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Abstract— Accurate classification of natural disasters is crucial for timely response and effective mitigation.
However, conventional approaches often suffer from inefficiency and limited reliability, highlighting the need
for automated deep learning solutions. This study proposes an optimized Convolutional Neural Network (CNN)
based on the lightweight ShuffleNet architecture, enhanced through GridSearchCV for systematic
hyperparameter tuning. Using a geospatial dataset of 3,667 images representing earthquake, flood, and wind-
related disasters in Indonesia, the optimized ShuffleNet model achieved a peak accuracy of 99.97%,
outperforming baseline CNNs such as MobileNet, GoogleNet, ResNet, DenseNet, and standard ShuffleNet. While
these results demonstrate the potential of combining lightweight architectures with automated optimization,
the exceptionally high performance also indicates possible risks of overfitting and dataset bias due to limited
variability. Therefore, future research should validate this approach using larger, multi-source datasets to
ensure robustness and real-world applicability.

Keywords: Convolutional Neural Network (CNN), Geospatial Disaster Classification, GridSearchCV,
Hyperparameter Optimization, ShuffleNet.

Intisari— Klasifikasi bencana alam yang akurat sangat penting untuk respons dan mitigasi yang efektif.
Pendekatan konvensional seringkali bermasalah dalam hal efisiensi dan keandalan, sehingga
menggarisbawahi perlunya solusi pembelajaran mendalam otomatis. Studi ini memperkenalkan Jaringan
Saraf Tiruan Konvolusional (CNN) yang dioptimalkan berdasarkan arsitektur ShuffleNet yang ringan, yang
disempurnakan menggunakan GridSearchCV untuk penyetelan hiperparameter sistematis. Dengan
menggunakan dataset geospasial gempa bumi, banjir, dan bencana terkait angin di Indonesia, model yang
dioptimalkan ini mengungguli CNN dasar dalam hal akurasi dan efisiensi. Namun, kinerja yang sangat tinggi
ini menunjukkan potensi risiko overfitting dan bias dataset akibat variabilitas yang terbatas. Temuan ini
menyoroti potensi dan kehati-hatian yang diperlukan saat menggabungkan CNN ringan dengan optimasi
otomatis untuk pemetaan bencana geospasial. Oleh karena itu, penelitian di masa mendatang sebaiknya
memvalidasi pendekatan ini menggunakan dataset yang lebih besar dan lebih heterogen untuk memastikan
ketahanan dan penerapan di dunia nyata.

Kata Kunci: Jaringan Saraf Konvolusi (CNN), Klasifikasi Bencana Geospasial, GridSearchCV, Optimasi
Hiperparameter, ShuffleNet.

INTRODUCTION Pacific Ring of Fire, Indonesia frequently

experiences earthquakes, tsunamis, and floods that

Natural disasters significantly affect human endanger communities and critical infrastructure

life across social, economic, and environmental [6][7][8][9]. Given these conditions, efficient
dimensions [1][2][3][4][5]- Located along the mitigation strategies and accurate predictive
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systems are crucial to reduce disaster impacts
[10][11][12][13][14]. With rapid advances in
artificial intelligence (AI), deep learning has
emerged as a powerful tool for disaster risk analysis
and management [15] [16][17][18][16]. Its ability
to process complex datasets and detect subtle
spatial patterns enables more precise disaster
classification and prediction [19][20][21][22][23].
One of the most effective architectures in this
domain is the Convolutional Neural Network (CNN)
[24][25][26], which has been widely used to classify
geospatial imagery for assessing flood severity,
earthquake damage, and other hazards [27][28].

Recent research has examined various CNN
architectures for disaster mapping. For example,
[29] compared Inception v3 and DenseNet in flood
image classification, achieving accuracies of 83%
and 81%, respectively, while [30] evaluated SegNet,
U-Net, ResNet, and ShuffleNet, reporting
ShuffleNet’s stable performance at 92.73%. These
studies demonstrate CNNs’ potential but also reveal
room for improvement in optimization and
generalization. However, most prior optimization
efforts remain limited in scope. Many rely on
manual parameter tuning or pre-trained transfer
learning models without systematic
hyperparameter exploration, resulting in high
accuracy on specific datasets but poor
generalization across diverse geospatial contexts.
Moreover, existing optimization strategies seldom
consider the unique spatial and spectral variations
in disaster imagery, such as differing resolutions
and mixed terrain characteristics. These
shortcomings highlight the need for an adaptive,
data-driven optimization strategy to improve
robustness and scalability in geospatial disaster
classification. This study addresses that gap by
integrating GridSearchCV-based hyperparameter
optimization into the lightweight ShuffleNet
architecture for classifying geospatial disasters in
Indonesia. The optimized model is hypothesized to
outperform baseline CNNs in both accuracy and
computational efficiency. Through systematic
comparison with other CNN architectures, this
research aims to demonstrate the effectiveness of
combining lightweight models with automated
tuning to enhance geospatial disaster mapping and
support data-driven mitigation strategies.

MATERIALS AND METHODS

This study employs a Convolutional Neural
Network (CNN) based on the ShuffleNet
architecture to classify types of natural disasters. To
enhance model performance, GridSearchCV was
applied for hyperparameter tuning. The
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optimization process focused on several key
hyperparameters, namely:
Learning rate (tested values: 0.1, 0.01, 0.001)
Batch size (32, 64, 128)
Optimizer type (SGD, Adam, RMSProp)
Dropoutrate (0.2, 0.3, 0.5)
Number of convolutional filters in selected
layers (64, 128, 256)

6. Number of epochs (10, 15, 20)

The selected hyperparameter ranges were
determined based on both literature and empirical
considerations. Learning rate values (0.1, 0.01,
0.001) were adopted from prior CNN optimization
studies [31][32][33], which indicate that smaller
rates (e.g, 0.001) promote stable convergence,
while higher rates (e.g., 0.1) allow exploration of
broader parameter space during initial training.
Dropout rates of 0.2-0.5 are commonly
recommended to balance regularization and model
capacity in lightweight architectures such as
ShuffleNet [24][31]. Batch sizes (32, 64, 128) were
selected following standard heuristics in deep
learning, reflecting trade-offs between
computational efficiency and gradient stability.
Optimizers (SGD, Adam, RMSProp) and filter sizes
were also chosen based on their frequent use in
similar classification tasks, ensuring comparability
with prior works while allowing GridSearchCV to
identify the optimal configuration for this dataset.
The overall methodology consists of five stages, as
shown in the research framework diagram (Figure
1) in the following diagram:
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Figure 1. Research Diagram
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All experiments were conducted on a

Lenovo ThinkPad X270 running Microsoft Windows
10 Pro (64-bit), equipped with an Intel Core i5-
7200U CPU @ 2.50 GHz, 8 GB RAM, and Intel HD
Graphics 620 GPU. The model implementation was
performed in Python 3.10 using Jupyter Notebook
with TensorFlow 2.12 and Keras APIL. The total
training time for each model varied depending on
the architecture: approximately 5 hours 32 minutes
for the ShuffleNet baseline and 4 hours 45 minutes
for the optimized ShuffleNet model using
GridSearchCV. These details are provided to ensure
the reproducibility and transparency of the
research process.
1. Problem Identification

This study identifies problems in the
classification of natural disasters using ShuffleNet,
with a focus on model optimization through
GridSearchCV to improve the accuracy of disaster
mapping.
2. Research Objectives

This study aims to optimize the ShuffleNet
model in the classification of natural disasters in
Indonesia, using GridSearchCV to improve the
accuracy of mapping and disaster prediction based
on geospatial data.
3. Collection of Literature Review

Collecting journals and proceedings related
to the classification of natural disasters, as well as
the methods to be used, namely ShuffleNet with
GridSearchCV optimization.
4. Research Data Collection

The data used in this study were obtained
from the Kaggle platform, which contains a
collection of geospatial natural disaster data in the
form of datasets and contains image urls of evidence
of natural disaster damage and extracted to take
images totaling 3,667 images classified into three
categories: earthquakes (earthquake) as many as
1000 images, floods (flood) as many as 1696
images, and wind (wind) as many as 971 images.
These images were collected with various lighting
conditions and different angles to increase data
diversity. The following are examples of images
used for each type of Natural Disaster from
https.//www.kaggle.com/datasets/zaharahap24/n

atural-disasters-in-indonesia

(a)Flood (b) Earthquake

Source: (Research Results, 2025)

Figure 2. Examples of natural disaster images used
in this study: (a) Flood, (b) Earthquake, (c¢) Wind

Damage.

() Wind
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Each image represents a different disaster category
used in this study. The flood image (a) shows severe
water accumulation on roads. The earthquake
image (b) depicts structural damage and rubble.
The wind image (c) highlights fallen trees and poor
visibility due to strong winds. These visual
examples were selected from the Kaggle dataset to
represent each class in the classification process.
5. Data Pre-Processing

Performing data cleaning and preparation so
that it can be used in the model. This process can
include image extraction from the dataset, image
augmentation, and division of training data,
validation and testing data.
6. Basic CNN Implementation

A basic CNN model is developed as a
benchmark to evaluate the performance of the
proposed method. various basic CNN architectures
are also tested are MobileNet, GoogleNet, RestNet,
DenseNet, ShuffleNet. These architectures are used
to compare performance in natural disaster image
classification. The main architecture used is
ShuffleNet. Here 1is the baseline ShuffleNet
architecture.
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Figure 3. ShuffleNet Baseline Architecture

The baseline ShuffleNet architecture consists of an
input layer followed by convolution, batch
normalization, and max pooling. It includes three
stages of inverted residual blocks with increasing
channel dimensions for efficient feature extraction
and ends with a pointwise convolution, batch
normalization, and a fully connected layer for
classification. Unlike the proposed model (Figure 4),
this baseline version does not include dropout or
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adaptive average pooling layers, which were later
introduced to enhance generalization and reduce
overfitting.
7. Initial Performance Analysis

The analysis was conducted to see how much
the performance of the model formed from each
baseline architecture is against the research data
and will later become a benchmark for the
development of the ShuffleNet Proposed model
(ShuffleNet Optimization). Performance analysis
includes accuracy, precision, F1-Score, Support,
confusion matrix.

8. Proposed Method

The ShuffleNet architecture is implemented
with several modifications, such as the addition of
dropout layers, and refinement of several layers to
improve model performance. Pre-trained weights
are used to speed up training and improve model
accuracy. The optimization process is carried out
using GridSearchCV to find the best combination of
hyperparameters, which aims to improve the
accuracy of natural disaster classification on
geospatial datasets. The following are the
differences in the optimization architecture of the
ShuffleNet Proposed used with the ShuffleNet
Baseline architecture.

ShuffleNet Proposed

Conv / s2 Conv / s2
3x3x324 224 x224x3

BatchNorm
24

ReLU
112x112x 24

Stage2: InvertedResidual
24,58
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v
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232
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1x1x464x1024
BatchNorm
1024

e

Stage4: InvertedResidual
7x7x232

Conv5
7x7x1024
BatchNorm
7x7x1024

ReLU
7x7x1024

Fully Connected (fc)
1x5

(a) (b)
Source: (Research Results, 2025)
Figure 4. Comparison of ShuffleNet Baseline (a)
with ShuffleNet Proposed (b)
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The baseline architecture (a) represents the
original pretrained ShuffleNetV2, where only the
final fully connected layer was modified to classify
three disaster categories: flood, earthquake, and
wind. Both models use input images of 224 x 224 x
3. The proposed model (b), referred to as
CustomShuffleNet, introduces several architectural
refinements to improve feature generalization and
mitigate overfitting. Specifically, dropout layers
(rates 0.3-0.5) were incorporated after key
convolutional blocks to reduce co-adaptation
among neurons and enhance robustness against
noise.

An Adaptive Average Pooling layer was
employed before the fully connected layer to
preserve spatial information while standardizing
feature map dimensions across different
resolutions. This was followed by a Flatten layer and
a dense classifier (1 x 3 output) for multi-class
prediction. ReLU activations were consistently used
to strengthen non-linearity and accelerate
convergence. Empirically, these modifications
yielded a measurable improvement in validation
accuracy (+2.17%) and a reduction in validation
loss compared to the baseline ShuffleNet. Moreover,
dropout regularization effectively minimized
performance variance across cross-validation folds,
suggesting improved stability and generalization.
These results confirm that the inclusion of dropout
and adaptive pooling not only enhances model
depth and learning capacity but also prevents
overfitting  while  maintaining  ShuffleNet’s
lightweight efficiency.

9. Results Analysis

The performance evaluation compared the
baseline ShuffleNet model and the optimized
ShuffleNet using GridSearchCV. The proposed
model demonstrated higher accuracy and efficiency
across all evaluation metrics, confirming the
effectiveness of hyperparameter optimization for
geospatial disaster classification.

However, the near-perfect results (99.97%
accuracy, and 100% precision, recall, and F1-score
in certain folds) raise legitimate concerns regarding
potential overfitting or dataset bias. While the
Kaggle dataset used in this study is well-
documented, it remains relatively small and may
not fully capture the variability of real-world
disaster imagery, particularly in terms of spatial
resolution, lighting conditions, and environmental
complexity. To mitigate overfitting risks, several
strategies were implemented, including data
augmentation (random flipping and rotation),
dropout regularization, and systematic
hyperparameter  tuning via  GridSearchCV.
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Nevertheless, the dataset’s limited diversity
remains a key constraint that may affect the model’s
generalizability. Future work should therefore
incorporate larger, multi-source, and real-time
disaster datasets, along with robustness testing on
unseen samples, to ensure consistent and reliable
performance under real-world conditions.

To avoid redundancy, performance metrics
are summarized in Table 2 and Figure 8, without
repetition across subsections. Overall, the findings
suggest that the proposed ShuffleNet optimized
with  GridSearchCV  achieves state-of-the-art
performance for disaster classification while
highlighting the need for further validation to
confirm its real-world applicability.

RESULTS AND DISCUSSION

1. Pre-Processing Data
The following is the division of research
image data used:
Table 1. Division of Research Data

Distribution Class Amoun

earthquake 800

flood 1356

Train wind 776
earthquake 120

flood 204

Val wind 117
earthquake 80

flood 136

Test wind 78

Source: (Research Results, 2025)

Each class has a different number of images,
with data divided into three sets, namely train,
validation, and test. The training data set (train)
consists of 800 earthquake images, 1356 flood
images, and 776 wind images. The validation data
set (val) consists of 120 earthquake images, 204
flood images, and 117 wind images. While the
testing data set (test) contains 80 earthquake
images, 136 flood images, and 78 wind images.

2. Image Data Classification Results

At the modeling stage, four Convolutional
Neural Network (CNN) architectures were used,
namely MobileNet, GoogleNet, RestNet, DenseNet,
ShuffleNet and ShuffleNet Proposed Method, to
train the model on natural disaster image data.

A. Image Classification Training Results

The training process is monitored through
loss and accuracy values. The following are the
results of natural disaster classification training.
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Figure 5. Training Validation Loss.

Figure 5 presents the training loss (blue) and
accuracy (orange) curves of five CNN architectures
MobileNet, GoogleNet, ResNet, DenseNet, and
ShuffleNet Baseline over 15 training epochs for
natural disaster classification. MobileNet and
GoogleNet show stable convergence with low loss
and high accuracy, while ResNet experiences early

fluctuations, indicating sensitivity to

hyperparameters. DenseNet demonstrates gradual

improvement with consistent performance,
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whereas ShuffleNet Baseline converges moderately
but underperforms compared to the optimized
version. The proposed ShuffleNet model (f)
achieves the best results, with a sharp loss
reduction and significant accuracy increase,
confirming that GridSearchCV-based optimization
effectively enhances model performance. This
behavior is further supported by the visual
prediction outcomes in Figure 8, where the
optimized ShuffleNet correctly distinguishes
disaster types with clearer boundaries, and by the
comparative results in Figure 9, which show its
superior overall accuracy, precision-recall balance,
and generalization stability across all tested
architectures.

B. Confusion Matrix Evaluation Results

The Confusion Matrix provides very valuable
information about the performance of the
classification model, by indicating areas where the
model may make mistakes. By examining the
confusion matrix, we can identify misclassifications
such as false positives, false negatives, and correct
classifications, which are important for improving
model performance.

Confusion Matrix MobileNet

earthquake 25

True label

fiood wand earthquake fiood wind
predicted label Predicted

(a) MobileNet (b) GoogleNet

Confusion Matrix
Confusion Matrix

earthquake

earthauake

actual
fiood

earthquake flood wind fioad
Predicted Predicted

earthquake wind

(b) RestNet (d) DenseNet
Proposed Model Confusion Matrix
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it 2 134 o 33
i< o EX 1
g
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| |
w w0
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0

earthquake floed wind earthquake flood wind
Predicted Predicted

(e) ShuffleNet (f) ShuffleNet Proposed
Source: (Research Results, 2025)
Figure 6. Confusion Matrix
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The confusion matrix figures provide a visual
overview of the classification performance, but
numerical representation is essential to fully
interpret class-wise results. Table 1la below
presents the corresponding confusion matrix values
for each model, summarizing true positives (TP),
false positives (FP), false negatives (FN), and true
negatives (TN) for the three disaster categories:
earthquake, flood, and wind.

Table 2. Confusion Matrix Results for Each Model

T F F T Accur ¥

Model Class P P N N acy Sco
re
Earthqu 21 .
Shuffle ake 7 1 3 9 99% 0.98
Net
(Baselin  Flood 13: 2 2 22 99%  0.98
€) 23
Wind 75 3 3 9 99% 0.97
Earthqu 22 .
Shuffle ake 80 0 0 0 100%  1.00
Net
(Propos  Flood 136, 0 0 23 100%  1.00
ed) 24
Wind 78 0 0 2 100% 1.00
ResNet Agll;sses - - - - 95% 0.94
GoogleN All .
et Classes - - - - 90% 0.90
DenseN All .
et Classes = 36% 0.33
Mobile All .
Net Classes = 36% 0.35

(Source: Research Results, 2025)

The inclusion of Table 1la allows for
quantitative verification of the visual confusion
matrices. As shown, the proposed ShuffleNet
achieved perfect classification across all categories
with no misclassification (TP = total samples per
class), while the baseline ShuffleNet exhibited
minor misclassification errors, primarily between
flood and wind categories. Although these results
demonstrate the effectiveness of hyperparameter
optimization through GridSearchCV, such near-
perfect accuracy also raises the possibility of
overfitting to the specific dataset used. Given the
relatively limited size and homogeneity of the
dataset, the model may have learned data-specific
features rather than generalizable disaster
characteristics. Therefore, while the optimization
process clearly improves performance, the findings
should be interpreted with caution, and further
validation on larger, more diverse datasets is
required to confirm the robustness of the proposed
model.

To strengthen the evaluation, additional
analyses such as ROC-AUC and macro versus
weighted metrics were conducted, which still

Accredited Rank 2 (Sinta 2)) based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
No.225/E/KPT /2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri



JITK (JURNAL ILMU PENGETAHUAN

DAN TEKNOLOGI KOMPUTER)

VOL. 11.NO.2 NOVEMBER 2025
P-ISSN: 2685-8223 | E-ISSN: 2527-4864
DOI: 10.33480/jitk.v11i2.6747

confirmed consistently high and balanced
performance across all disaster classes. However,
these metrics alone cannot fully eliminate the
possibility of dataset-driven bias, reinforcing the
need for external validation in future studies.

C. ROC-AUC Results

The following are the results of the ROC-AUC
graph produced by the baseline ShuffleNet model
and the Proposed Method.

(a) Shufﬂéi\‘fﬁeﬁt”Baseline

(a) ShuffleNet Proposed
Source: (Research Results, 2025)
Figure 7. ROC-AUC Result

The ROC curves for both the baseline and
proposed ShuffleNet models demonstrate excellent
discriminative ability across all disaster categories.
For the baseline ShuffleNet, each class earthquake,
flood, and wind achieved an AUC of 1.00, indicating
near-perfect separation between positive and
negative instances.

Similarly, the  proposed  ShuffleNet,
optimized via GridSearchCV, also achieved an AUC
of 1.00 for all classes, confirming that
hyperparameter optimization preserved and
slightly enhanced the model’s ability to discriminate
between classes. These results corroborate the high
accuracy, precision, recall, and F1-scores observed
in the classification metrics, reinforcing that both
models are highly reliable for disaster image
classification.

To further ensure model robustness, all
images were preprocessed by resizing them to 224
x 224 pixels and normalizing to a [0, 1] range.
Several data augmentation techniques were
applied, including random rotation (*¥20°),
horizontal and vertical flipping, brightness
adjustment (x15%), and slight  zoom
transformations to increase dataset variability.
Given the moderate class imbalance (flood = 1,696
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images; earthquake = 1,000; wind = 971), weighted
sampling and balanced mini-batches were
employed during training. Additionally, dropout
regularization (0.3-0.5) and early stopping were
implemented to minimize overfitting and enhance
generalization.

D Evaluation of Macros vs Weighted Metrics

The following are the results of the Macro vs
Weighted Metrics Evaluation of ShuffleNet Baseline
and the Proposed Method.

F1 Macro Baseline: 0.9850717785677134
F1 Macro Proposed: 0.9899375986332508

While both the macro and weighted F1-
scores summarize model performance across all
classes, they provide complementary insights into
model balance and robustness. The Macro F1-score
calculates the unweighted mean of F1-scores for
each class, treating all classes equally regardless of
their sample size. This metric is particularly useful
for assessing how well the model performs on
minority classes, as it prevents dominant classes
from skewing the overall score.

In contrast, the Weighted F1-score accounts
for class imbalance by weighting each class’s F1-
score according to its number of samples.
Consequently, it reflects the overall performance of
the model considering dataset distribution. In this
study, the small difference between the Macro F1
(0.9851 — 0.9899) and Weighted F1 (0.9864 —
0.9902) indicates that the proposed ShuffleNet not
only achieves high accuracy overall but also
maintains consistent performance across all classes,
without favoring any particular disaster category.

This consistency suggests that the
optimization  strategy  using  GridSearchCV
effectively improved both generalization and class
balance, confirming that the proposed model
performs robustly even when class frequencies
differ slightly. To achieve this, data augmentation
and weighted sampling were applied during
preprocessing to compensate for class imbalance
and ensure fair representation across earthquake,
flood, and wind categories. These steps further
support the reliability of the reported macro and
weighted F1-scores by reducing bias from uneven
class distribution.

E. Image Classification Prediction Results
Next, the MobileNet, ResNet, ShuffleNet, and
ShuffleNet Proposed models were tested on natural
disaster data and given five images from each
disaster class, namely earthquake, flood, and wind.
Each model produced correct predictions with an
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average accuracy. Figure 8 shows the prediction
findings based on actual natural disaster images.
Although the reported accuracy and F1-
scores of both the baseline and optimized
ShuffleNet models are notably high (approaching
99%), these results may reflect partial overfitting
due to the controlled nature of the dataset. The
current dataset is limited in size and may not fully
capture the spectral and spatial variability of real-
world disaster imagery, particularly across diverse
geographic regions and atmospheric conditions.
Consequently, the model’s generalization capability
in practical scenarios could be affected. To mitigate
this risk, the study employed dropout
regularization, data augmentation, and systematic
hyperparameter tuning via GridSearchCV. Future
work will incorporate larger, multi-temporal
datasets to further validate and enhance the model’s
robustness for operational disaster classification.

True: earthquake True: flood
Pred: earthquake Pred: flood Pred

True: flood

True: wind
Pred: flood Pred: wind

True: wind
Pred: wind

True: flood
Pred: flood

True: wind
Pred: wind

U]
Source: (Research Results, 2025)

Figure 8. Prediction results of six CNN models on

disaster images.
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Figure 8 presents a visual comparison of
prediction results from six CNN models on natural
disaster imagery, highlighting each model’s ability
to correctly localize and classify disaster types.
MobileNet and ResNet, despite identifying certain
features, failed to accurately distinguish flood
images, often producing incorrect labels due to their
limited depth and spatial feature representation.
GoogleNet and DenseNet showed improved
predictions, especially for flood and earthquake
categories, benefiting from deeper architectures
and better feature propagation. However, DenseNet
occasionally introduced visual noise in localization.
The baseline ShuffleNet performed moderately but
stil missed key disaster cues, leading to
misclassification. In contrast, the proposed
ShuffleNet model demonstrated the most accurate
and precise localization and classification, correctly
identifying the type and region of disaster across all
sample inputs. This suggests that the optimization
applied to ShuffleNet effectively enhances both the
model’s discriminative capacity and spatial
attention, making it more reliable for real-world
disaster mapping scenarios.

F. Comparative Evaluation Results

The results show that ShuffleNet excels in
handling complex datasets with high inter-class
similarity. Meanwhile, MobileNet offers a good
balance between performance and computational
efficiency. However, the accuracy limitations of CNN
highlight the need to develop more advanced
architectures for similar classification tasks. The
comparison of evaluation results between these
models can be seen in Table 2.

Table 2. Summary of Model Comparison

Model Accuracy Precision Recall S(l:::l-‘e
f}:(‘)‘;%‘f:ﬁt 100% 100%  100%  100%
ShuffleNet 99% 98% 96% 98%
ResNet 95% 95% 94% 94%
DenseNet 36% 33% 33% 33%
GoogleNet 90% 90% 90% 90%
MobileNet 36% 35% 35% 35%

Source: (Research Results, 2025)

The following is a comparison chart of the six
models used:
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Figure 9. Comparison Graph of Model Results
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Table 2 and Figure 9 summarize the comparative
performance of six CNN architectures for geospatial
disaster classification. Although the proposed
ShuffleNet achieved perfect scores (100% accuracy,
precision, recall, and F1-score), these results should
be interpreted cautiously.

The large performance gap may reflect
dataset-specific bias and optimization effects rather
than purely architectural superiority. The Kaggle
dataset, while well-curated, has limited intra-class
variability, which may cause model memorization
instead of genuine  generalization. The
GridSearchCV-based tuning also optimized
parameters for this dataset, potentially amplifying
this effect. To mitigate overfitting, dropout, data
augmentation, and cross-validation were employed,
yet the lack of independent test data remains a
limitation.

Overall, the proposed ShuffleNet proves
effective in combining lightweight architecture with
systematic tuning, but its near-perfect performance
likely reflects both strong optimization and dataset
bias. Future work should validate the model using
larger, multi-source datasets to ensure robustness
and real-world applicability.

CONCLUSION

This study optimized the ShuffleNet
architecture using GridSearchCV to enhance natural
disaster classification, achieving a peak accuracy of
99.97% and outperforming baseline CNNs such as
MobileNet, GoogleNet, ResNet, DenseNet, and
standard  ShuffleNet. While these results
demonstrate the effectiveness of combining
lightweight  architectures  with  systematic
hyperparameter tuning, the exceptionally high
accuracy should be interpreted with caution, as the
dataset’s limited size and diversity may introduce
bias and overfitting. Although the model achieved
consistent results across all evaluation metrics,
further validation wusing larger and more
heterogeneous datasets is necessary to ensure
robustness and real-world generalizability. Future
research should also focus on applying the
optimized ShuffleNet framework to real-time
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geospatial disaster mapping and decision-support
systems for enhanced disaster management.
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