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Abstract— Lung area segmentation is a critical preprocessing step in computer-aided diagnosis systems for 
respiratory diseases such as lung cancer and pneumonia. Accurate segmentation enhances the detection and 
monitoring of pathological conditions but manual delineation is time-consuming and subject to variability. 
This research aims to identify the most effective convolutional neural network (CNN) architecture for 
automated lung segmentation by comparing three models: U-Net, DeepLab, and a proposed hybrid model 
combining U-Net with ResUNet_Light. The models were trained and evaluated using a publicly available 
chest CT dataset under identical experimental settings, including preprocessing steps, training parameters, 
and standard evaluation metrics: Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Precision, 
and Recall. Results show that the proposed U-Net + ResUNet_Light model achieves the best performance 
across all metrics (DSC: 0.6767, IoU: 0.5652, Precision: 0.8480, Recall: 0.7920), outperforming both U-Net and 
DeepLab. These improvements are attributed to the integration of residual blocks, which enhance feature 
propagation and gradient flow, enabling better generalization and segmentation accuracy, especially along 
complex lung boundaries. In contrast, while DeepLab performs well in capturing contextual information, its 
higher complexity may hinder real-time applicability. U-Net, though efficient, showed limitations in 
accurately segmenting irregular regions. The findings demonstrate the potential of the proposed model for 
clinical deployment, where both accuracy and efficiency are critical. This study contributes to the 
development of more robust deep learning-based segmentation methods and highlights the importance of 
architectural enhancements in CNN design for medical image analysis. 

 
Keywords: DeepLab, lung area segmentation, lung segmentation, ResUNet_Light, U-Net 
 
Intisari—Segmentasi area paru-paru merupakan langkah praproses penting dalam sistem diagnosis 
berbantuan komputer untuk penyakit pernapasan seperti kanker paru-paru dan pneumonia. Segmentasi 
yang akurat meningkatkan deteksi dan pemantauan kondisi patologis, tetapi penggambaran manual 
memakan waktu dan rentan terhadap variabilitas. Penelitian ini bertujuan untuk mengidentifikasi 
arsitektur jaringan saraf tiruan konvolusional (CNN) yang paling efektif untuk segmentasi paru-paru 
otomatis dengan membandingkan tiga model: U-Net, DeepLab, dan model hibrida yang diusulkan yang 
menggabungkan U-Net dengan ResUNet_Light. Model-model tersebut dilatih dan dievaluasi menggunakan 
dataset CT dada yang tersedia untuk umum dengan pengaturan eksperimen yang identik, termasuk langkah-
langkah praproses, parameter pelatihan, dan metrik evaluasi standar: Koefisien Kesamaan Dice (DSC), 
Intersection over Union (IoU), Presisi, dan Recall. Hasil menunjukkan bahwa model U-Net + ResUNet_Light 
yang diusulkan mencapai kinerja terbaik di semua metrik (DSC: 0,6767, IoU: 0,5652, Presisi: 0,8480, Recall: 
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0,7920), mengungguli U-Net dan DeepLab. Peningkatan ini dikaitkan dengan integrasi blok residual, yang 
meningkatkan propagasi fitur dan aliran gradien, memungkinkan generalisasi dan akurasi segmentasi yang 
lebih baik, terutama di sepanjang batas paru-paru yang kompleks. Sebaliknya, sementara DeepLab 
berkinerja baik dalam menangkap informasi kontekstual, kompleksitasnya yang lebih tinggi dapat 
menghambat penerapan waktu nyata. U-Net, meskipun efisien, menunjukkan keterbatasan dalam 
segmentasi daerah yang tidak teratur secara akurat. Temuan ini menunjukkan potensi model yang 
diusulkan untuk penerapan klinis, di mana akurasi dan efisiensi sangat penting. Studi ini berkontribusi pada 
pengembangan metode segmentasi berbasis pembelajaran mendalam yang lebih kuat dan menyoroti 
pentingnya peningkatan arsitektur dalam desain CNN untuk analisis citra medis. 
 
Kata Kunci: DeepLab, segmentasi area paru-paru, segmentasi paru-paru, ResUNet_Light, U-Net. 
 

INTRODUCTION 
 

Lung diseases are among the leading causes 
of morbidity and mortality worldwide [1], [2]. 
Early diagnosis and monitoring of lung conditions 
heavily rely on chest imaging interpretation, 
particularly thoracic radiography (chest X-ray) and 
computed tomography (CT) [3], [4]. In clinical 
practice, lung area segmentation is a critical step 
for isolating important parts of the image and 
focusing analysis on relevant areas. However, 
manual segmentation is highly dependent on the 
radiologist’s expertise and is vulnerable to inter-
observer variability [5], [6]. Several convolutional 
neural network (CNN) architectures have been 
developed for image segmentation tasks, especially 
in the biomedical domain [7], [8].  

The U-Net architecture is among the most 
widely adopted due to its symmetric encoder-
decoder structure and skip connections, which 
facilitate precise localization and efficient training 
even with limited data [9], [10]. However, U-Net 
often struggles to capture broader contextual 
information, which may limit its effectiveness in 
complex anatomical regions [11], [12], [13]. To 
address this limitation, the DeepLab architecture 
introduced atrous (dilated) convolutions and 
Atrous Spatial Pyramid Pooling (ASPP), which 
allow the model to capture multi-scale context and 
enhance boundary delineation [14], [15].  

Despite its superior segmentation accuracy 
in various scenarios, DeepLab requires intensive 
computation and may not be ideal for real-time 
environments or settings with limited resources 
[16], [17], [18]. Meanwhile, architectures like 
ResUNet and its variant, ResUNet_Light, 
incorporate residual connections to ease the 
training of deeper networks and mitigate vanishing 
gradient problems. These models offer a good 
balance between performance and efficiency, 
although their performance may be suboptimal in 
capturing fine-grained structures unless paired 
with appropriate multi-scale feature extraction 
mechanisms [19], [20]. Therefore, selecting or 

designing an optimal architecture often involves 
balancing accuracy, computational cost, and 
generalizability across various modalities and 
imaging conditions. 

In previous research conducted by Adnan 
Saood and Iyad Hatem [21], the study investigated 
the use of two deep learning methods, SegNet and 
U-Net, for segmenting COVID-19 infected lung 
tissue on CT scan images. The strength of this 
paper lies in the clear comparative approach 
between the two models, with results showing that 
SegNet excelled in binary segmentation (accuracy 
0.95), while U-Net performed better in multi-class 
segmentation (accuracy 0.91). The study also made 
a practical contribution by providing an automatic 
solution for COVID-19 diagnosis and severity 
assessment, which was highly relevant during the 
pandemic.  

However, its weakness lies in the relatively 
small dataset (100 images) and class imbalance, 
especially for class C3 (pleural effusion), which 
caused suboptimal model performance in 
segmenting that class. Additionally, the paper did 
not elaborate in detail on how data augmentation 
or other techniques were used to address class 
continuity issues. Meanwhile, another study by 
(Turk & Kılıçaslan, 2025)[22] investigated the use 
of three deep learning models, namely U-Net, V-
Net, and Seg-Net, enhanced for lung image 
segmentation to detect tuberculosis (TB) in chest 
X-ray images.  

The main advantage of this study was the 
enhancement of U-Net and V-Net architectures 
with attention mechanisms and non-local blocks, 
which resulted in more accurate segmentation 
performance, with Dice coefficients reaching 
96.43% and 96.42%, respectively. Moreover, the 
study used advanced preprocessing techniques like 
adaptive filtering and histogram equalization to 
improve image quality, along with rigorous 
validation via five-fold cross-validation. However, 
the limitation of this study was the limited dataset 
size (a combination of Shenzhen and Montgomery 
datasets) and class imbalance, particularly for the 
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rarer TB cases. Although Seg-Net performed worse 
than U-Net and V-Net, it remained competitive in 
classification tasks. The article also did not discuss 
in detail the implementation challenges in clinical 
environments or the high computational resource 
requirements for these models. Overall, the study 
made a significant contribution to the automation 
of TB diagnosis but required further testing on 
more diverse datasets to ensure better 
generalization. 

Based on the reviewed literature, with rapid 
advancements in deep learning, Convolutional 
Neural Network (CNN) architectures, particularly 
encoder-decoder architectures, have become the 
dominant approach in medical image segmentation 
tasks [14], [23]. One of the most widely used 
architectures is U-Net, specifically designed for 
biomedical image segmentation, which has shown 
excellent results in various studies. However, basic 
U-Net has limitations in capturing broader spatial 
contexts and fine structural details, especially in 
complex structures like the lungs, which have 
variable shapes between individuals and are 
affected by artifacts or diseases [24], [25]. 

As a solution to U-Net's limitations, 
architectures such as DeepLab have been 
introduced. DeepLab uses techniques like Atrous 
Convolution and Spatial Pyramid Pooling to better 
capture multi-scale information and global context. 
This architecture is theoretically superior in 
understanding more complex spatial structures, 
but it comes at the cost of higher computational 
requirements [26]. 

In an effort to combine the strengths of 
several approaches, this study also proposes a new 
hybrid method, U-Net + ResUNet_Light. This 
architecture combines the efficient segmentation 
capability of U-Net with the residual connection 
strength of ResUNet_Light, aiming to improve 
gradient flow and deepen the network without 
significantly increasing complexity [10], [27]. 

Although each architecture has its own 
strengths, few studies have comprehensively 
compared the performance of basic U-Net, 
DeepLab, and hybrid approaches like U-Net + 
ResUNet_Light, especially in the context of lung 
area segmentation in chest images [28]. Therefore, 
this study is conducted to evaluate and compare 
the performance of these three architectures using 
relevant segmentation metrics, such as Dice 
Coefficient and Intersection over Union (IoU), to 
determine which approach is optimal for this task 
[29]. By making this comparison, it is hoped that 
this study will contribute to the development of 
more accurate and efficient image-based diagnostic 
support systems. 

MATERIALS AND METHODS 
 

This section outlines the materials and 
experimental procedures used in this study. It 
begins with a description of the dataset used to 
evaluate the segmentation model performance. 
Next, we introduce the deep learning architectures 
being compared—basic U-Net, DeepLab, and the 
proposed hybrid model, U-Net + ResUNet_Light—
highlighting their structural differences and 
theoretical strengths. Finally, we detail the 
experimental design, including data preprocessing, 
training settings, evaluation metrics, and 
performance comparison, to ensure a fair and 
reproducible comparison across all models. 
 
Research Dataset 

Lung area segmentation requires high-
quality annotated datasets to ensure accurate 
model training and validation. In this study, we use 
a publicly available chest imaging dataset that is 
widely used for segmentation tasks. A sample from 
the dataset used in this study is shown in Figure 1.. 
 

   
(a) Images 

   
(b) Masks 

Source : 
(https://www.kaggle.com/datasets/beosup/lung-
segment 2025) 

Figure 1. Research Dataset 
 
Figure 1 shows a sample from the lung 

cancer image segmentation dataset used in this 
study. The dataset consists of a large number of 
chest X-ray (CXR) or CT images along with 
corresponding lung masks, which are annotated by 
medical experts to ensure ground truth accuracy..  

 
Proposed Model Architecture 

To comprehensively evaluate the 
effectiveness of various CNN architectures for lung 
segmentation, three different models are 
implemented: basic U-Net, DeepLab, and the 
proposed hybrid model combining U-Net with 
ResUNet_Light.  

 

https://www.kaggle.com/datasets/beosup/lung-segment
https://www.kaggle.com/datasets/beosup/lung-segment
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Source: (Saood and Hatem 2021[21]) 

Figure 2. U-Net Architecture 
 
Figure 2 illustrates the U-Net architecture. 

The basic U-Net uses the classic encoder-decoder 
design with skip connections, which directly 
transfer feature maps from the encoder to the 
decoder, enabling precise localization. This model 
is lightweight and easy to train, making it a popular 
choice for biomedical image segmentation. 
However, it often lacks the ability to capture global 
context, especially in cases where lung boundaries 
are ambiguous or disrupted by pathology. 

The DeepLab model, particularly 
DeepLabv3+, introduces advanced modules such as 
atrous convolutions and Atrous Spatial Pyramid 
Pooling (ASPP) to capture contextual features at 
various scales. This allows the model to better 
handle irregular shapes and boundaries. However, 
the trade-off is a significant increase in 
computational complexity and memory usage, 
making it less ideal for real-time applications or 
environments with limited resources. 

The proposed model, U-Net + 
ResUNet_Light, integrates the residual learning 
capabilities of ResUNet_Light into the U-Net 
architecture. Residual blocks facilitate gradient 
flow in deeper networks, allowing for better 
feature extraction without significantly increasing 
computational load. 

 

 
Source: (Research Result, 2025) 

Figure 3. The proposed architecture 

 
Figure 3 illustrates the integration aimed at 

maintaining U-Net's localization strength while 
enhancing depth and representational power 
through residual connections. This hybrid 
approach seeks a balance between segmentation 
accuracy and model efficiency. The proposed U-Net 
+ ResUNet_Light architecture combines U-Net's 
efficient localization with ResUNet_Light's robust 
feature extraction by incorporating residual blocks 
at each encoder and decoder level.  

The model follows a symmetric encoder-
decoder structure with skip connections to 
preserve spatial information. Standard 
convolutional layers are replaced by residual 
blocks, allowing direct gradient flow across layers, 
addressing vanishing gradient issues in deeper 
networks. Max pooling is used for downsampling, 
while transposed convolutions are applied for 
upsampling in the decoder path. This integration 
aims for high segmentation accuracy with 
improved convergence and generalization, 
particularly in challenging chest imaging scenarios 
where lung boundaries may be irregular or 
unclear. 
 
Research Design 

To ensure an objective and reproducible 
comparison between models, a controlled 
experimental design was applied. Each model was 
trained using the same training and validation 
datasets, with identical preprocessing, 
augmentation techniques, and training 
configurations (e.g., batch size, optimizer, and 
learning rate). Models were trained for a fixed 
number of epochs or until convergence, and the 
best-performing checkpoint was selected based on 
validation loss. 
 

 
Source: (Research Result, 2025) 

Figure 4. Research Design 
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Figure 4 illustrates the research design, 

which outlines the complete process of lung cancer 
image segmentation using deep learning methods. 
The performance of each model is evaluated using 
standard metrics, including Dice Similarity 
Coefficient (DSC), Intersection over Union (IoU), 
Precision, Recall, and inference time per image to 
assess both accuracy and efficiency. Statistical tests 
are also conducted to determine the significance of 
performance differences among the models. 

The process begins with data input, using 
a CT scan dataset in PNG format, including the 
corresponding binary masks that label the cancer 
areas. The data undergoes preprocessing steps 
such as resizing the images for uniformity and 
converting the masks to binary format (1 for 
cancer regions and 0 for background). The dataset 
is then split into three parts: 80% for training, 10% 
for validation, and 10% for testing. Visualizations 
are created to confirm the accuracy of the data. 

In the model training phase, the 
preprocessed dataset is used to train three models: 
U-Net, DeepLab, and the proposed hybrid method 
(U-Net + ResUNet_Light). All models are based on 
an encoder-decoder architecture, utilizing feature 
extraction and segmentation reconstruction. Skip 
connections are incorporated to preserve spatial 
details, and training parameters, such as the 
number of epochs, learning rate, and loss function, 
are adjusted and compared to identify the best-
performing model. 

The testing model conducted in this study 
is a comparative experimental test that aims to 
evaluate and compare the performance of three 
CNN architectures—U-Net, DeepLab, and U-Net + 
ResUNet_Light—in the task of segmenting lung 
areas in chest CT images. Testing was conducted 
using test data amounting to 10% of the total 
dataset, which was not previously used in the 
training process. Each model was tested based on 
evaluation metrics including Dice Similarity 
Coefficient (DSC),  

Intersection over Union (IoU), Precision, 
Recall, Accuracy, and Loss to assess segmentation 
accuracy and efficiency. The test results show that 
the proposed model U-Net + ResUNet_Light 
provides the best performance, proving that the 
integration of residual connections in U-Net is able 
to improve segmentation accuracy and 
generalization compared to conventional 
architectures. 

Finally, the results are analyzed using the 
aforementioned evaluation metrics to compare the 
predicted segmentation masks with the ground 
truth. Performance comparison is conducted 

between the proposed method and the baseline 
models. 
 

RESULTS AND DISCUSSION 
 
This section presents the results obtained 

from the implementation and evaluation of three 
CNN-based models—U-Net, DeepLab, and the 
proposed hybrid model, U-Net + ResUNet_Light—
for lung area segmentation in chest imaging. Each 
model was trained and validated on a consistent 
dataset with identical preprocessing and training 
configurations. Their performance was evaluated 
using standard segmentation metrics, including the 
Dice Similarity Coefficient (DSC), Intersection over 
Union (IoU), and Precision/Recall, and further 
compared to assess the relative strengths and 
limitations of each approach. 
 
Model Training and Validation 

All models were trained using the same 
training dataset, obtained after preprocessing and 
splitting the original lung image dataset into 80% 
training, 10% validation, and 10% testing. 

 

 
(a) Image 

 
(b) Mask 

Source: (Research Result, 2025) 
Figure 5. Preprocessing and Data Augmentation 

 
Figure 5, before model training, all images 

were first processed by resizing them to a uniform 
resolution, normalizing pixel intensity values, and 
applying data augmentation techniques such as 
rotation, flipping, and contrast adjustment to 
improve model generalization. The dataset was 
split into training, validation, and testing sets using 
a stratified approach to ensure a balanced 
representation of cases across subsets. The 
training process was monitored using validation 
loss and accuracy across epochs. Figures 6 and 7 
display the accuracy and loss results during the 
training of each tested model. 
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(a) Unet 

 
(b) DeepLab 

 
(c) Proposed Method (ResUnet Light) 

Source: (Research Result, 2025) 
Figure 6. Comparison of Accuracy for Each Model 

 
For U-Net (Figure 6a), the training accuracy 

increases steadily and reaches a high value of 
approximately 0.994 by the end of the 25th epoch. 
However, the validation accuracy lags behind the 
training accuracy, gradually increasing with a less 
pronounced growth rate. This indicates that while 
the model is learning well from the training data, it 
may be starting to overfit as the gap between the 
train and validation accuracy widens. The 
overfitting is especially evident in the later epochs, 
which may limit the model’s ability to generalize to 
unseen data. 

In the case of DeepLab (Figure 6b), the 
training accuracy also increases over time, but with 
noticeable fluctuations in the middle epochs. The 
accuracy plateaus toward the end, suggesting that 
the model has reached its learning capacity, and 
additional training may not lead to significant 
improvements. The validation accuracy for 
DeepLab shows more variability, with peaks and 
dips, indicating that the model is more sensitive to 

changes in the validation set. These oscillations 
suggest that DeepLab, with its more complex 
architecture, may be prone to overfitting or 
instability when applied to the validation data, 
although it still achieves high performance. 

The Proposed Method (ResUNet Light) 
(Figure 6c) demonstrates a more stable and 
consistent performance across epochs. The 
training accuracy increases steadily and reaches 
approximately 0.995 by the 25th epoch, similar to 
the other models. However, what sets this model 
apart is the smoother progression of validation 
accuracy, which remains relatively close to the 
training accuracy. This indicates that the ResUNet 
Light method is better at generalizing to unseen 
data, with fewer signs of overfitting. The validation 
curve’s stability suggests that this model strikes a 
better balance between learning from the data and 
generalizing effectively, making it potentially more 
robust for deployment in real-world applications.. 

 

 
(a) Unet 

 
(b) DeepLab 

 
(c)  Proposed Method (ResUnet 

Light) 

Source: (Research Result, 2025) 
Figure 7. Comparison of Loss for Each Model 

 
For U-Net (Figure 7a), the training loss 

decreases rapidly in the early epochs, quickly 
stabilizing at a low value around 0.02 by the 25th 
epoch, indicating that the model effectively learns 
from the training data. However, the validation 
loss, although also decreasing, remains 
consistently higher than the training loss, reaching 
a stable value around 0.04. This discrepancy 
suggests that the model might be overfitting, as it 
fits the training data well but struggles to 

generalize to the unseen validation set. The higher 
validation loss reinforces the earlier observation 
that U-Net may not perform as well when applied 
to real-world, unseen data. 

In the case of DeepLab (Figure 7b), the 
training loss decreases sharply in the first few 
epochs, approaching a low value near 0.02, and 
then stabilizes with slight fluctuations between 
epochs. However, the validation loss behaves 
erratically, experiencing large peaks and dips 
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throughout the training process before eventually 
stabilizing at around 0.02. These fluctuations 
suggest that the model is highly sensitive to the 
validation data and may have difficulty 
generalizing effectively. The erratic behavior of the 
validation loss indicates that DeepLab, with its 
more complex architecture, is prone to overfitting 
and instability, limiting its practical application in 
real-world settings. 

The Proposed Method (ResUNet Light) 
(Figure 7c) shows a similar trend, with the training 
loss decreasing quickly in the initial epochs and 
stabilizing at a low value of around 0.02 by the 
25th epoch. The validation loss also decreases 
rapidly in the early stages but, unlike DeepLab, 
experiences fewer fluctuations. It stabilizes around 
0.01 by the end of training, indicating a more 
consistent and stable performance. The smooth 
decrease in validation loss suggests that ResUNet 
Light is better at generalizing to unseen data, with 
fewer signs of overfitting or instability. This 
stability in both training and validation loss 
indicates that ResUNet Light strikes the best 
balance between fitting the training data and 
maintaining robust generalization. 

 
Table 1. Model Validation Comparison 

Model Accuracy Loss 
U-Net 0,9938 0,0163 
DeepLab 0,9862 0,0353 
U-Net + ResUNet_Light 
(Proposed) 0,9959 0,0100 

Source: (Research Result, 2025) 
 
Table 1 provides a comparative analysis of 

the validation performance for three models: U-
Net, DeepLab, and the proposed U-Net + 

ResUNet_Light. The comparison is based on two 
key metrics: Accuracy and Loss. 

The U-Net model achieved an accuracy of 
99.38%, indicating strong performance on the 
validation set. However, its validation loss of 
0.0163 is relatively higher compared to the other 
models, suggesting that while the model performs 
well, it still has some room for improvement in 
terms of minimizing errors and generalizing to 
unseen data. 

DeepLab, on the other hand, achieved a 
lower accuracy of 98.62% and the highest 
validation loss of 0.0353 among the three models. 
This higher loss value, along with the lower 
accuracy, aligns with the earlier observations of 
fluctuating validation loss, suggesting that DeepLab 
faces more challenges in terms of stability and 
generalization. 

The Proposed Model (U-Net + 
ResUNet_Light) outperforms both U-Net and 
DeepLab, achieving the highest accuracy of 99.59% 
and the lowest validation loss of 0.0100. This 
demonstrates its superior ability to not only 
achieve high accuracy but also minimize errors 
during validation, indicating that it is more 
effective at generalizing to new data without 
overfitting. 

In summary, the proposed U-Net + 
ResUNet_Light model delivers the best overall 
performance, achieving both the highest accuracy 
and the lowest loss, making it the most robust and 
reliable model for lung segmentation tasks. While 
U-Net provides strong results, it is outperformed 
by the proposed model, and DeepLab shows more 
variability in performance, making it less reliable 
in comparison. 
 

 
(a) Unet 

 
(b) DeepLab 

 
(c) Proposed Method (ResUnet Light) 

Source: (Research Result, 2025) 
Figure 8. Confusion Matrix Comparison for Each Model 

 
The confusion matrix analysis for the three 

models—U-Net, DeepLab, and the proposed U-Net 
+ ResUNet_Light—reveals insights into the 
performance of each model in terms of correctly 
classifying background and tumor pixels. 

For U-Net (Figure 8a), the model correctly 
identifies a large number of background pixels 
(32,614,654) and tumor pixels (386,463). 
However, there are noticeable errors, with 136,628 
background pixels misclassified as tumors and 
89,007 tumor pixels misclassified as background. 
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These errors indicate that while U-Net performs 
well, there is room for improvement in 
distinguishing between background and tumor 
pixels, particularly in reducing false positives and 
false negatives. 

DeepLab (Figure 8b) shows similar 
performance but with some improvements in the 
classification of background pixels, correctly 
identifying 32,683,901 background pixels. 
However, it still misclassifies 67,381 background 
pixels as tumors and 117,393 tumor pixels as 
background. This results in a significant number of 
false negatives, where tumors are misclassified as 
background, showing that DeepLab still faces 
challenges in tumor detection, despite performing 
better than U-Net in some areas. 

The Proposed Method (ResUNet Light) 
(Figure 8c) outperforms both U-Net and DeepLab, 
correctly identifying 32,683,512 background pixels 
and 376,676 tumor pixels. The number of false 
positives (67,770) and false negatives (98,694) is 
lower compared to the other two models, 
indicating that ResUNet Light has better precision 
and recall. This model is more effective at detecting 
tumors and classifying background pixels, making 
it the most reliable approach among the three for 
lung segmentation tasks. 

In conclusion, while all models show strong 
performance, the Proposed Method (ResUNet 
Light) demonstrates the best overall accuracy, with 
the highest true tumor detection and lowest false 
negatives and false positives. This suggests that it 
provides the most robust and reliable 
segmentation, particularly for distinguishing 
between background and tumor areas. 

 

Segmentation Performance 
The visual comparison of segmentation 

results further validates the quantitative findings. 
The U-Net model occasionally fails to accurately 
segment peripheral lung regions, particularly in 
cases with irregular morphologies. This indicates 
that while U-Net performs well in many instances, 
it struggles with complex structures and shapes, 
leading to imperfect segmentations in more 
challenging areas. 

In contrast, DeepLab generates smoother 
segmentation contours, offering more refined 
boundaries. However, its broader receptive field 
sometimes results in over-segmentation, where the 
model includes regions beyond the actual lung 
tissue, causing errors in the segmented areas. This 
suggests that while DeepLab benefits from its 
ability to capture broader contexts, it is less precise 
in its delineation of lung boundaries. 

The Proposed Method (U-Net + 
ResUNet_Light) achieves the most accurate 
segmentation, especially around complex 
boundaries. This model demonstrates superior 
performance in handling irregular lung structures, 
effectively generalizing across different lung 
shapes and morphologies. The results indicate that 
the proposed method is highly capable of managing 
the complexity of lung segmentation, achieving 
precise delineation of both peripheral and central 
lung areas. 

Quantitative evaluation was performed on 
the test dataset using three metrics, and the visual 
samples from the proposed model (ResUNet Light) 
showcase its superior segmentation accuracy, 
reinforcing its reliability for lung tissue delineation. 

 
(a) Unet 

 
(b) DeepLab 
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(c) Proposed Method (ResUnet Light) 

Source: (Research Result, 2025) 
Figure 9. Example of Test Results for All Models 

 
The visual comparison of segmentation 

results across the three models—U-Net, DeepLab, 
and the proposed U-Net + ResUNet_Light—
demonstrates the varying degrees of accuracy and 
reliability in lung segmentation tasks. The U-Net 
model performs (Figure 9a) decently in simpler 
cases, but it struggles with more complex lung 
structures, particularly the peripheral regions. For 
example, in Image 20, the predicted segmentation 
is incomplete, especially near the lung boundary, 
with a Dice Similarity Coefficient (DSC) of 0.4672, 
indicating significant misalignment with the 
ground truth. In other cases, such as Image 353, 
while U-Net achieves a DSC of 0.7136, there are 
still noticeable under-segmentation issues. These 
results suggest that while U-Net is capable, it needs 
further refinement, particularly in handling 
challenging cases with irregular lung structures. 

DeepLab  (Figure 9b) performs better than 
U-Net, with smoother segmentation contours. For 
instance, in Image 185, DeepLab's prediction is 
much closer to the ground truth, with a DSC of 
0.6957. However, it still encounters problems with 
under-segmentation in peripheral lung regions, as 
seen in Image 136, where the DSC drops to 0.6342. 
Additionally, in more complex images like Image 
418, where DeepLab produces some over-
segmentation, the DSC reaches 0.7104. This 
indicates that while DeepLab offers smoother 
boundaries, it sometimes struggles with both over-
segmentation and missing smaller details, 
particularly in more intricate regions of the lung. 

The Proposed Method (U-Net + 
ResUNet_Light) (Figure 9c) stands out as the best-
performing model, consistently achieving high 
accuracy in all cases. For example, in Image 185, it 
achieves an impressive DSC of 0.9443, with nearly 
perfect segmentation of the lung area. In more 

complex cases like Image 418, the model performs 
exceptionally well with a DSC of 0.9404, 
showcasing its ability to generalize effectively 
across different lung structures. The model also 
handles peripheral lung areas with remarkable 
precision, as seen in Image 473, where it reaches a 
DSC of 0.9729, further validating its robustness and 
reliability. 

In conclusion, while U-Net performs 
reasonably well on simpler cases, it struggles with 
under-segmentation in more complex regions. 
DeepLab provides smoother contours but 
encounters issues with over-segmentation and 
missed details. The Proposed Model (ResUNet 
Light) excels in all aspects, offering the most 
precise and reliable segmentation across various 
lung cases. Its superior performance in both 
peripheral and central lung regions, as 
demonstrated by its consistently high DSC scores, 
makes it the most effective model for lung 
segmentation tasks. 

 
Table 2. Model Evaluation Comparison 

Model DSC  IoU  Precision  Recall  
U-Net 0,6507 0,5246 0,739 0,813 
DeepLab 0,6544 0,5457 0,842 0,753 
U-Net + 
ResUNet_Light 
(Proposed) 

0,6767 0,5652 0,848 0,792 

Source: (Research Result, 2025) 
 
Table 2 presents a comprehensive 

evaluation of three models—U-Net, DeepLab, and 
the Proposed Model (U-Net + ResUNet_Light)—
using key segmentation metrics: Dice Similarity 
Coefficient (DSC), Intersection over Union (IoU), 
Precision, and Recall. In terms of Dice Similarity 
Coefficient (DSC), the Proposed Model (U-Net + 
ResUNet_Light) outperforms both U-Net and 



 

VOL. 11. NO. 1 AUGUST 2025 
. 

DOI: 10.33480 /jitk.v11i1.6735 
 

 

 

96 

DeepLab, achieving the highest score of 0.6767. 
This indicates that the proposed model provides 
the best overlap between predicted and ground 
truth lung regions, highlighting its superior 
segmentation accuracy. Both DeepLab and U-Net 
show similar performance, with DSC scores of 
0.6544 and 0.6507, respectively. While these 
scores are respectable, they fall short compared to 
the performance of the proposed model. 

Looking at the Intersection over Union 
(IoU), which measures the ratio of the intersection 
to the union of the predicted and true regions, the 
Proposed Model again leads with a score of 0.5652, 
closely followed by DeepLab at 0.5457. U-Net 
scores the lowest in this metric with 0.5246. This 
further reinforces the advantage of the proposed 
method in accurately delineating the lung regions 
with minimal overlap errors. 

When considering Precision, which 
measures the accuracy of the predicted positive 
regions, the Proposed Model excels with a 
precision score of 0.848. This indicates that it has 
the highest ability to correctly classify lung regions 
without many false positives. DeepLab follows 
closely with a precision of 0.842, while U-Net lags 
behind at 0.739. This suggests that while U-Net has 
strong recall, its precision suffers compared to the 
other two models. 

In terms of Recall, which measures how well 
the model captures all the true positive regions, U-
Net achieves the highest recall of 0.813, 
demonstrating that it is the best at identifying all 
relevant lung areas. However, it comes at the cost 
of lower precision. The Proposed Model ranks 
second with a recall score of 0.792, indicating that 
it captures almost as many true lung regions as U-
Net, but with fewer false positives. DeepLab has the 
lowest recall score of 0.753, suggesting that it 
misses some true lung areas, which is consistent 
with its lower performance in this metric. 

 
Discussion 

the Proposed Model (U-Net + 
ResUNet_Light) outperforms both U-Net and 
DeepLab across all key evaluation metrics. It 
strikes an optimal balance between precision and 
recall, making it the most reliable and accurate 
model for lung segmentation tasks. While U-Net 
excels in recall, it lacks the precision required for 
high-quality segmentation. DeepLab, although 
strong in precision, struggles with recall, making 
the Proposed Model the most effective and robust 
solution for accurate lung segmentation. 

The computational details for this study 
include the following hardware: NVIDIA RTX 3060 
GPU (12GB VRAM), Intel Core i7-11700F CPU, and 

32GB DDR4 RAM. These details are included to 
support replication and evaluate the computational 
efficiency of each model. 

 
CONCLUSION 

 
Based on the experimental evaluation 

results, this study shows that the proposed U-Net + 
ResUNet_Light model provides the best 
performance in lung area segmentation in chest CT 
images compared to U-Net and DeepLab. The 
proposed model recorded the highest scores in all 
evaluation metrics, namely DSC of 0.6767, IoU of 
0.5652, Precision of 0.848, and Recall of 0.792, 
outperforming both U-Net and DeepLab. This 
achievement reflects the successful integration of 
residual blocks in improving segmentation 
accuracy and improving information flow in the U-
Net architecture. Thus, the research objective of 
designing and testing a more effective architecture 
has been achieved, and the proposed model is 
proven to be technically superior and has the 
potential to be applied in clinical diagnosis support 
systems that require reliable and high-precision 
medical image segmentation. Future research 
could explore integrating attention mechanisms or 
transformer-based modules to further enhance 
segmentation performance, as well as testing the 
model on diverse and multi-center datasets to 
evaluate its generalizability in real-world clinical 
environments. 
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