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Abstract—Polycystic Ovarian Syndrome (PCOS) is one of the most frequently occurring endocrine disorders in 
women of reproductive age, distinguished by disruptions in hormonal regulation that can impact menstrual 
cycles, fertility, and physical appearance. Despite its high prevalence, PCOS is often diagnosed late and 
inaccurately, leading to inappropriate treatment and long-term health issues for patients. Machine learning 
can serve as an effective solution to enhance the accuracy of PCOS diagnosis. However, one of the primary 
challenges encountered is the class imbalance in the dataset, where the number of positive case data (PCOS) is 
often significantly lower than the negative case data. This imbalance can result in a biased model that is less 
effective in predicting the actual condition of patients. In this study, the Synthetic Minority Over-sampling 
Technique for Nominal and Continuous (SMOTENC) method is recommended to address the issue of 
imbalanced data, thereby improving the performance and accuracy of the machine learning model employed. 
The evaluation matrix test results clearly demonstrate that the accuracy of each machine learning model 
improved after applying the SMOTENC method. Specifically, the accuracy of the K-Nearest Neighbors (KNN) 
algorithm increased from 81.6% to 89.8%, the Support Vector Machine (SVM) algorithm from 90.6% to 92.5%, 
the Naive Bayes algorithm from 70% to 82.3%, and the C4.5 algorithm from 99.6% to 99.7%. This research 
provides a substantial contribution to advancing the development of diagnostic methods thatare both more 
precise and efficient. 

 
Keywords: imbalanced data, machine learning algorithm, PCOS, SMOTENC 

 
Intisari— Sindrom Ovarium Polikistik (PCOS) merupakan salah satu gangguan endokrin yang paling sering 
terjadi pada wanita usia reproduktif, yang ditandai dengan gangguan pada regulasi hormon yang dapat 
memengaruhi siklus menstruasi, kesuburan, dan penampilan fisik. Meskipun prevalensinya tinggi, PCOS sering 
kali terlambat didiagnosis dan tidak akurat, sehingga menyebabkan pengobatan yang tidak tepat dan 
masalah kesehatan jangka panjang bagi pasien. Pembelajaran mesin dapat menjadi solusi yang efektif untuk 
meningkatkan akurasi diagnosis PCOS. Namun, salah satu tantangan utama yang dihadapi adalah 
ketidakseimbangan kelas dalam dataset, di mana jumlah data kasus positif (PCOS) sering kali jauh lebih 
rendah daripada data kasus negatif. Ketidakseimbangan ini dapat menghasilkan model yang bias dan kurang 
efektif dalam memprediksi kondisi pasien yang sebenarnya. Dalam penelitian ini, metode Synthetic Minority 
Over-sampling Technique for Nominal and Continuous (SMOTENC) direkomendasikan untuk mengatasi 
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masalah ketidakseimbangan data, sehingga dapat meningkatkan kinerja dan akurasi model pembelajaran 
mesin yang digunakan. Hasil uji matriks evaluasi dengan jelas menunjukkan bahwa akurasi setiap model 
machine learning meningkat setelah menerapkan metode SMOTENC. Secara khusus, akurasi algoritma K-
Nearest Neighbors (KNN) meningkat dari 81,6% menjadi 89,8%, algoritma Support Vector Machine (SVM) 
dari 90,6% menjadi 92,5%, algoritma Naive Bayes dari 70% menjadi 82,3%, dan algoritma C4.5 dari 99,6% 
menjadi 99,7%. 
 
Kata Kunci: data tidak seimbang, algoritma pembelajaran mesin, PCOS, SMOTENC. 
 

INTRODUCTION 
 

The rapid advancement of technology has 
significantly enhanced individuals' access to a broad 
spectrum of health-related information [1]. Despite 
this accessibility, many people including men, 
women, the elderly, and children continue to lead 
unhealthy lifestyles on a daily basis. For instance, 
the consumption of fast food, smoking, exposure to 
air pollution, and the use of food additives can 
adversely impact physical health and hormonal 
balance. Additionally, irregular lifestyles 
characterized by insufficient sleep, lack of exercise, 
and prolonged indoor work can lead to reduced 
mobility and may eventually trigger various health 
problems. 

An unhealthy and irregular lifestyle can 
lead to various health problems, one of which is 
hormonal imbalance-exemplified by Polycystic 
Ovarian Syndrome (PCOS), a condition that 
frequently affects women. PCOS is represents a 
prevalent endocrine pathology affecting women 
during their reproductive years[2], marked by 
disturbances in hormonal homeostasis that can 
impact the menstrual cycle, fertility, and physical 
appearance. According to various medical journals, 
PCOS is often associated with insulin resistance[3], 
hyperandrogenism (elevated levels of male 
hormones)[4], and chronic anovulation[5]. Despite 
its high prevalence, the diagnosis of PCOS is often 
delayed and inaccurate[6], leading to inappropriate 
treatment and long-term health complications for 
patients. 

Within this framework, leveraging machine 
learning techniques presents an effective approach 
to enhance the diagnostic accuracy for Polycystic 
Ovarian Syndrome (PCOS). Machine learning 
algorithms have demonstrated the capability to 
manage large and complex datasets [7, 8, 9, 10,11], 
producing predictive models that surpass 
traditional methods in accuracy. However, a 
significant challenge encountered is the class 
imbalance within the dataset [12,13,14,15], where 
the number of positive case data (PCOS) is often 
considerably smaller than the negative case data. 
This imbalance can result in biased models that are 

less effective in accurately predicting the patient's 
actual condition. 
In the context of utilizing machine learning for PCOS 
diagnosis, various previous studies have 
demonstrated the potential and success of this 
approach.  

Table 1. The Comparison with Previous Studies 
Reference Algorithm Accuracy 

[16] 
LR, SVM, RF, Gradient 

Boost, MLP 
85.00% 

[17] 
VM, XGBoost with 
LASSO + SVM‑RFE 

87.50% 

[18] 
(RF, XGB, LR, KNN) + 
ADASYN + BORUTA 

92.00% 

[19] Linear SVM 91.60% 
[20] MLP,SVM,RBF 93.00% 
[21] BorutaShap, RF 86.00% 
[22] CatBoost 90.10% 
[23] RF 93.25% 
[24] Multi-Stacking ML 98.00% 

[25] 
SMOTE + LR, RF, DT, 

SVM and KNN 
97.11% 

 
In a comprehensive study, Dutta P. (2021) 

examined the use of machine learning techniques 
for PCOS diagnosis and highlighted that imbalanced 
data can significantly compromise the accuracy of 
predictive outcomes. They employed the SMOTE 
method and indicated that data optimization can 
enhance the quality of the resulting model, although 
the technique is limited to handling numerical 
features[25]. 

In response to the challenges outlined above, 
this study advocates the application of SMOTENC 
features as a means of addressing class imbalance. 
SMOTENC is an oversampling technique that not 
only increases the number of samples from minority 
classes but also preserves the distribution of 
continuous and categorical features in the 
dataset[26]. By employing SMOTENC, imbalanced 
data can be processed to achieve greater balance, 
Consequently, this leads to improved effectiveness 
and accuracy in the implementation of the machine 
learning algorithms. 

This research is expected to optimize 
machine learning through the application of 
SMOTENC in the diagnosis of PCOS. Thus, this 
substantially advances the development of 
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diagnostic methodologies that are both more 
precise and efficient. 

 
MATERIALS AND METHODS 

 
To facilitate each stage in the application of 

machine learning algorithms for PCOS diagnosis, a 
research methodology is required to guide the 
process. An illustration of the research 
methodology employed in this study is presented in 
Figure 1 below.  

 

 
Source : (Research Result, 2025) 

Figure 1. Research Methodology Flowchart 
 

Dataset 
In this study, a PCOS diagnosis dataset 

consisting of 1,000 records was utilized. This 
dataset includes several numerical and categorical 
features related to PCOS. Among these entries, 199 
are diagnosed with PCOS, while 801 are diagnosed 
without PCOS. 
Preprocessing 

This stage is crucial in machine learning, as 
the provided dataset is often not properly 
structured and may contain missing, incomplete, or 
noisy data. During this phase, data cleaning will be 
performed to remove noise. After cleaning, feature 
selection will be conducted to identify features that 
significantly impact the classification process for 
predictive purposes, while removing those that do 
not. The selected features for classification include 
Age, Body Mass Index (BMI), menstrual cycle 
irregularities, serum testosterone concentration 
(ng/dL), and antral follicle quantification. 

Subsequently, the cleaned dataset with the 
selected influential features will be divided into 
training and test data. In the present study, the 
dataset is partitioned in a 70:30 ratio, allocating 
70% of the data for model training and the 
remaining 30% for validation purposes. 

SMOTENC 
To mitigate the class imbalance in the PCOS 

diagnosis dataset, the SMOTENC technique was 
applied to synthetically oversample instances from 
the minority class. Initially, the dataset contained 
1,000 entries; however, after applying SMOTENC, it 
expanded to 1,602 entries, comprising 801 data 
points for individuals with PCOS and 801 data 
points for individuals without PCOS. 
 
Table 2. Comparison of Oversampling method[25], 

[27], [28], [29] 

Aspect SMOTE-NC SMOTE SMOTEN 

Ability to 
Handle 
Categorical 
Features 

Specifically 
designed for 
datasets with 

mixed 
features 

(numerical 
and 

categorical) 

Not designed 
for 

categorical 
features 

designed 
for 

categorical 
features 

Performance 
on Mixed 
Datasets 

Effective Less effective  
Less 

effective 

Category 
Distribution 
Preservation 

Maintaining 
the original 

category 
distribution 

Not 
Maintaining 
the original 

category 
distribution 

Maintaining  
category 

distribution 
but can 
amplify 

noise if the 
original data 

has 
incorrect 

labels 
Risk of 
Overfitting 

Lower Higher Medium 

Source : (Research Result, 2025) 
 
Modeling 
Naive bayes(NB) 
Naive Bayes is a probabilistic machine learning 
algorithm commonly employed for classification, 
which operates based on the principles of Bayes' 
theorem[30]. The equations used in the Naive Bayes 
algorithm are as follows. 

 

𝑃(𝐶𝑖|𝑋) =  
∏ 𝑃(𝐴𝑗 = 𝑥𝑗|𝐶𝑖).𝑃(𝐶𝑖)𝑘

𝑗=1

𝑃(𝑋)
     (1) 

 
In the application of the Naive Bayes algorithm, 
there is always a possibility that the probability of a 
category is zero. To address this issue, the Laplace 
smoothing technique is applied. 

 
K-Nearest Neighbour (KNN) 

K-Nearest Neighbor (KNN) is a non-
parametric machine learning algorithm widely used 
for classification, which operates by identifying the 
closest training examples in the feature space [31]. 



 

VOL. 11. NO. 1 AUGUST 2025 
. 

DOI: 10.33480 /jitk.v11i1.6676 
 

 

 

58 

The equation for calculating the nearest distance in 
the KNN algorithm is based on the Euclidean 
distance formula, as shown below[32]. 

 

𝑑𝑖 = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1               (2) 

 
Support Vector Machine (SVM) 

The Support Vector Machine (SVM) 
algorithm is a supervised learning technique widely 
employed for classification tasks, wherein it 
determines the optimal hyperplane to effectively 
distinguish between different data classes.[33]. The 
linear SVM algorithm equation used in this study is 
as follows. 

 

𝑓(𝑥) =  ∑ 𝑎𝑖𝑦𝑖𝑥𝑖
𝑇 . 𝑥 + 𝛽0

𝑁
𝑖=0            (3) 

 
For problems that cannot be linearly separated, the 
above equation can be modified using the SVM 
kernel, as shown below. 

 

𝑓(𝑥) =  ∑ 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖 . 𝑥), 𝑥 + 𝛽0 𝑁
𝑖=0    (4) 

 
Decision Tree (C4.5) 

C4.5 is a decision tree-based machine 
learning algorithm designed to generate 
classification models by recursively partitioning 
data based on attribute values[34]. The stages in the 
C4.5 algorithm focus on determining the entropy 
value using the following equation. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =

 − ∑ 𝑝(𝑆, 𝑗)𝑥 log 𝑝(𝑆, 𝑗) 𝐶
𝑗=1           (5) 

Subsequently, the gain value is calculated from the 
previously obtained entropy value. 

 

𝐺𝑎𝑖𝑛(𝑆, 𝑇) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −

 ∑
|𝑇𝑆,𝑣|

|𝑇𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑣)𝑉𝑎𝑙𝑢𝑒𝑠(𝑇𝑗)          (6) 

 
 

RESULTS AND DISCUSSION 
 

This section presents the results and 
discussion, encompassing an evaluation of each 
algorithm's performance through the analysis of 
confusion matrix, both prior to and following the 
application of SMOTENC. The confusion matrices 
corresponding to the KNN algorithm testing are 
depicted in Figures 2 and 3. 

 
Source : (Research Result, 2025) 

Figure 2. Confusion Matrix Algoritma KNN 
 

 
Source : (Research Result, 2025) 

Figure 3. Confusion Matrix Algoritma KNN + 
SMOTENC 

 
As shown in Figure 2, the results obtained 

from testing the KNN algorithm prior to the 
application of SMOTENC reveal the model’s 
performance under imbalanced data conditions, it 
can be concluded that out of the total 300 data 
points tested, 20 were correctly classified as PCOS 
cases, and 225 were correctly classified as non-
PCOS cases. However, 22 data points were 
incorrectly classified as PCOS cases, and 33 were 
incorrectly classified as non-PCOS cases. In Figure 3, 
the results of testing the KNN algorithm after 
applying SMOTENC show that out of 481 data points 
tested, 232 were correctly classified as PCOS cases, 
and 200 were correctly classified as non-PCOS 
cases. Meanwhile, 43 data points were incorrectly 
classified as PCOS cases, and 6 were incorrectly 
classified as non-PCOS cases. Table 3 provides a 
detailed presentation of the evaluation metrices 
obtained for the KNN algorithm. 
 

Table 3. Evaluation Matrices of KNN Algorithm 
Algorithm PCOS Precision Recall F1-score 

KNN 
Yes 0.48 0.38 0.42 
No 0.87 0.91 0.89 

KNN + 
SMOTENC 

Yes 0.84 0.97 0.90 

No 0.97 0.82 0.89 

Source : (Research Result, 2025) 
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In Table 3 above, signs of overfitting can be 
observed in the Precision, Recall, and F1-Score 
values of the KNN algorithm without the use of 
SMOTENC, with scores of 0.48, 0.38, and 0.42 
respectively. However, after applying the SMOTENC 
technique to the KNN algorithm, the Precision, 
Recall, and F1-Score values became more 
consistent, reaching 0.84, 0.97, and 0.90, 
respectively. The confusion matrices for the SVM 
algorithm tests are presented in Figures 4 and 5. 
 

 
Source : (Research Result, 2025) 

Figure 4. Confusion Matrix Algoritma SVM 
 

 
Source : (Research Result, 2025) 

Figure 5. Confusion Matrix Algoritma SVM + 
SMOTENC 

According to the test results obtained from 
the SVM algorithm before the implementation of the 
SMOTENC technique, as shown in Figure 4, out of a 
total of 300 data samples, 38 were correctly 
classified as PCOS cases, and 234 were correctly 
classified as non-PCOS cases. Meanwhile, 13 data 
samples were misclassified as non-PCOS cases 
(false negatives), and 15 were misclassified as PCOS 
cases (false positives). In contrast, Figure 5 shows 
the results of the SVM algorithm after the 
application of SMOTENC. Out of a total of 481 data 
samples, 229 were correctly classified as PCOS 
cases, and 216 were correctly classified as non-
PCOS. However, 27 samples were incorrectly 
classified as non-PCOS cases, and 9 were incorrectly 
classified as PCOS cases. The evaluation matrices for 
the SVM algorithm are summarized in Table 4. 

Table 4. Evaluation Matrices of SVM Algorithm 
Algorithm PCOS Precision Recall F1-score 

SVM 
Yes 0.75 0.72 0.73 
No 0.94 0.95 0.94 

SVM + 
SMOTENC 

Yes 0.89 0.96 0.93 

No 0.96 0.89 0.92 

Source : (Research Result, 2025) 
 
In Table 4 above, the Precision, Recall, and 

F1-Score values obtained from the SVM algorithm 
test without using SMOTENC are 0.75, 0.72, and 
0.73, respectively. After applying the SMOTENC 
technique to the SVM algorithm, these values 
improved to 0.89, 0.96, and 0.93, respectively. The 
confusion matrices for the Naive Bayes (NB) 
algorithm tests are presented in Figures 6 and 7. 

 

 
Source : (Research Result, 2025) 

Figure 6. Confusion Matrix Algoritma NB 

 

 
Source : (Research Result, 2025) 

Figure 7. Confusion Matrix Algoritma NB + 
SMOTENC 

 
Based on the results of the Naive Bayes 

(NB) algorithm test prior to the application of 
SMOTENC, as shown in Figure 6, out of a total of 300 
data samples, 53 were correctly classified as PCOS 
cases, and 157 were correctly classified as non-
PCOS cases. Meanwhile, 90 samples were 
misclassified as non-PCOS (false negatives), and no 
data were misclassified as PCOS (false positives). In 
Figure 7, which shows the NB algorithm results 
after applying SMOTENC, out of 481 data samples, 
238 were correctly classified as PCOS-positive, and 
158 were correctly classified as non-PCOS. In 
contrast, 85 samples were misclassified as non-



 

VOL. 11. NO. 1 AUGUST 2025 
. 

DOI: 10.33480 /jitk.v11i1.6676 
 

 

 

60 

PCOS, and no samples were misclassified as PCOS. 
The evaluation matrices for the NB algorithm are 
summarized in Table 5. 

 
Table 5. Evaluation Matrices of NB Algorithm 
NB PCOS Precision Recall F1-score 

No 
SMOTE-NC 

Yes 0.37 1.0 0.54 
No 1.0 0.64 0.78 

Accuracy 70% 

SMOTE-NC 
Yes 0.74 1.0 0.85 

No 1.0 0.65 0.79 
Accuracy 82.3% 

Source : (Research Result, 2025) 
 

In Table 5 above, the precision, recall, and F1-
Score values for the Naive Bayes (NB) algorithm test 
without SMOTENC are 0.37, 1.0, and 0.54, 
respectively. After applying the SMOTENC 
technique to the NB algorithm, these values 
improved to 0.74, 1.0, and 0.85. Figures 8 and 9 
display the confusion matrices derived from the 
evaluation of the C4.5 algorithm. 

 
Source : (Research Result, 2025) 

Figure 8. Confusion Matrix Algoritma C4.5 

 

 
Source : (Research Result, 2025) 

Figure 9. Confusion Matrix Algoritma C4.5 + 
SMOTENC 

 
As shown in Figure 8, based on the results 

of the C4.5 algorithm test prior to the application of 
SMOTENC, out of a total of 300 tested data samples, 
52 samples were correctly classified as PCOS-
positive, while 247 samples were correctly 
classified as non-PCOS. There were no samples 

misclassified as non-PCOS (false negatives), but 
there was one sample misclassified as PCOS (false 
positive). Next, in Figure 9, which presents the 
results of the C4.5 algorithm test after the 
application of SMOTENC, out of a total of 481 tested 
data samples, 237 samples were correctly classified 
as PCOS-positive, and 243 samples were correctly 
classified as non-PCOS. Similar to the previous 
result, no samples were misclassified as non-PCOS, 
but there was one sample misclassified as PCOS. . 
The evaluation matrices for the C4.5 algorithm are 
summarized in Table 6. 

 
Table 6. Evaluation Matrices of C4.5 Algorithm 
C4.5 PCOS Precision Recall F1-score 

No 
SMOTE-NC 

Yes 1.0 0.98 0.99 
No 1.0 1.0 1.0 

SMOTE-NC 
Yes 1.0 0.99 0.99 

No 1.0 1.0 1.0 

Source : (Research Result, 2025) 
 
In Table 6, the precision, recall, and F1-Score 

values for the C4.5 algorithm test without SMOTENC 
were 1.0, 0.98, and 0.99, respectively. After applying 
the SMOTENC technique to the C4.5 algorithm, 
there was a slight improvement in these values to 
1.0, 0.99, and 0.99. A comparison of the accuracy 
values for each algorithm is shown in Table 7. 

 
Table 7. Comparison of Algorithm Accuracies 

Algorithm NO SMOTENC SMOTENC 
KNN 81.6% 89.8% 
SVM 90.6% 92.5% 
NB 70% 82.3% 
C4.5 99.6% 99.7% 

Source : (Research Result, 2025) 
 
Based on Table 7, the accuracy of each machine 
learning algorithms improved in performance after 
using SMOTENC to address the issue of imbalanced 
data. 
 

 
Source : (Research Result, 2025) 

Figure 10. Performance Comparison of Machine 
Learning Algorithms Before and After Applying 

SMOTENC 
Figure 10 presents the classification 

accuracy achieved by four machine learning 
algorithms—K-Nearest Neighbor (KNN), Support 
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Vector Machine (SVM), Naive Bayes (NB), and 
C4.5—assessed both before and after the 
application of SMOTENC. The principal aim of 
employing SMOTENC was to address class 
imbalance through oversampling of the minority 
class, thereby facilitating improved model training 
and predictive capability. 
 

CONCLUSION 
 

Imbalanced datasets can significantly 
compromise the efficacy of machine learning 
algorithms, frequently leading to predictive bias 
that disproportionately favors the majority class. 
The implementation of the SMOTENC technique as 
a method for addressing class imbalance has 
demonstrated notable effectiveness. This is 
evidenced by the improvement in the classification 
performance of several machine learning models 
following the application of SMOTENC. The 
experimental results reveal a consistent 
improvement in classification accuracy across all 
evaluated algorithms. The KNN algorithm showed a 
notable increase in accuracy, from 81.6% without 
SMOTENC to 89.8% after its application. Similarly, 
the SVM algorithm exhibited an improvement from 
90.6% to 92.5%, indicating that the algorithm was 
able to leverage the more balanced dataset for 
better generalization. 

The greatest enhancement was evident in 
the Naive Bayes algorithm, which exhibited an 
increase in accuracy from 70.0% to 82.3%. This 
significant gain suggests that Naive Bayes is highly 
sensitive to class imbalance and benefits 
considerably from oversampling techniques such as 
SMOTENC. In contrast, the C4.5 algorithm 
maintained high performance in both conditions, 
with a slight increase from 99.6% to 99.7%, 
indicating its robustness even under imbalanced 
data conditions. 
Overall, these findings underscore the effectiveness 
of SMOTENC in improving classification outcomes, 
particularly for algorithms that are more vulnerable 
to skewed class distributions. The observed 
improvements underscore the importance of 
mitigating data imbalance as a fundamental 
strategy for optimizing the performance of machine 
learning models in the diagnosis of PCOS. 
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