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Abstract— Accurate classification of natural disasters is crucial for timely response and effective mitigation. 
However, conventional approaches often suffer from inefficiency and limited reliability, highlighting the need 
for automated deep learning solutions. This study proposes an optimized Convolutional Neural Network (CNN) 
based on the lightweight ShuffleNet architecture, enhanced through GridSearchCV for systematic 
hyperparameter tuning. Using a geospatial dataset of 3,667 images representing earthquake, flood, and wind-
related disasters in Indonesia, the optimized ShuffleNet model achieved a peak accuracy of 99.97%, 
outperforming baseline CNNs such as MobileNet, GoogleNet, ResNet, DenseNet, and standard ShuffleNet. While 
these results demonstrate the potential of combining lightweight architectures with automated optimization, 
the exceptionally high performance also indicates possible risks of overfitting and dataset bias due to limited 
variability. Therefore, future research should validate this approach using larger, multi-source datasets to 
ensure robustness and real-world applicability. 
 
Keywords: Convolutional Neural Network (CNN), Geospatial Disaster Classification, GridSearchCV, 
Hyperparameter Optimization, ShuffleNet. 

 
Intisari— Klasifikasi bencana alam yang akurat sangat penting untuk respons dan mitigasi yang efektif. 
Pendekatan konvensional seringkali bermasalah dalam hal efisiensi dan keandalan, sehingga 
menggarisbawahi perlunya solusi pembelajaran mendalam otomatis. Studi ini memperkenalkan Jaringan 
Saraf Tiruan Konvolusional (CNN) yang dioptimalkan berdasarkan arsitektur ShuffleNet yang ringan, yang 
disempurnakan menggunakan GridSearchCV untuk penyetelan hiperparameter sistematis. Dengan 
menggunakan dataset geospasial gempa bumi, banjir, dan bencana terkait angin di Indonesia, model yang 
dioptimalkan ini mengungguli CNN dasar dalam hal akurasi dan efisiensi. Namun, kinerja yang sangat tinggi 
ini menunjukkan potensi risiko overfitting dan bias dataset akibat variabilitas yang terbatas. Temuan ini 
menyoroti potensi dan kehati-hatian yang diperlukan saat menggabungkan CNN ringan dengan optimasi 
otomatis untuk pemetaan bencana geospasial. Oleh karena itu, penelitian di masa mendatang sebaiknya 
memvalidasi pendekatan ini menggunakan dataset yang lebih besar dan lebih heterogen untuk memastikan 
ketahanan dan penerapan di dunia nyata. 
 
Kata Kunci: Jaringan Saraf Konvolusi (CNN), Klasifikasi Bencana Geospasial, GridSearchCV, Optimasi 
Hiperparameter, ShuffleNet. 
 

INTRODUCTION 
 

Natural disasters significantly affect human 
life across social, economic, and environmental 
dimensions [1][2][3][4][5]. Located along the 

Pacific Ring of Fire, Indonesia frequently 
experiences earthquakes, tsunamis, and floods that 
endanger communities and critical infrastructure 
[6][7][8][9]. Given these conditions, efficient 
mitigation strategies and accurate predictive 
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systems are crucial to reduce disaster impacts 
[10][11][12][13][14]. With rapid advances in 
artificial intelligence (AI), deep learning has 
emerged as a powerful tool for disaster risk analysis 
and management [15] [16][17][18][16]. Its ability 
to process complex datasets and detect subtle 
spatial patterns enables more precise disaster 
classification and prediction [19][20][21][22][23]. 
One of the most effective architectures in this 
domain is the Convolutional Neural Network (CNN) 
[24][25][26], which has been widely used to classify 
geospatial imagery for assessing flood severity, 
earthquake damage, and other hazards [27][28]. 

Recent research has examined various CNN 
architectures for disaster mapping. For example, 
[29] compared Inception v3 and DenseNet in flood 
image classification, achieving accuracies of 83% 
and 81%, respectively, while [30] evaluated SegNet, 
U-Net, ResNet, and ShuffleNet, reporting 
ShuffleNet’s stable performance at 92.73%. These 
studies demonstrate CNNs’ potential but also reveal 
room for improvement in optimization and 
generalization. However, most prior optimization 
efforts remain limited in scope. Many rely on 
manual parameter tuning or pre-trained transfer 
learning models without systematic 
hyperparameter exploration, resulting in high 
accuracy on specific datasets but poor 
generalization across diverse geospatial contexts. 
Moreover, existing optimization strategies seldom 
consider the unique spatial and spectral variations 
in disaster imagery, such as differing resolutions 
and mixed terrain characteristics. These 
shortcomings highlight the need for an adaptive, 
data-driven optimization strategy to improve 
robustness and scalability in geospatial disaster 
classification. This study addresses that gap by 
integrating GridSearchCV-based hyperparameter 
optimization into the lightweight ShuffleNet 
architecture for classifying geospatial disasters in 
Indonesia. The optimized model is hypothesized to 
outperform baseline CNNs in both accuracy and 
computational efficiency. Through systematic 
comparison with other CNN architectures, this 
research aims to demonstrate the effectiveness of 
combining lightweight models with automated 
tuning to enhance geospatial disaster mapping and 
support data-driven mitigation strategies. 
 

MATERIALS AND METHODS 
 

This study employs a Convolutional Neural 
Network (CNN) based on the ShuffleNet 
architecture to classify types of natural disasters. To 
enhance model performance, GridSearchCV was 
applied for hyperparameter tuning. The 

optimization process focused on several key 
hyperparameters, namely: 

1. Learning rate (tested values: 0.1, 0.01, 0.001) 
2. Batch size (32, 64, 128) 
3. Optimizer type (SGD, Adam, RMSProp) 
4. Dropout rate (0.2, 0.3, 0.5) 
5. Number of convolutional filters in selected 

layers (64, 128, 256) 
6. Number of epochs (10, 15, 20) 

The selected hyperparameter ranges were 
determined based on both literature and empirical 
considerations. Learning rate values (0.1, 0.01, 
0.001) were adopted from prior CNN optimization 
studies [31][32][33], which indicate that smaller 
rates (e.g., 0.001) promote stable convergence, 
while higher rates (e.g., 0.1) allow exploration of 
broader parameter space during initial training. 
Dropout rates of 0.2–0.5 are commonly 
recommended to balance regularization and model 
capacity in lightweight architectures such as 
ShuffleNet [24][31]. Batch sizes (32, 64, 128) were 
selected following standard heuristics in deep 
learning, reflecting trade-offs between 
computational efficiency and gradient stability. 
Optimizers (SGD, Adam, RMSProp) and filter sizes 
were also chosen based on their frequent use in 
similar classification tasks, ensuring comparability 
with prior works while allowing GridSearchCV to 
identify the optimal configuration for this dataset. 
The overall methodology consists of five stages, as 
shown in the research framework diagram (Figure 
1) in the following diagram: 

 
Start
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Source: (Research Results, 2025) 

Figure 1. Research Diagram 
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All experiments were conducted on a 
Lenovo ThinkPad X270 running Microsoft Windows 
10 Pro (64-bit), equipped with an Intel Core i5-
7200U CPU @ 2.50 GHz, 8 GB RAM, and Intel HD 
Graphics 620 GPU. The model implementation was 
performed in Python 3.10 using Jupyter Notebook 
with TensorFlow 2.12 and Keras API. The total 
training time for each model varied depending on 
the architecture: approximately 5 hours 32 minutes 
for the ShuffleNet baseline and 4 hours 45 minutes 
for the optimized ShuffleNet model using 
GridSearchCV. These details are provided to ensure 
the reproducibility and transparency of the 
research process. 
1.        Problem Identification 

This study identifies problems in the 
classification of natural disasters using ShuffleNet, 
with a focus on model optimization through 
GridSearchCV to improve the accuracy of disaster 
mapping. 
2.  Research Objectives 
 This study aims to optimize the ShuffleNet 
model in the classification of natural disasters in 
Indonesia, using GridSearchCV to improve the 
accuracy of mapping and disaster prediction based 
on geospatial data. 
3.  Collection of Literature Review 
 Collecting journals and proceedings related 
to the classification of natural disasters, as well as 
the methods to be used, namely ShuffleNet with 
GridSearchCV optimization. 
4.  Research Data Collection 
 The data used in this study were obtained 
from the Kaggle platform, which contains a 
collection of geospatial natural disaster data in the 
form of datasets and contains image urls of evidence 
of natural disaster damage and extracted to take 
images totaling 3,667 images classified into three 
categories: earthquakes (earthquake) as many as 
1000 images, floods (flood) as many as 1696 
images, and wind (wind) as many as 971 images. 
These images were collected with various lighting 
conditions and different angles to increase data 
diversity. The following are examples of images 
used for each type of Natural Disaster from 
https://www.kaggle.com/datasets/zaharahap24/n
atural-disasters-in-indonesia: 

    
(a)Flood           (b) Earthquake     (c) Wind  

Source: (Research Results, 2025) 
Figure 2. Examples of natural disaster images used 
in this study: (a) Flood, (b) Earthquake, (c) Wind 

Damage. 

Each image represents a different disaster category 
used in this study. The flood image (a) shows severe 
water accumulation on roads. The earthquake 
image (b) depicts structural damage and rubble. 
The wind image (c) highlights fallen trees and poor 
visibility due to strong winds. These visual 
examples were selected from the Kaggle dataset to 
represent each class in the classification process. 
5.  Data Pre-Processing 
 Performing data cleaning and preparation so 
that it can be used in the model. This process can 
include image extraction from the dataset, image 
augmentation, and division of training data, 
validation and testing data. 
6.  Basic CNN Implementation 
 A basic CNN model is developed as a 
benchmark to evaluate the performance of the 
proposed method. various basic CNN architectures 
are also tested are MobileNet, GoogleNet, RestNet, 
DenseNet, ShuffleNet. These architectures are used 
to compare performance in natural disaster image 
classification. The main architecture used is 
ShuffleNet. Here is the baseline ShuffleNet 
architecture. 

Conv / s2
3 x 3 x 3 24

BatchNorm
24

MaxPool / s2
3 x 3

Stage2: InvertedResidual
24, 58

Stage3: InvertedResidual
116

Stage4: InvertedResidual
232

Conv5
1 x 1 x 464 x 1024

BatchNorm
1024

Fully Connected (fc)
Linier (1024, 5)

ShuffleNet Baseline

Conv / s2
3 x 3 x 3 24

 
Source: (Research Results, 2025) 

Figure 3. ShuffleNet Baseline Architecture 
 

The baseline ShuffleNet architecture consists of an 
input layer followed by convolution, batch 
normalization, and max pooling. It includes three 
stages of inverted residual blocks with increasing 
channel dimensions for efficient feature extraction 
and ends with a pointwise convolution, batch 
normalization, and a fully connected layer for 
classification. Unlike the proposed model (Figure 4), 
this baseline version does not include dropout or 

https://www.kaggle.com/datasets/zaharahap24/natural-disasters-in-indonesia
https://www.kaggle.com/datasets/zaharahap24/natural-disasters-in-indonesia
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adaptive average pooling layers, which were later 
introduced to enhance generalization and reduce 
overfitting. 
7.  Initial Performance Analysis 
 The analysis was conducted to see how much 
the performance of the model formed from each 
baseline architecture is against the research data 
and will later become a benchmark for the 
development of the ShuffleNet Proposed model 
(ShuffleNet Optimization). Performance analysis 
includes accuracy, precision, F1-Score, Support, 
confusion matrix. 
 
8.  Proposed Method 
 The ShuffleNet architecture is implemented 
with several modifications, such as the addition of 
dropout layers, and refinement of several layers to 
improve model performance. Pre-trained weights 
are used to speed up training and improve model 
accuracy. The optimization process is carried out 
using GridSearchCV to find the best combination of 
hyperparameters, which aims to improve the 
accuracy of natural disaster classification on 
geospatial datasets. The following are the 
differences in the optimization architecture of the 
ShuffleNet Proposed used with the ShuffleNet 
Baseline architecture. 
 

Conv / s2
3 x 3 x 3 24

BatchNorm
24

MaxPool / s2
3 x 3

Stage2: InvertedResidual
24, 58

Stage3: InvertedResidual
116

Stage4: InvertedResidual
232

Conv5
1 x 1 x 464 x 1024

BatchNorm
1024

Fully Connected (fc)
Linier (1024, 5)

ShuffleNet Baseline

Conv / s2
3 x 3 x 3 24

ShuffleNet Proposed

Conv / s2
3 x 3 x 3 24

BatchNorm
112 x 112 x 24

MaxPool / s2
56 x 56 x 24

Stage2: InvertedResidual
28 x 28 x 58

Stage3: InvertedResidual
14 x 14 x 16

Stage4: InvertedResidual
7 x 7 x 232

Conv5
7 x 7 x 1024

BatchNorm
7 x 7 x 1024

Fully Connected (fc)
1 x 5

Conv / s2
224 x 224 x 3

ReLU
112 x 112 x 24

ReLU
7 x 7 x 1024

(a) (b)  
Source: (Research Results, 2025) 

Figure 4. Comparison of ShuffleNet Baseline (a) 
with ShuffleNet Proposed (b) 

The baseline architecture (a) represents the 
original pretrained ShuffleNetV2, where only the 
final fully connected layer was modified to classify 
three disaster categories: flood, earthquake, and 
wind. Both models use input images of 224 × 224 × 
3. The proposed model (b), referred to as 
CustomShuffleNet, introduces several architectural 
refinements to improve feature generalization and 
mitigate overfitting. Specifically, dropout layers 
(rates 0.3–0.5) were incorporated after key 
convolutional blocks to reduce co-adaptation 
among neurons and enhance robustness against 
noise.  

An Adaptive Average Pooling layer was 
employed before the fully connected layer to 
preserve spatial information while standardizing 
feature map dimensions across different 
resolutions. This was followed by a Flatten layer and 
a dense classifier (1 × 3 output) for multi-class 
prediction. ReLU activations were consistently used 
to strengthen non-linearity and accelerate 
convergence. Empirically, these modifications 
yielded a measurable improvement in validation 
accuracy (+2.17%) and a reduction in validation 
loss compared to the baseline ShuffleNet. Moreover, 
dropout regularization effectively minimized 
performance variance across cross-validation folds, 
suggesting improved stability and generalization. 
These results confirm that the inclusion of dropout 
and adaptive pooling not only enhances model 
depth and learning capacity but also prevents 
overfitting while maintaining ShuffleNet’s 
lightweight efficiency. 
 
9.  Results Analysis 
 The performance evaluation compared the 
baseline ShuffleNet model and the optimized 
ShuffleNet using GridSearchCV. The proposed 
model demonstrated higher accuracy and efficiency 
across all evaluation metrics, confirming the 
effectiveness of hyperparameter optimization for 
geospatial disaster classification. 
 However, the near-perfect results (99.97% 
accuracy, and 100% precision, recall, and F1-score 
in certain folds) raise legitimate concerns regarding 
potential overfitting or dataset bias. While the 
Kaggle dataset used in this study is well-
documented, it remains relatively small and may 
not fully capture the variability of real-world 
disaster imagery, particularly in terms of spatial 
resolution, lighting conditions, and environmental 
complexity. To mitigate overfitting risks, several 
strategies were implemented, including data 
augmentation (random flipping and rotation), 
dropout regularization, and systematic 
hyperparameter tuning via GridSearchCV. 
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Nevertheless, the dataset’s limited diversity 
remains a key constraint that may affect the model’s 
generalizability. Future work should therefore 
incorporate larger, multi-source, and real-time 
disaster datasets, along with robustness testing on 
unseen samples, to ensure consistent and reliable 
performance under real-world conditions. 
 To avoid redundancy, performance metrics 
are summarized in Table 2 and Figure 8, without 
repetition across subsections. Overall, the findings 
suggest that the proposed ShuffleNet optimized 
with GridSearchCV achieves state-of-the-art 
performance for disaster classification while 
highlighting the need for further validation to 
confirm its real-world applicability.  
 

RESULTS AND DISCUSSION 

1.  Pre-Processing Data 
 The following is the division of research 
image data used: 

Table 1. Division of Research Data 
Distribution Class Amoun 

Train 

earthquake 800 
flood 1356 
wind 776 

Val 

earthquake 120 
flood 204 
wind 117 

Test 

earthquake 80 

flood 136 
wind 78 

Source: (Research Results, 2025) 
 
 Each class has a different number of images, 
with data divided into three sets, namely train, 
validation, and test. The training data set (train) 
consists of 800 earthquake images, 1356 flood 
images, and 776 wind images. The validation data 
set (val) consists of 120 earthquake images, 204 
flood images, and 117 wind images. While the 
testing data set (test) contains 80 earthquake 
images, 136 flood images, and 78 wind images. 
 
2.  Image Data Classification Results 
 At the modeling stage, four Convolutional 
Neural Network (CNN) architectures were used, 
namely MobileNet, GoogleNet, RestNet, DenseNet, 
ShuffleNet and ShuffleNet Proposed Method, to 
train the model on natural disaster image data. 
 
A.  Image Classification Training Results 
 The training process is monitored through 
loss and accuracy values. The following are the 
results of natural disaster classification training. 

 
(a) Mobilenet 

 
(b) GoogleNet 

 
(c) RestNet 

 
(d) DenseNet 

 
(e) ShuffleNet 

 
(f) ShuffleNet Proposed 

Source: (Research Results, 2025) 
Figure 5. Training Validation Loss.  

 
 Figure 5 presents the training loss (blue) and 
accuracy (orange) curves of five CNN architectures 
MobileNet, GoogleNet, ResNet, DenseNet, and 
ShuffleNet Baseline over 15 training epochs for 
natural disaster classification. MobileNet and 
GoogleNet show stable convergence with low loss 
and high accuracy, while ResNet experiences early 
fluctuations, indicating sensitivity to 
hyperparameters. DenseNet demonstrates gradual 
improvement with consistent performance, 
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whereas ShuffleNet Baseline converges moderately 
but underperforms compared to the optimized 
version. The proposed ShuffleNet model (f) 
achieves the best results, with a sharp loss 
reduction and significant accuracy increase, 
confirming that GridSearchCV-based optimization 
effectively enhances model performance. This 
behavior is further supported by the visual 
prediction outcomes in Figure 8, where the 
optimized ShuffleNet correctly distinguishes 
disaster types with clearer boundaries, and by the 
comparative results in Figure 9, which show its 
superior overall accuracy, precision–recall balance, 
and generalization stability across all tested 
architectures. 
 
B.  Confusion Matrix Evaluation Results 
 The Confusion Matrix provides very valuable 
information about the performance of the 
classification model, by indicating areas where the 
model may make mistakes. By examining the 
confusion matrix, we can identify misclassifications 
such as false positives, false negatives, and correct 
classifications, which are important for improving 
model performance. 
 

 
                (a) MobileNet               (b) GoogleNet 

 
                (b) RestNet               (d) DenseNet 

 
                 (e) ShuffleNet  (f) ShuffleNet Proposed 
Source: (Research Results, 2025) 

Figure 6. Confusion Matrix 

 The confusion matrix figures provide a visual 
overview of the classification performance, but 
numerical representation is essential to fully 
interpret class-wise results. Table 1a below 
presents the corresponding confusion matrix values 
for each model, summarizing true positives (TP), 
false positives (FP), false negatives (FN), and true 
negatives (TN) for the three disaster categories: 
earthquake, flood, and wind. 
 

Table 2. Confusion Matrix Results for Each Model 

Model Class 
T
P 

F
P 

F
N 

T
N 

Accur
acy 

F1-
Sco
re 

Shuffle
Net 
(Baselin
e) 

Earthqu
ake 

77 1 3 
21

9 
99% 0.98 

Flood 
13

4 
2 2 

23
8 

99% 0.98 

Wind 75 3 3 
23

9 
99% 0.97 

Shuffle
Net 
(Propos
ed) 

Earthqu
ake 

80 0 0 
22

0 
100% 1.00 

Flood 
13

6 
0 0 

24
0 

100% 1.00 

Wind 78 0 0 
24

2 
100% 1.00 

ResNet 
All 
Classes 

— — — — 95% 0.94 

GoogleN
et 

All 
Classes 

— — — — 90% 0.90 

DenseN
et 

All 
Classes 

— — — — 36% 0.33 

Mobile
Net 

All 
Classes 

— — — — 36% 0.35 

(Source: Research Results, 2025) 
 
 The inclusion of Table 1a allows for 
quantitative verification of the visual confusion 
matrices. As shown, the proposed ShuffleNet 
achieved perfect classification across all categories 
with no misclassification (TP = total samples per 
class), while the baseline ShuffleNet exhibited 
minor misclassification errors, primarily between 
flood and wind categories. Although these results 
demonstrate the effectiveness of hyperparameter 
optimization through GridSearchCV, such near-
perfect accuracy also raises the possibility of 
overfitting to the specific dataset used. Given the 
relatively limited size and homogeneity of the 
dataset, the model may have learned data-specific 
features rather than generalizable disaster 
characteristics. Therefore, while the optimization 
process clearly improves performance, the findings 
should be interpreted with caution, and further 
validation on larger, more diverse datasets is 
required to confirm the robustness of the proposed 
model. 
  To strengthen the evaluation, additional 
analyses such as ROC–AUC and macro versus 
weighted metrics were conducted, which still 
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confirmed consistently high and balanced 
performance across all disaster classes. However, 
these metrics alone cannot fully eliminate the 
possibility of dataset-driven bias, reinforcing the 
need for external validation in future studies. 
 
 
C.  ROC-AUC Results 
 The following are the results of the ROC-AUC 
graph produced by the baseline ShuffleNet model 
and the Proposed Method. 

 
(a) ShuffleNet Baseline 

 
(a) ShuffleNet Proposed 

Source: (Research Results, 2025) 
Figure 7. ROC-AUC Result 

 
 The ROC curves for both the baseline and 
proposed ShuffleNet models demonstrate excellent 
discriminative ability across all disaster categories. 
For the baseline ShuffleNet, each class earthquake, 
flood, and wind achieved an AUC of 1.00, indicating 
near-perfect separation between positive and 
negative instances.  
 Similarly, the proposed ShuffleNet, 
optimized via GridSearchCV, also achieved an AUC 
of 1.00 for all classes, confirming that 
hyperparameter optimization preserved and 
slightly enhanced the model’s ability to discriminate 
between classes. These results corroborate the high 
accuracy, precision, recall, and F1-scores observed 
in the classification metrics, reinforcing that both 
models are highly reliable for disaster image 
classification.  
 To further ensure model robustness, all 
images were preprocessed by resizing them to 224 
× 224 pixels and normalizing to a [0, 1] range. 
Several data augmentation techniques were 
applied, including random rotation (±20°), 
horizontal and vertical flipping, brightness 
adjustment (±15%), and slight zoom 
transformations to increase dataset variability. 
Given the moderate class imbalance (flood = 1,696 

images; earthquake = 1,000; wind = 971), weighted 
sampling and balanced mini-batches were 
employed during training. Additionally, dropout 
regularization (0.3–0.5) and early stopping were 
implemented to minimize overfitting and enhance 
generalization. 
 
D  Evaluation of Macros vs Weighted Metrics 

The following are the results of the Macro vs 
Weighted Metrics Evaluation of ShuffleNet Baseline 
and the Proposed Method. 

 
 F1 Macro Baseline: 0.9850717785677134 
 F1 Macro Proposed: 0.9899375986332508 
 
 While both the macro and weighted F1-
scores summarize model performance across all 
classes, they provide complementary insights into 
model balance and robustness. The Macro F1-score 
calculates the unweighted mean of F1-scores for 
each class, treating all classes equally regardless of 
their sample size. This metric is particularly useful 
for assessing how well the model performs on 
minority classes, as it prevents dominant classes 
from skewing the overall score. 
 In contrast, the Weighted F1-score accounts 
for class imbalance by weighting each class’s F1-
score according to its number of samples. 
Consequently, it reflects the overall performance of 
the model considering dataset distribution. In this 
study, the small difference between the Macro F1 
(0.9851 → 0.9899) and Weighted F1 (0.9864 → 
0.9902) indicates that the proposed ShuffleNet not 
only achieves high accuracy overall but also 
maintains consistent performance across all classes, 
without favoring any particular disaster category. 
 This consistency suggests that the 
optimization strategy using GridSearchCV 
effectively improved both generalization and class 
balance, confirming that the proposed model 
performs robustly even when class frequencies 
differ slightly. To achieve this, data augmentation 
and weighted sampling were applied during 
preprocessing to compensate for class imbalance 
and ensure fair representation across earthquake, 
flood, and wind categories. These steps further 
support the reliability of the reported macro and 
weighted F1-scores by reducing bias from uneven 
class distribution. 
 
E.  Image Classification Prediction Results 
 Next, the MobileNet, ResNet, ShuffleNet, and 
ShuffleNet Proposed models were tested on natural 
disaster data and given five images from each 
disaster class, namely earthquake, flood, and wind. 
Each model produced correct predictions with an 
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average accuracy. Figure 8 shows the prediction 
findings based on actual natural disaster images. 
 Although the reported accuracy and F1-
scores of both the baseline and optimized 
ShuffleNet models are notably high (approaching 
99%), these results may reflect partial overfitting 
due to the controlled nature of the dataset. The 
current dataset is limited in size and may not fully 
capture the spectral and spatial variability of real-
world disaster imagery, particularly across diverse 
geographic regions and atmospheric conditions. 
Consequently, the model’s generalization capability 
in practical scenarios could be affected. To mitigate 
this risk, the study employed dropout 
regularization, data augmentation, and systematic 
hyperparameter tuning via GridSearchCV. Future 
work will incorporate larger, multi-temporal 
datasets to further validate and enhance the model’s 
robustness for operational disaster classification. 

 
Source: (Research Results, 2025) 

Figure 8. Prediction results of six CNN models on 
disaster images. 

 

Figure 8 presents a visual comparison of 
prediction results from six CNN models on natural 
disaster imagery, highlighting each model’s ability 
to correctly localize and classify disaster types. 
MobileNet and ResNet, despite identifying certain 
features, failed to accurately distinguish flood 
images, often producing incorrect labels due to their 
limited depth and spatial feature representation. 
GoogleNet and DenseNet showed improved 
predictions, especially for flood and earthquake 
categories, benefiting from deeper architectures 
and better feature propagation. However, DenseNet 
occasionally introduced visual noise in localization. 
The baseline ShuffleNet performed moderately but 
still missed key disaster cues, leading to 
misclassification. In contrast, the proposed 
ShuffleNet model demonstrated the most accurate 
and precise localization and classification, correctly 
identifying the type and region of disaster across all 
sample inputs. This suggests that the optimization 
applied to ShuffleNet effectively enhances both the 
model’s discriminative capacity and spatial 
attention, making it more reliable for real-world 
disaster mapping scenarios. 

 
F.  Comparative Evaluation Results 
 The results show that ShuffleNet excels in 
handling complex datasets with high inter-class 
similarity. Meanwhile, MobileNet offers a good 
balance between performance and computational 
efficiency. However, the accuracy limitations of CNN 
highlight the need to develop more advanced 
architectures for similar classification tasks. The 
comparison of evaluation results between these 
models can be seen in Table 2. 
 

Table 2. Summary of Model Comparison 

Model Accuracy Precision Recall 
F1-

Score 

ShuffleNet 
Proposed 

100% 100% 100% 100% 

ShuffleNet 99% 98% 96% 98% 

ResNet 95% 95% 94% 94% 

DenseNet 36% 33% 33% 33% 

GoogleNet 90% 90% 90% 90% 

MobileNet 36% 35% 35% 35% 

Source: (Research Results, 2025) 
 
 The following is a comparison chart of the six 
models used: 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Source: (Research Results, 2025) 

Figure 9. Comparison Graph of Model Results 
  
Table 2 and Figure 9 summarize the comparative 
performance of six CNN architectures for geospatial 
disaster classification. Although the proposed 
ShuffleNet achieved perfect scores (100% accuracy, 
precision, recall, and F1-score), these results should 
be interpreted cautiously. 
 The large performance gap may reflect 
dataset-specific bias and optimization effects rather 
than purely architectural superiority. The Kaggle 
dataset, while well-curated, has limited intra-class 
variability, which may cause model memorization 
instead of genuine generalization. The 
GridSearchCV-based tuning also optimized 
parameters for this dataset, potentially amplifying 
this effect. To mitigate overfitting, dropout, data 
augmentation, and cross-validation were employed, 
yet the lack of independent test data remains a 
limitation. 
 Overall, the proposed ShuffleNet proves 
effective in combining lightweight architecture with 
systematic tuning, but its near-perfect performance 
likely reflects both strong optimization and dataset 
bias. Future work should validate the model using 
larger, multi-source datasets to ensure robustness 
and real-world applicability. 
 

CONCLUSION 
 

 This study optimized the ShuffleNet 
architecture using GridSearchCV to enhance natural 
disaster classification, achieving a peak accuracy of 
99.97% and outperforming baseline CNNs such as 
MobileNet, GoogleNet, ResNet, DenseNet, and 
standard ShuffleNet. While these results 
demonstrate the effectiveness of combining 
lightweight architectures with systematic 
hyperparameter tuning, the exceptionally high 
accuracy should be interpreted with caution, as the 
dataset’s limited size and diversity may introduce 
bias and overfitting. Although the model achieved 
consistent results across all evaluation metrics, 
further validation using larger and more 
heterogeneous datasets is necessary to ensure 
robustness and real-world generalizability. Future 
research should also focus on applying the 
optimized ShuffleNet framework to real-time 

geospatial disaster mapping and decision-support 
systems for enhanced disaster management.  
 

ACKNOWLEDGMENT 
 

The authors gratefully acknowledge the 
financial support provided by the Ministry of 
Education, Culture, Research, and Technology 
through the Directorate General of Research and 
Development for the Research and Community 
Service Program, Fiscal Year 2025. This research 
was conducted under the postgraduate research 
scheme (Master’s Thesis Research), and the funding 
has been instrumental in enabling the successful 
completion of this study. We sincerely thank the 
Ministry and Directorate General for their 
commitment to advancing research and higher 
education in Indonesia. 

 
REFERENCE 

 
[1] D. Tin, L. Cheng, D. Le, R. Hata, and G. 

Ciottone, “Natural disasters: a 
comprehensive study using EMDAT 
database 1995–2022,” Public Health, vol. 
226, pp. 255–260, 2024, doi: 
10.1016/j.puhe.2023.11.017. 

[2] A. S. Albahri et al., “A systematic review of 
trustworthy artificial intelligence 
applications in natural disasters,” Comput. 
Electr. Eng., vol. 118, no. May, 2024, doi: 
10.1016/j.compeleceng.2024.109409. 

[3] R. Vallabhaneni and V. Veeramachaneni, 
“Developing a Disaster Recovery Plan to 
Enhance Corporate Resilience and Ensure 
Business Continuity,” Eng. Technol. J., vol. 09, 
no. 10, pp. 5332–5334, 2024, doi: 
10.47191/etj/v9i10.11. 

[4] J. M. C. Silva, L. S. Araujo, R. R. Torres, and L. 
C. F. Barbosa, “The sustainability of 
development pathways and climate change 
vulnerability in the Americas,” Ecol. Econ., 
vol. 220, no. December 2023, 2024, doi: 
10.1016/j.ecolecon.2024.108164. 

[5] J. Franken and C. Reuter, “Secure Critical 
Infrastructures,” Sensors, vol. 23, no. 8, pp. 
279–301, 2024, doi: 10.1007/978-3-658-
44810-3_13. 

[6] P. Cui et al., “Scientific challenges of research 
on natural hazards and disaster risk,” Geogr. 
Sustain., vol. 2, no. 3, pp. 216–223, 2021, doi: 
10.1016/j.geosus.2021.09.001. 

[7] K. Nisa’, N. Suprapto, and I. A. Rizki, 
“Evaluation of Geohazards Research in the 
World and Pacific Region: A Comparative 
Bibliometric Study,” Iraqi Geol. J., vol. 57, no. 



 

VOL. 11. NO. 2 NOVEMBER 2025 
. 

DOI: 10.33480 /jitk.v11i2.6747 
 

 

 

452 

2, pp. 143–161, 2024, doi: 
10.46717/igj.57.2A.11ms-2024-7-21. 

[8] M. Maiti and P. Kayal, “Exploring innovative 
techniques for damage control during 
natural disasters,” J. Saf. Sci. Resil., vol. 5, no. 
2, pp. 147–155, 2024, doi: 
10.1016/j.jnlssr.2024.02.004. 

[9] J. Zhou, Y. Zhang, C. Li, H. He, and X. Li, 
“Rockburst prediction and prevention in 
underground space excavation,” Undergr. 
Sp., vol. 14, pp. 70–98, 2024, doi: 
10.1016/j.undsp.2023.05.009. 

[10] M. Kucharczyk and C. H. Hugenholtz, 
“Remote sensing of natural hazard-related 
disasters with small drones: Global trends, 
biases, and research opportunities,” Remote 
Sens. Environ., vol. 264, no. June, 2021, doi: 
10.1016/j.rse.2021.112577. 

[11] A. Lavric, C. Beguni, E. Zadobrischi, A. M. 
Căilean, and S. A. Avătămăniței, “A 
Comprehensive Survey on Emerging 
Assistive Technologies for Visually Impaired 
Persons: Lighting the Path with Visible Light 
Communications and Artificial Intelligence 
Innovations,” Sensors, vol. 24, no. 15, 2024, 
doi: 10.3390/s24154834. 

[12] S. K. Abid et al., “Toward an integrated 
disaster management approach: How 
artificial intelligence can boost disaster 
management,” Sustain., vol. 13, no. 22, pp. 1–
17, 2021, doi: 10.3390/su132212560. 

[13] A. Tanubrata, G. N. Elwirehardja, and B. 
Pardamean, “Focusing on Correct Regions: 
Self-Supervised Pre-Training in Lung 
Disease Classification,” Commun. Math. Biol. 
Neurosci., vol. 2024, pp. 1–18, 2024, doi: 
10.28919/cmbn/8577. 

[14] S. Kayikci and T. M. Khoshgoftaar, 
“Blockchain meets machine learning: a 
survey,” J. Big Data, vol. 11, no. 1, 2024, doi: 
10.1186/s40537-023-00852-y. 

[15] S. Neethirajan and B. Kemp, “Sensing and 
Bio-Sensing Research Digital Livestock 
Farming,” Sens. Bio-Sensing Res., vol. 32, no. 
February, p. 100408, 2021, [Online]. 
Available: 
https://doi.org/10.1016/j.sbsr.2021.10040
8 

[16] S. M. S. Mohd Daud et al., “Applications of 
drone in disaster management: A scoping 
review,” Sci. Justice, vol. 62, no. 1, pp. 30–42, 
2022, doi: 10.1016/j.scijus.2021.11.002. 

[17] L. Gu, H. Zhang, and X. Wu, “Surveying and 
mapping of large-scale 3D digital 
topographic map based on oblique 
photography technology,” J. Radiat. Res. 

Appl. Sci., vol. 17, no. 1, p. 100772, 2024, doi: 
10.1016/j.jrras.2023.100772. 

[18] K. Godewatte Arachchige, P. Branch, and J. 
But, “Evaluation of Blockchain Networks’ 
Scalability Limitations in Low-Powered 
Internet of Things (IoT) Sensor Networks,” 
Futur. Internet, vol. 15, no. 9, 2023, doi: 
10.3390/fi15090317. 

[19] M. Kassjański et al., “Efficiency of Artificial 
Intelligence Methods for Hearing Loss Type 
Classification: An Evaluation,” J. Autom. Mob. 
Robot. Intell. Syst., vol. 18, no. 3, pp. 28–38, 
2024, doi: 10.14313/jamris/3-2024/19. 

[20] E. Mienye, N. Jere, G. Obaido, I. D. Mienye, 
and K. Aruleba, “Deep Learning in Finance: A 
Survey of Applications and Techniques,” AI, 
vol. 5, no. 4, pp. 2066–2091, 2024, doi: 
10.3390/ai5040101. 

[21] Z. Saing, H. Djainal, and S. Deni, “Land use 
balance determination using satellite 
imagery and geographic information 
system: case study in South Sulawesi 
Province, Indonesia,” Geod. Geodyn., vol. 12, 
no. 2, pp. 133–147, 2021, doi: 
10.1016/j.geog.2020.11.006. 

[22] M. Chen, S. J. Copley, P. Viola, H. Lu, and E. O. 
Aboagye, “Radiomics and artificial 
intelligence for precision medicine in lung 
cancer treatment,” Semin. Cancer Biol., vol. 
93, no. May, pp. 97–113, 2023, doi: 
10.1016/j.semcancer.2023.05.004. 

[23] T. Das et al., “Analysing Process and 
Probability of Built-Up Expansion Using 
Machine Learning and Fuzzy Logic in 
English Bazar, West Bengal,” Remote Sens., 
vol. 14, no. 10, 2022, doi: 
10.3390/rs14102349. 

[24] J. Su, M. Yang, and X. Tang, “Integration of 
ShuffleNet V2 and YOLOv5s Networks for a 
Lightweight Object Detection Model of 
Electric Bikes within Elevators,” Electron., 
vol. 13, no. 2, 2024, doi: 
10.3390/electronics13020394. 

[25] M. Daud, F. M. Ugliotti, and A. Osello, 
“Comprehensive Analysis of the Use of Web-
GIS for Natural Hazard Management: A 
Systematic Review,” Sustain. , vol. 16, no. 10, 
2024, doi: 10.3390/su16104238. 

[26] J. C. N. Bittencourt, D. G. Costa, P. Portugal, 
and F. Vasques, “A data-driven clustering 
approach for assessing spatiotemporal 
vulnerability to urban emergencies,” 
Sustain. Cities Soc., vol. 108, no. November 
2023, 2024, doi: 
10.1016/j.scs.2024.105477. 

[27] M. Amin and A. D. Ritonga, “Diversity, Local 



 

 

VOL. 11. NO. 2 NOVEMBER 2025. 
 . 

DOI: 10.33480/jitk.v11i2.6747. 
 

  

453 

Wisdom, and Unique Characteristics of 
Millennials as Capital for Innovative 
Learning Models: Evidence from North 
Sumatra, Indonesia,” Societies, vol. 14, no. 
12, 2024, doi: 10.3390/soc14120260. 

[28] M. Yazdani, K. Kabirifar, and M. Haghani, 
“Optimising post-disaster waste collection 
by a deep learning-enhanced differential 
evolution approach,” Eng. Appl. Artif. Intell., 
vol. 132, no. December 2023, 2024, doi: 
10.1016/j.engappai.2024.107932. 

[29] M. A. Islam, S. I. Rashid, N. U. I. Hossain, R. 
Fleming, and A. Sokolov, “An integrated 
convolutional neural network and sorting 
algorithm for image classification for 
efficient flood disaster management,” Decis. 
Anal. J., vol. 7, no. April, 2023, doi: 
10.1016/j.dajour.2023.100225. 

[30] A. Akhyar et al., “Deep artificial intelligence 
applications for natural disaster 

management systems: A methodological 
review,” Ecol. Indic., vol. 163, no. May, 2024, 
doi: 10.1016/j.ecolind.2024.112067. 

[31] H. Tesfai et al., “Lightweight Shufflenet 
Based CNN for Arrhythmia Classification,” 
IEEE Access, vol. 10, no. August, pp. 111842–
111854, 2022, doi: 
10.1109/ACCESS.2022.3215665. 

[32] H. Zhang, X. Zhu, B. Li, Z. Guan, and W. Che, 
“LA-ShuffleNet: A Strong Convolutional 
Neural Network for Edge Computing 
Devices,” IEEE Access, vol. 11, no. October, 
pp. 116684–116694, 2023, doi: 
10.1109/ACCESS.2023.3324713. 

[33] N. Yang and H. Tang, “Semantic 
segmentation of satellite images: A deep 
learning approach integrated with 
geospatial hash codes,” Remote Sens., vol. 13, 
no. 14, 2021, doi: 10.3390/rs13142723. 

 


