Support Vector Machine 
(SVM) classification model was developed. The SVM 
method, proposed by Cortes and Vapnik, identifies 
optimal hyperplanes that maximize margins 
between different data classes, efficiently handling 
both linear and nonlinear classification through 
kernel functions [24], [25], [26]. 

The forecasting component was evaluated 
using metrics such as Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Mean Squared 
Error (MSE) [27]. The classification model’s 
performance was assessed using accuracy, 
precision, recall, and F1-score metrics. High 
predictive accuracy and robust classification 
outcomes were achieved, with metrics frequently 
exceeding 90%. 

Lastly, the integrated VAR–SVM solution was 
deployed in an interactive dashboard developed 
using R for forecasting climate indicators and 
Python for SVM-based classification. The dashboard 
enhances practical decision-making and 
operational responsiveness, underscoring the 
synergistic integration of statistical modeling and 
machine learning techniques consistent with 
methodologies employed across hydrological and 
climatological research domains[12], [13], [28]. 

 

RESULTS AND DISCUSSION 
 

Descriptive Statistics Analysis 

Descriptive statistics are a fundamental step 
in data analysis, and they offer a preliminary dataset 
overview through numerical summaries and visual 
representations. This approach facilitates the 
transformation of raw, often complex, data into a 
more interpretable form, allowing key 
characteristics to be conveyed concisely and 
efficiently. Through the use of central tendency 
measures (such as mean, median, and mode), 
dispersion metrics (such as standard deviation and 
range), and graphical tools (including histograms, 
boxplots, and scatter plots), descriptive statistics 
unveil patterns, trends, and potential anomalies 
within the data. Moreover, this exploratory phase is 
crucial in identifying data quality issues such as 
outliers, missing values, or skewed distributions, 
which might influence subsequent analyses. By 
distilling the essential structure of the dataset, 
descriptive statistics not only enhance 
comprehension but also inform and direct the 
following stages of inferential statistical modeling 
and hypothesis testing [12]. 

 
Table 1 Statistics Summary 

Variable 
Climate Variables 

Temperature Precipitation Wind 
Speed 

Min 25.360 0.0000 0.680 
Median 27.150 6.540 2.020 
Mean 27.146 11.425 2.164 
Max 28.760 133.560 5.340 
IQR 0.840 11.440 0.950 
STDV 0.594 14.156 0.736 

Source : (Research Results, 2025) 
 
Table 1 indicates that each variable exhibits a 

unique distribution profile. The surface 
temperature variable, for instance, has a relatively 
narrow range (25.36–28.76) and identical mean 
and median values (27.15), suggesting minimal 
variation around a central point (standard deviation 
0.59). On the other hand, the Precipitation variable 
spans a substantially wider interval (0.00–133.56). 
It has a higher standard deviation (14.16), hinting at 
notable fluctuations that could be tied to seasonal or 
external influences. The Wind Speed variable falls 
between these extremes, covering 0.68–5.34 and 
recording a moderate standard deviation (0.74). Its 
mean (2.16) is slightly above its median (2.02), 
reflecting a less concentrated distribution than 
surface temperature and not as dispersed as 
Precipitation. These patterns point to different 
behaviors within the dataset: surface temperature 
remains relatively stable, Precipitation varies 
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greatly, and Wind Speed shows an intermediate 
spread level. 

 
(a) 

 
(b) 

 
(c) 

Source : (Research Results, 2025) 
Figure 2 (a) Windspeed Boxplot, (b) Earth Skin 

Temperature Boxplot, and (c) Precipitation 
Boxplot  

 
Figure 2 illustrates annual distributions 

(2020–2024) for three essential climate 
indicators— Precipitation, Surface Temperature, 
and Wind Speed at 10 Meters. Overall, the median 
and interquartile ranges imply relatively consistent 
weather patterns across the years. Nonetheless, 
occasional outliers in each boxplot point to 
abnormal or extreme events. Precipitation features 
several high-value outliers suggestive of intense 
rainfall episodes, while surface temperature 
remains steady with minimal fluctuation. Wind 
speed also demonstrates a generally stable pattern, 
apart from sporadic spikes. These observations 
highlight largely stable conditions over the study 
period, with periodic intervals of more extreme 
weather. 

A. Stationarity and Granger Causality Test 

Ensuring stationarity is crucial for data used 
in time series analysis, particularly to maintain 
consistent variance. The Box-Cox method 
determines the parameter (λ), where a value near 1 
indicates variance stationarity. If (λ) deviates 
significantly from 1, a transformation is performed 
to achieve this condition. The Augmented Dickey-
Fuller (ADF) test is then used to verify mean 
stationarity. 

 
Table 2 Table of Initial Lambda and 

Transformation Results 

Variable 
Lambda Difference 

𝝀 Before 
Transformation 

𝝀 After 
Transformation 

Precipitation 0.004 0.818 

Surface 
Temperature 

1.002 1.002 

Wind Speed at 10 
Meters 

0.213 0.896 

Source : (Research Results, 2025) 
 

Table 2 summarizes the initial and post-
transformation (λ) values for three variables: 
Precipitation, Surface Temperature, and Wind 
Speed. Initially, (λ) values are distant from 1, 
suggesting that the variance is not stationary and 
requires a transformation step. After applying Box-
Cox parameters, these (λ) values move closer to 1, 
signaling that variance stationarity has been 
established. 

Subsequent ADF tests confirm that each 
variable also meets the criterion for mean 
stationarity (no differencing needed). As a result, 
the data satisfy variance and mean stationarity 
requirements, indicating suitability for modeling 
and forecasting without additional differencing. 

Furthermore, the Granger Causality test was 
performed to investigate the directional 
relationships among the analyzed variables 
Temperature, Precipitation, and Wind Speed. The 
results reveal that each pair of variables exhibits a 
bidirectional causal link supported by statistically 
significant p-values (all p < 0.05). Specifically: 

1. Y₂ → Y₄ and Y₄ → Y₂: Temperature Granger 
causes Precipitation, and vice versa. 

2. Y₂ → Y₆ and Y₆ → Y₂: Temperature Granger 
causes Wind Speed, and vice versa. 

3. Y₄ → Y₆ and Y₆ → Y₄: Precipitation Granger 
causes Wind Speed, and vice versa. 

These findings indicate that variations in one 
variable can predict shifts in the others, highlighting 
the dynamic interplay within the climate system. 
Such reciprocal influences underscore the 
importance of jointly examining these variables in 
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environmental modeling, as temperature, 
precipitation, or wind speed changes may 
propagate throughout the system in both directions. 

 
B. Model Assumption Test on VAR 

Various lag orders ranging from 1 to 20 were 
systematically evaluated to identify the optimal 
Vector Autoregressive (VAR) model configuration. 
The selection criterion was based on minimizing the 
Akaike Information Criterion (AIC), which balances 
model fit and complexity. Among the evaluated 
models, the VAR(17) specification yielded the 
lowest AIC value, indicating its superior 
performance in capturing the underlying data 
structure without overfitting. To further validate 
the adequacy of this model, diagnostic checks were 
conducted using the Portmanteau test to assess the 
presence of autocorrelation in the residuals. The 
VAR(17) model produced a non-significant p-value 
of 0.6626 (p > 0.05), thereby satisfying the white 
noise assumption. This result confirms that the 
residuals are independently and identically 
distributed with no remaining temporal 
dependencies, reinforcing the model’s reliability for 
inference and forecasting. As a result, no additional 
lag adjustments or corrective measures were 
necessary to address residual autocorrelation. 

In contrast, alternative lag specifications 
exhibited significantly lower p-values in the 
Portmanteau test, suggesting the presence of 
autocorrelation in their residuals and thereby 
violating the white noise assumption. Such 
deficiencies indicate potential model 
misspecification or underfitting, reducing their 
suitability for accurate forecasting. 

 
C. Best Model Selection, Best Model 

Evaluation and Forecasting  

Based on the VAR model selection process, 
VAR (17) was chosen for forecasting due to its 
sufficiently low AIC value and its fulfillment of the 
autocorrelation-free assumption, as demonstrated 
by the Portmanteau test (p-value = 0.6626). The 
absence of significant autocorrelation in the 
residuals makes VAR (17) well-suited for predicting 
Precipitation, Surface Temprature, and Wind speed. 

 
Table 3 Prediction Evaluation Metrics 

Variable 
Evaluation Metrics 

MAE MSE RMSE 

Precipitation 0.177 0.043 0.208 

Surface 
Temperature 

0.579 0.353 0.594 

Wind Speed 
at 10 Meters 

0.269 0.094 0.306 

Source : (Research Results, 2025) 

Table 3 presents the performance metrics 
MAE, MSE, and RMSE used to evaluate the proposed 
VAR(17) model across three climate variables: 
precipitation, surface temperature, and wind speed 
at 10 meters. The results indicate strong predictive 
accuracy, with all metrics remaining near zero. 
Specifically, precipitation exhibits the lowest 
prediction error (MAE = 0.177; RMSE = 0.208), 
followed by wind speed (MAE = 0.269; RMSE = 
0.306), and surface temperature (MAE = 0.579; 
RMSE = 0.594). These values demonstrate the 
model's effectiveness in capturing temporal 
dependencies across multiple environmental 
parameters. Following this evaluation, the VAR(17) 
model was applied to forecast future values using 
the remaining 20% of the dataset, corresponding to 
the period from January 1, 2024, through December 
31, 2025, spanning 912 days. The consistently low 
error rates across all variables affirm the model's 
robustness and reliability for long-term forecasting. 

The Bokaa Dam water level prediction study 
reported higher error margins. Even under optimal 
conditions, the best-performing dataset (Set-8) 
yielded an RMSE of 2.7% and MAE of 2.2%, with 
other sets showing significantly higher RMSE and 
MAE values. Moreover, some sets produced MAPE 
values exceeding 50% without climate indices[11]. 
In contrast, the VAR(17) model achieved lower 
absolute errors across all climate factors without 
relying on interpolated or smoothed data, 
reinforcing its superior generalizability and 
accuracy. 

 
1. Semi-Supervised Learning 

The results of evaluating the optimization of 
the number of clusters using K-means clustering 
show that two clusters are the optimal choice, 
achieving a silhouette score of 0.77. This value 
indicates optimal data separation, where each 
cluster exhibits high internal similarity while 
remaining distinctly apart from others. When the 
number of clusters increased to three, the silhouette 
score decreased to 0.73, indicating a decline in 
separation quality. The trend continued with four 
clusters, yielding a silhouette score of 0.68, and 
further declined to 0.65 at five clusters. Based on 
these observations, two clusters were selected as 
the most efficient and separable configuration. 

These findings are further supported by 
previous studies emphasizing the strong 
relationship between high Silhouette Scores and 
well-defined spherical cluster structures. In 
numerous studies, a high Silhouette Score is 
consistently associated with clearly defined 
spherical clusters. For instance, Abdullah et al.'s 
research demonstrated the utility of the K-Means 
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algorithm in identifying optimal cluster formations 
by achieving a Silhouette Score of 0.608, indicating 
well-separated clusters of student Instagram 
accounts [29]. Similarly, Aslantaş et al. reported that 
their feature set was empirically reduced based on 
performance measured by the Silhouette Score, 
with scores exceeding 0.5 interpreted as indicative 
of reasonable clustering effectiveness [30]. 
Moreover, empirical evidence supports the premise 
that spherical clusters yield higher Silhouette 
Scores due to their inherent geometric 
characteristics that facilitate a clearer partitioning 
of space. Kuili et al. elucidated this by explaining 
that the Silhouette Score quantifies clustering 
quality based on the concept of distinct separation 
between clusters, thereby allowing optimal 
performance in clustering algorithms [31]. 
Specifically, clustering methods such as K-Means 
are well-suited for datasets exhibiting spherical 
characteristics, which enhance the likelihood of 
achieving superior Silhouette Scores. This 
synergistic relationship between spherical cluster 
shapes and elevated Silhouette Scores has been 
reinforced through various clustering evaluations 
across different domains [32][33][34]. 

Furthermore, once the clusters were 
established, they were interpreted to categorize 
each day as potentially experiencing an upwelling 
event. This binary classification laid the 
groundwork for the subsequent machine learning 
phase, where a Support Vector Machine (SVM) 
algorithm was employed to distinguish between 
upwelling and non-upwelling days. Various SVM 
kernel functions were evaluated in this phase to 
determine the most effective classification 
performance. The results indicated that the Radial 
Basis Function (RBF) and Polynomial kernels 
outperformed the Linear kernel, as reflected by 
their comparatively higher F1 scores. 

The elevated F1 scores associated with the 
RBF and Polynomial kernels highlight their superior 
ability to balance precision and recall, two critical 
metrics in classification tasks where false positives 
and false negatives carry significant implications. 
This suggests that non-linear kernels are more 
adept at capturing the complex, non-linear 
relationships inherent in the clustered climatic data. 
Consequently, these kernels reduce the incidence of 
misclassification and enhance the model's 
capability to correctly identify actual upwelling 
events, thereby increasing the overall robustness 
and reliability of the predictive framework [12]. 

 
D. Upwelling prediction Dashboard 

The upwelling prediction dashboard shown 
in Figure 3 is designed to enhance the awareness 

and preparedness of floating net cage operators in 
Maninjau Lake regarding the risk of upwelling 
events. By selecting a desired time range, the 
dashboard highlights periods when upwelling may 
occur, enabling farmers to implement preventive 
measures and minimize potential losses. The 
upwelling prediction dashboard is accessible at 
https://maninjau-upwelling.streamlit.app/. 

The importance of developing an effective 
and user-friendly dashboard is reinforced by 
findings from previous studies, which underscore 
the necessity of thorough usability evaluations, 
particularly in emergency contexts [35]. 
Heitkemper et al. emphasize that usability testing is 
often overlooked during dashboard development, 
yet it is essential for optimizing both design and 
functionality [35]. In disaster forecasting, where 
timely responses are critical, dashboards must 
enable rapid comprehension of complex data 
through clear visualizations. Usability studies play a 
crucial role in identifying potential barriers that 
users may encounter, ensuring that dashboard 
design maximizes accessibility and minimizes 
confusion. 

Moreover, the responsive design of 
dashboards has emerged as a decisive factor 
influencing usability, especially as users 
increasingly rely on mobile devices to access 
information during emergencies [36]. Momenipour 
et al. found that several public health dashboards 
faced usability challenges on smaller screens, 
potentially hindering immediate data access in 
critical situations. Given the increasing prevalence 
of mobile internet usage, addressing responsive 
design issues through usability evaluations is vital 
to ensure that critical weather information is 
efficiently communicated across various platforms 
and devices. This approach ultimately enhances the 
dashboard’s functionality and its effectiveness in 
supporting emergency preparedness and response 
efforts. 

 

 
Source : (Research Results, 2025) 

Figure 3 Upwelling Prediction Dashboard 

https://maninjau-upwelling.streamlit.app/
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Figure 3 shows the dashboard developed 
using the Streamlit package integrated with Python. 
Streamlit is recognized as an efficient Python-based 
solution for rapid model deployment [12]. The 
deployment process generally involves creating 
multi-page applications and publishing them 
through the Streamlight cloud [37], [38] Trained 
models are stored in .pkl files and delivered via 
Streamlit applications hosted on GitHub, facilitating 
broader access [39], [40]. 

The dashboard presents temperature, 
precipitation, and wind speed predictions based on 
existing research regarding upwelling in lakes. 
Incorporating these scientific insights enables 
floating net cage farmers to make more informed 
decisions, contributing to more efficient fish 
farming management. In addition to serving the 
needs of Maninjau Lake, the classification model 
embedded within the dashboard is designed to be 
adaptable for other lakes. Users can input climate 
data they have collected, navigate to the prediction 
section, and manually enter the relevant 
parameters. By clicking the "Predict" button, the 
model will classify whether an upwelling event is 
likely to occur, thus extending the dashboard’s 
applicability beyond its initial deployment site. 

 
CONCLUSION 

 
This study addressed the critical issue of 

inadequate prediction capabilities for lake 
upwelling events at Lake Maninjau, West Sumatra, 
which pose substantial ecological and 
socioeconomic threats to local communities reliant 
on fisheries and tourism. Traditional forecasting 
methods, typically employing either temporal 
modeling or event classification independently, 
were insufficient to accurately predict these events 
due to the complexity of environmental 
interactions. A novel hybrid approach integrating 
Vector Autoregressive (VAR) models with Support 
Vector Machine (SVM) classifiers was developed 
and validated to overcome this limitation. 

The hybrid VAR(17)-SVM model 
demonstrated superior predictive performance, 
achieving notably low forecasting errors with 
predictive metrics approaching zero and excellent 
event-classification accuracy, indicated by an F1-
score of 0.970 using the SVM with a linear kernel. 
These findings clearly illustrate the hybrid model's 
ability to effectively capture temporal dependencies 
and event-specific characteristics driven by local 
environmental factors. 

Furthermore, the research successfully 
bridged scientific modeling and community 
application by developing an interactive, user-

friendly dashboard using Python and Streamlit. This 
dashboard empowers stakeholders to monitor and 
predict upwelling events in real-time, facilitating 
informed and proactive resource management 
decisions. In addition to serving the needs of Lake 
Maninjau, the classification model embedded within 
the dashboard is designed to be adaptable for other 
lakes. Users can input collected climate data, 
navigate to the prediction section, manually enter 
the relevant parameters, and activate the "Predict" 
function. The model will then classify whether an 
upwelling event is likely to occur, thus extending the 
dashboard’s applicability and supporting broader 
environmental management initiatives. 

Despite the significant improvements 
presented, there remain opportunities for future 
research. Subsequent studies could integrate 
additional environmental parameters, such as 
dissolved oxygen levels, pH, and nutrient 
concentrations, which are critical indicators of 
aquatic ecosystem health. Furthermore, exploring 
advanced hybrid methods, such as deep learning 
algorithms or ensemble learning strategies, may 
further enhance prediction accuracy. Finally, 
expanding the dashboard to include automated 
alert systems and mobile-based notifications could 
improve accessibility and effectiveness, ultimately 
promoting more resilient and sustainable 
community-driven lake management strategies. 

. 
REFERENCE 

 
[1]  A. S. Atmadipoera, A. A. Almatin, R. Zuraida, 

and Y. Permanawati, “Seasonal upwelling in 
the northern Arafura sea from multidatasets 
in 2017,” Pertanika J Sci Technol, vol. 28, no. 
4, 2020.   

[2]  A. Nkwasa et al., “Can Turbidity Data from 
Remote Sensing Explain Modelled Spatial 
and Temporal Sediment Loading Patterns? 
An Application in the Lake Tana Basin,” 
Environmental Modeling and Assessment, 
vol. 29, no. 5, 2024.   

[3]  Z. A. Haris, A. Irianto, Heldi, R. Dharma, and 
Yulnafatmawita, “Impact of Natural Disaster 
on Local Society Income in Maninjau Resort, 
Agam Regency, Indonesia,” Int J Adv Sci Eng 
Inf Technol, vol. 13, no. 5, 2023.   

[4]  A. Abrahams, R. W. Schlegel, and A. J. Smit, 
“Variation and Change of Upwelling 
Dynamics Detected in the World’s Eastern 
Boundary Upwelling Systems,” Front Mar Sci, 
vol. 8, 2021.   

[5]  A. Turarbek, M. Bektemesov, A. Ongarbayeva, 
A. Orazbayeva, A. Koishybekova, and Y. 
Adetbekov, “Deep Convolutional Neural 



 

 

VOL. 11. NO. 2 NOVEMBER 2025. 
 . 

DOI: 10.33480/jitk.v11i2.6665. 
 

  

589 

Network for Accurate Prediction of Seismic 
Events,” International Journal of Advanced 
Computer Science and Applications, vol. 14, 
no. 10, 2023.   

[6]  M. S. Kulkarni et al., “Enhancing grid 
resiliency in distributed energy systems 
through a comprehensive review and 
comparative analysis of islanding detection 
methods,” Sci Rep, vol. 14, no. 1, Dec. 2024.   

[7]  S. A. Valbuena et al., “3D Flow Structures 
During Upwelling Events in Lakes of 
Moderate Size,” Water Resour Res, vol. 58, no. 
3, 2022.   

[8]  V. Piccialli and M. Sciandrone, “Nonlinear 
optimization and support vector machines,” 
Ann Oper Res, vol. 314, no. 1, 2022.   

[9]  P. Wang, X. He, H. Feng, G. Zhang, and C. Rong, 
“A hybrid model for PM2.5 concentration 
forecasting based on neighbor structural 
information, a case in north China,” 
Sustainability (Switzerland), vol. 13, no. 2, 
2021.   

[10]  J. Kairo, “Machine Learning Algorithms for 
Predictive Maintenance in Manufacturing,” 
2024. [Online]. Available: 
www.carijournals.org   

[11]  Y. O. Ouma et al., “Dam Water Level 
Prediction Using Vector AutoRegression, 
Random Forest Regression and MLP-ANN 
Models Based on Land-Use and Climate 
Factors,” Sustainability (Switzerland), vol. 
14, no. 22, 2022.   

[12]  M. Z. Ulhaq, M. Farid, Z. I. Aziza, T. M. F. 
Nuzullah, F. Syakir, and N. R. Sasmita, 
“Forecasting Upwelling Phenomena in Lake 
Laut Tawar: A Semi-Supervised Learning 
Approach,” Infolitika Journal of Data Science, 
vol. 2, no. 2, pp. 53–61, Nov. 2024.   

[13]  S. Oruc, M. A. Hinis, and T. Tugrul, “Evaluating 
Performances of LSTM, SVM, GPR, and RF for 
Drought Prediction in Norway: A Wavelet 
Decomposition Approach on Regional 
Forecasting,” Water (Switzerland), vol. 16, 
no. 23, Dec. 2024.   

[14]  NASA, “NASA POWER | Prediction Of 
Worldwide Energy Resources,” 2024. 
[Online]. Available: 
https://power.larc.nasa.gov/. [Accessed: 1-
January-2025]. 

[15]  P. O. Awodutire, O. R. Ilori, C. Uwandu, and O. 
A. Akadiri, “Pilot study of new statistical 
models for prognostic factors in short term 
survival of oral cancer,” Afr Health Sci, vol. 22, 
no. 2, 2022.   

[16]  P. O. Awodutire, O. R. Ilori, C. Uwandu, and O. 
A. Akadiri, “Pilot study of new statistical 

models for prognostic factors in short term 
survival of oral cancer,” Afr Health Sci, vol. 22, 
no. 2, 2022.   

[17]  M. Musyoki, D. Alilah, and D. Angwenyi, 
“Updated Vector Autoregressive Model 
Incorporating new Information Using the 
Bayesian Approach,” 2024. [Online]. 
Available: 
http://sciencemundi.nethttp://sciencemun
di.net   

[18]  H. Chaudhary, U. Debnath, S. K. J. Pacif, N. U. 
Molla, G. Mustafa, and S. K. Maurya, 
“Observational Constraints on the 
Parameters of Horava-Lifshitz Gravity,” Feb. 
2024.   

[19]  A. H. Nasyuha, Zulham, and I. Rusydi, 
“Implementation of K-means algorithm in 
data analysis,” Telkomnika 
(Telecommunication Computing Electronics 
and Control), vol. 20, no. 2, 2022.   

[20]  J. Mai, “Data-Driven Market Segmentation: K-
means Clustering and STP Analysis in 
Mainland China’s Sportswear Industry,” 
International Journal of Global Economics 
and Management, vol. 4, no. 1, pp. 6–12, Aug. 
2024.   

[21]  H. He, Z. Zhao, W. Luo, and J. Zhang, 
“Community detection in aviation network 
based on K-means and complex network,” 
Computer Systems Science and Engineering, 
vol. 39, no. 2, 2021.   

[22]  G. Feng, M. Fan, and Y. Chen, “Analysis and 
Prediction of Students’ Academic 
Performance Based on Educational Data 
Mining,” IEEE Access, vol. 10, 2022.   

[23]  B. Chong “K-means clustering algorithm: a 
brief review,” Academic Journal of 
Computing & Information Science, vol. 4, no. 
5, 2021.   

[24]  C. Ioannou, V. Vassiliou, and by Ieee, 
“Intelligent Systems for the Internet of 
Things (ISIoT) 2019 workshop, entitled 
\"Classifying Security Attacks in IoT 
Networks Using Supervised Learning,” 2021.   

[25]  Suvashisa Dash and Answeta Jaiswal, 
“Machine learning based forecasting model 
for rainfall prediction,” World Journal of 
Advanced Research and Reviews, vol. 21, no. 
1, 2024.   

[26]  R. Yoshida, M. Takamori, H. Matsumoto, and 
K. Miura, “Tropical support vector machines: 
Evaluations and extension to function 
spaces,” Neural Networks, vol. 157, 2023.   

[27]  T. O. Hodson, “Root-mean-square error 
(RMSE) or mean absolute error (MAE): when 
to use them or not,” 2022.   

https://power.larc.nasa.gov/


 

VOL. 11. NO. 2 NOVEMBER 2025 
. 

DOI: 10.33480 /jitk.v11i2.6665 
 

 

 

590 

[28]  J. Kairo, “Machine Learning Algorithms for 
Predictive Maintenance in Manufacturing,” 
2024. [Online]. Available: 
www.carijournals.org   

[29]  A. Abdullah, A. Priadana, M. Muhajir, and S. 
Nur, “Data mining for determining the best 
cluster of student Instagram account as new 
student admission influencer,” Telematika, 
vol. 18, no. 2, p. 255, 2021. 

[30]  G. Aslantaş, M. Gençgül, M. Rumelli, M. 
Özsaraç, and G. Bakırlı, “Customer 
segmentation using k-means clustering 
algorithm and RFM model,” Deu Muhendislik 
Fakultesi Fen Ve Muhendislik, vol. 25, no. 74, 
pp. 491–503, 2023. 

[31]  S. Kuili, K. Dabbour, I. Hasan, A. Herscovich, B. 
Kantarcı, and M. Chenier, “Adversarial 
machine-learning-enabled anonymization of 
OpenWiFi data,” WWRT, p. 33–42, 2024. 

[32]  I. Daniel, L. Akinyemi, and O. Udekwu, 
“Identifying landslide hotspots using 
unsupervised clustering: a case study,” J. Fut. 
Artif. Intell. Tech., vol. 1, no. 3, pp. 249–268, 
2024. 

[33] K. Mondal and J. Klauda, “Physically 
interpretable performance metrics for 
clustering,”, 2024. 

[34]  L. Zahrotun, Y. Amanatullah, U. Linarti, and A. 
Jones, “Strategy for improving and 
empowering MSMEs through grouping using 
the AHC method,” Jurnal Sisfokom (Sistem 
Informasi dan Komputer), vol. 13, no. 1, pp. 
130–136, 2024. 

[35]  E. Heitkemper, S. Hulse, B. Bekemeier, M. 
Schultz, G. Whitman, and A. Turner, “The 
Solutions in Health Analytics for Rural Equity 
Across the Northwest (SHARE-NW) 
dashboard for health equity in rural public 
health: usability evaluation,” Jmir Human 
Factors, vol. 11, p. e51666, 2024. 

[36]  A. Momenipour, S. Rojas-Murillo, B. Murphy, 
P. Pennathur, and A. Pennathur, “Usability of 
state public health department websites for 
communication during a pandemic: a 
heuristic evaluation,” International Journal of 
Industrial Ergonomics, vol. 86, p. 103216, 
2021. 

[37]  A. Parker, A. Heflin, and L. C. Jones, “Analyzing 
University of Virginia Health publications 
using open data, Python, and Streamlit,” J 
Med Libr Assoc, vol. 109, no. 4, 2021.   

[38]  E. Schares, “Unsub Extender: A Python-based 
web application for visualizing Unsub data,” 
Quantitative Science Studies, vol. 3, no. 3, 
2022.   

[39]  J. M. Nápoles-Duarte, A. Biswas, M. I. Parker, 
J. P. Palomares-Baez, M. A. Chávez-Rojo, and 
L. M. Rodríguez-Valdez, “Stmol: A component 
for building interactive molecular 
visualizations within streamlit web-
applications,” Front Mol Biosci, vol. 9, 2022.   

[40]  S. Samanta, M. Pal, R. Mahapatra, K. Das, and 
R. S. Bhadoria, “A study on semi-directed 
graphs for social media networks,” 
International Journal of Computational 
Intelligence Systems, vol. 14, no. 1, 2021. 


