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Abstract— Climate change is increasing the frequency of extreme temperatures in Indonesia, creating 
significant prediction challenges due to its geographical diversity. To address this, the study proposes a 
spatially adaptive framework using BNU-ESM and ERA5 data (1980–2005). The Indonesian region was 
classified into four climate clusters via K-Means, where Support Vector Regression (SVR), Random Forest (RF), 
and XGBoost models were evaluated. Results show SVR consistently outperformed other models across all 
clusters. In stable regions, SVR achieved the highest accuracy (RMSE 0.10; MAE 0.08) and remained superior 
even in the most volatile clusters. The study's novelty is the integration of clustering with comparative model 
evaluation, offering a robust methodology for precise, regionally adaptive climate early warning systems. 
Practically, this predictive model can support national mitigation strategies by enabling proactive resource 
allocation and targeted interventions in high-risk climate zones. 
 
Keywords: climate change, climate clustering, early warning systems, spatially adaptive framework, support 
vector regression (SVR). 
 
Intisari— Perubahan iklim meningkatkan frekuensi suhu ekstrem di Indonesia, menciptakan tantangan 
prediksi yang signifikan karena keragaman geografisnya. Untuk mengatasi hal ini, studi ini mengusulkan 
sebuah kerangka kerja yang adaptif secara spasial dengan menggunakan data BNU-ESM dan ERA5 (1980–
2005). Wilayah Indonesia diklasifikasikan ke dalam empat klaster iklim melalui metode K-Means, di mana 
model Support Vector Regression (SVR), Random Forest (RF), dan XGBoost dievaluasi. Hasilnya menunjukkan 
bahwa SVR secara konsisten mengungguli model lainnya di seluruh klaster. Di wilayah yang stabil, SVR 
mencapai akurasi tertinggi (RMSE 0,10; MAE 0,08) dan tetap unggul bahkan di klaster paling fluktuatif. 
Kebaruan studi ini terletak pada integrasi klasterisasi dengan evaluasi komparatif model, menawarkan 
metodologi yang kuat untuk sistem peringatan dini iklim yang presisi dan adaptif secara regional. Secara 
praktis, model prediktif ini dapat memperkuat efektivitas kebijakan adaptasi dan mitigasi perubahan iklim di 
Indonesia dengan menyediakan prediksi suhu maksimum harian yang lebih akurat di tingkat lokal. 
 
Kata Kunci: perubahan iklim, klasterisasi iklim, sistem peringatan dini, kerangka adaptif spasial, support 
vector regression (SVR). 
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INTRODUCTION 
 

Global climate change is becoming a 
concern, characterized by an increased frequency 
and magnitude of extreme climate events [1]. 
Experienced in Indonesia according to a recorded 
rising in the typical temperature by around 0.8°C 
each century besides the record-high maximum 
temperature in 2024 [2], [3], [4]. Indonesia as an 
archipelagic nation equipped with varied 
topography is most vulnerable to impacts from 
extreme heat, which are deadly threats for the 
stability of food security, public health, and the 
quality of energy infrastructure [5], [6]. 

In response to these growing challenges, 
there is an urgent need for predictive approaches 
capable of delivering localized and reliable 
estimates to support effective early warning 
systems and adaptation strategies. However, 
producing such predictions for a country as 
geographically and climatically diverse as Indonesia 
remains highly complex. As an archipelagic nation 
characterized by intricate topography and varied 
microclimates, Indonesia requires spatial modeling 
approaches that explicitly account for this 
heterogeneity. The absence of such considerations 
often results in substantial biases. Kurniadi et al. [7] 
demonstrated that low- and mid-resolution CMIP6 
models tend to overestimate projections of extreme 
rainfall across various regions in Indonesia, 
particularly in areas with complex terrain such as 
North Sulawesi, northern Papua, and East Nusa 
Tenggara.  

As a result, machine learning (ML) 
methodologies have been increasingly employed, 
based on their abilities for approximating complex 
and nonlinear patterns for large-scale 
spatiotemporal databases. Some of these ML-
oriented methodologies, including Artificial Neural 
Networks (ANN), Convolutional Neural Networks 
(CNN), Long Short-Term Memory (LSTM), and 
ensemble models like LightGBM and XGBoost, have 
been employed for temperature and rain forecast 
applications globally [8], [9], [10].  

Although these models have proven 
effective, their direct application to regions with 
high spatial variability such as Indonesia tends to 
produce large bias values in predicted variables, 
especially when spatial variability is not explicitly 
accounted for. This aligns with the findings of Vivi 
Monita et al. [9], who used an LSTM model to predict 
heavy rainfall in Indonesia. They emphasized that 
Indonesia’s unique geographical characteristics and 
rapidly changing weather dynamics make weather 
forecasting very challenging and difficult to predict 
accurately without carefully considering spatial and 
temporal variations [9], [11]. 

Although many studies have applied 
machine learning to climate prediction in Indonesia, 
most treat the region as spatially uniform and do not 
systematically integrate spatial classification 
techniques with tailored predictive models. Recent 
research, such as Najwa et al. [12], highlight the 
importance of accounting for local spatial 
variability.  

However, these studies typically adopt a 
single-model approach or apply spatial clustering 
without integrating it directly into the predictive 
modeling workflow. To the best of our knowledge, 
no prior work has implemented a fully integrated 
framework that combines spatial clustering with 
comparative machine learning evaluation tailored 
for each spatial unit in the Indonesian context.  

This study therefore introduces a novel 
direction by embedding K-Means-based spatial 
segmentation directly into a region-specific model 
selection pipeline, enhancing both the spatial 
adaptiveness and forecasting precision of climate 
prediction systems. 

Thus, statistical downscaling and bias 
correction have also been considered as other ways 
of boosting the climatic prediction performance 
[13], as have machine learning techniques. Very 
recently, machine learning methodologies such as 
Support Vector Regression (SVR), Random Forest 
(RF), and Extreme Gradient Boosting (XGBoost) 
have been introduced as achieving very good 
precision for approximating intricate non-linear 
associations present within climatic data sets [14], 
[15], [16].  

Nevertheless, accurate prediction also 
requires pre-modeling spatial classification. Among 
various clustering algorithms, K-Means, DBSCAN, 
Hierarchical Clustering, and Gaussian Mixture 
Models (GMM) are commonly used in climatological 
studies, as emphasized by Darmawan et al. [17]. 
While DBSCAN performs well for datasets with 
irregular shapes and noise, and Hierarchical 
Clustering is effective for capturing nested regional 
structures, these methods often suffer from high 
computational demands and parameter sensitivity 
when applied to massive datasets. This limitation is 
further highlighted by Harjupa et al. [18], who 
examined clustering applications on large-scale 
spatiotemporal climate datasets in Indonesia and 
noted that high spatial heterogeneity, coupled with 
computational and tuning constraints, presents 
significant challenges for timely and scalable 
implementation. 

Therefore, the development of a scalable 
and spatially adaptive framework that integrates 
clustering with comparative machine learning 
evaluation represents a promising yet 
underinvestigated direction. 
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In this study, the selection of the K-Means 
clustering algorithm for Indonesia is motivated by 
three main considerations in the context of large-
scale climate data. First, the computational 
efficiency and scalability of K-Means allow millions 
of spatial data points to be processed with minimal 
overhead [19]. Secondly, the climatologically 
interpretable output centroids show apparent 
regional signatures, enabling spatial delimitation of 
climate zones amenable to the latter stages of 
climate modeling  [20]. Thirdly, empirically, K-
Means has of late produced stable and robust 
results for climate zone classification, 
outperforming sophisticated clustering algorithms 
that are initiation- and parameter-setting-sensitive 
[21]. As such, K-Means is a justifiable and 
reasonable choice for managing spatial 
heterogeneity for Indonesian climate modeling. 

In this study, we present a spatially 
adaptive forecasting framework for predicting the 
daily maximum temperature across Indonesia, 
utilizing climate data from the Beijing Normal 
University Earth System Model (BNU-ESM) and the 
European Centre for Medium-Range Weather 
Forecasts Reanalysis Fifth Generation (ERA5). The 
proposed framework integrates cluster-based 
classification with predictive modeling techniques. 
At the initial stage, the Indonesian region is divided 
into several clusters based on historical 
temperature patterns using K-Means Clustering. 
Within each cluster, three machine learning models 
Support Vector Regression (SVR), Random Forest 
(RF), and XGBoost are independently trained and 
evaluated. The best-performing model is then 
selected for each cluster, resulting in a hybrid 
forecasting system that is tailored and optimized 
according to the characteristics of each cluster. 

The main contribution of this study lies not 
merely in the use of K-Means an approach that has 
been employed in previous research [22], [23] but 
rather in its integration into a spatially adaptive, 
multi-model prediction framework.  

This methodological advancement bridges 
the gap between spatial segmentation and model-
specific learning, allowing climate prediction 
systems to better reflect Indonesia’s regional 
climate complexities. 

By strategically combining regional 
clustering with comparative model evaluation, this 
work proposes a new methodological direction for 
climate prediction in geographically diverse 
regions. The outcomes of this approach are 
expected to play a meaningful role in advancing the 
accuracy of early warning systems and supporting 
more informed climate adaptation efforts. 

 
 

MATERIALS AND METHODS 
 

This study takes a quantitative approach to 
develop mitigation strategies in response to the 
increasing frequency of extreme temperature 
events in Indonesia. The core focus is to build a 
predictive model for daily maximum temperatures 
using spatial data, based on two globally recognized 
climate datasets: the Beijing Normal University 
Earth System Model (BNU-ESM) and ERA5, 
developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The analysis is 
confined to the Indonesian region and covers the 
period from January 1, 1980, to December 31, 2005. 

BNU-ESM is one of the climate models 
produced under the Coupled Model 
Intercomparison Project Phase 5 (CMIP5), which is 
designed to explore the dynamics of the global 
climate system and generate projections for future 
climate change scenarios. This model operates with 
a horizontal spectral resolution of T42, 
corresponding to a spatial grid of 2.81° longitude × 
2.81° latitude, and includes 26 vertical layers based 
on a hybrid pressure-sigma coordinate system [24]. 

On the other hand, ERA5 is the fifth-
generation global atmospheric reanalysis dataset 
developed by ECMWF. It provides hourly estimates 
of atmospheric, land, and oceanic variables from 
1940 to the present. With a spatial resolution of 
about 31 km (using a 0.25° × 0.25° latitude-
longitude grid), ERA5 supports detailed climate 
analysis at both regional and global levels. 

This section presents the study’s 
methodology, covering data preprocessing, spatial 
clustering by temperature, model development, and 
evaluation. The stages are summarized in the flow 
diagram below. 

 
Source : (Research Result, 2025) 

Figure 1. Research Methodology 
 
 The methodology employed in this study 
involves a series of systematic steps designed to 
ensure data validity and enhance the accuracy of the 
predictive models. These steps are outlined as 
follows: 
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Data Preparation 
1. Data Filtering and Cleaning 

The first step in data preparation is aimed at 
ensuring the quality and reliability of the 
datasets used in the study. Incomplete, 
inaccurate, or redundant data can significantly 
compromise the performance of predictive 
models. To address this, a thorough filtering 
and cleaning process is conducted to remove 
missing values, correct inconsistencies, and 
identify potential anomalies. This stage is 
essential for preserving the integrity of the data 
and establishing a solid foundation for 
subsequent analysis. 
 

2. Resolution and Grid Alignment between BNU-
ESM and ERA5 
The BNU-ESM and ERA5 datasets differ 
markedly in both spatial resolution and grid 
structure. BNU-ESM operates at a horizontal 
resolution of roughly 2.81°, while ERA5 
provides a much finer resolution of 0.25°. This 
significant gap makes direct comparisons 
between the two datasets challenging and can 
potentially introduce biases into the predictive 
modeling results [25], [26]. To correct for this, 
spatial harmonization and alignment are 
conducted under the Climate Imprint 
technique—an interpolation-based approach 
that incorporates climatological context. This 
method enhances the accuracy of daily climate 
variables, such as temperature and 
precipitation, by integrating data from two 
different sources through the following steps: 
  
a) Calculating Climate Anomalies from GCM 

(BNU-ESM) 
Daily values from BNU-ESM are first used 
to compute climate anomalies, defined as 
the difference between each daily value 
and its long-term historical mean over a 
baseline period (1951–2005). 

b) Applying Anomalies to High-Resolution 
Grids 
These daily anomalies, initially derived 
from the coarse BNU-ESM grid, are then 
interpolated onto the finer-resolution grid 
used by observational data (e.g., ERA5). 
The result of this step is a high-resolution 
spatial field of daily anomalies, referred to 
as the Climate Imprint—a “fingerprint” of 
daily climate variability in a locally refined 
format. 

c) Combining with Observed Climatology 
In parallel, the ERA5 observational dataset 
is used to compute monthly mean 
climatology. This high-resolution monthly 

climatology is then combined with the 
Climate Imprint anomalies to reconstruct 
the final high-resolution daily fields. 

d) Saving the Final Output 
The result is a high-resolution dataset that 
preserves the temporal dynamics of BNU-
ESM while inheriting the spatial detail and 
local representativeness of ERA5. This 
dataset is then saved for subsequent 
modeling steps. 
 

As described by Hunter and Meentemeyer [27], 
this method allows for enhanced spatial fidelity 
and reduced prediction error, particularly in 
regions with sparse observations or complex 
topography.  
 

Spatial Clustering using K-Means Clustering 
The next phase involves applying the K-Means 
Clustering algorithm, an unsupervised learning 
technique that groups data into distinct clusters 
based on similarities in patterns or characteristics 
[28]. In this study, clustering is performed on both 
the BNU-ESM and ERA5 datasets to create 
homogeneous groups of data. These clusters 
provide the contextual framework for developing 
the daily maximum temperature prediction models, 
allowing the models to be tailored to the unique 
characteristics of each cluster. To determine the 
optimal number of clusters (K), both the Elbow 
Method and Silhouette Score were employed. The 
Elbow Method was used to observe the point at 
which additional clusters result in diminishing 
returns in terms of within-cluster variance, while 
the Silhouette Score provided a quantitative 
measure of cluster cohesion and separation. The 
combination of these two methods ensures a more 
robust and data-driven justification for selecting the 
appropriate number of clusters, thus improving the 
spatial integrity of the forecasting framework. 
 
Data Splitting: Training and Testing Sets 
After the clustering process, the data is split into 
two sets: 80% for training and 20% for testing. This 
division is applied proportionally across all clusters 
to ensure balanced representation. By training the 
model on historical data and evaluating it on 
previously unseen data, this approach supports a 
more reliable assessment of model performance. 
Additionally, it helps mitigate the risk of 
overfitting—a condition where the model performs 
exceptionally well on the training set but struggles 
to generalize to new or unseen data [29].  
 
Temperature Prediction Modeling 
At this stage, temperature prediction models are 
developed using the selected algorithms and the 
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training dataset. The following algorithms are 
employed: 
 
1. Support Vector Regression (SVR)  

Support Vector Regression is a regression-
based extension of the Support Vector Machine 
(SVM) algorithm [30]. It has demonstrated 
strong performance in handling large-scale 
datasets and is widely applied in temperature 
forecasting due to its high predictive accuracy 
[31]. SVR employs various kernel functions—
such as linear, polynomial, sigmoid, and Radial 
Basis Function (RBF)—to transform input data 
into higher-dimensional spaces, enabling the 
model to capture complex, nonlinear 
relationships. Mathematically, the SVR model 
can be represented as: 
 

𝑓 (𝑥) =  𝑤𝑇𝜑(𝑥) + 𝑏                                     (1) 
 
Where 𝑤 is the weight vector, 𝑏 is the bias, and 
𝜑(𝑥) is the mapping function from low-
dimensional input space to high-dimensional 
feature space [32].  
The model also incorporates Structural Risk 
Minimization, formulated as: 
 

min
1

2
 ‖𝑤‖2  +  𝐶 ∑ ∑ (𝜀𝑘 +𝑛

𝑖=1

 𝜀𝑘∗)                                 (2) 

 
Here, 𝐶 controls the trade-off between model 
complexity and prediction tolerance, while 
𝜀𝑘 +  𝜀𝑘∗ are slack variables. The RBF kernel 
function used to evaluate proximity between 
input vectors is defined as: 
 

(−𝛾‖𝑥 − 𝑥′‖2) 𝛾                                                  (3) 

 

2. Random Forest (RF) 

Random Forest (RF) is an ensemble learning 
algorithm widely applied in both regression 
and classification tasks [33]. In the context of 
temperature prediction, RF has shown strong 
performance and, in some studies, even 
outperformed other predictive models [34]. 
The final prediction of Random Forest is 
computed as the average of all individual 
decision trees: 

𝑦̂(𝑥) =  
1

𝐽
 ∑ ℎ𝑗 (𝑥)𝐽

𝑗=1                                      (4) 

 
Where 𝑦̂(𝑥) is the final RF prediction, 𝐽 is the 
number of trees, and ℎ𝑗  (𝑥) is the prediction of 

the 𝑗-th tree for input 𝑥. Minimizing the mean 
squared error loss function is expressed as: 
 

𝐸𝑋𝑌[(𝑌 − 𝑓(𝑋))2]                                                   (5) 

 
to obtain accurate maximum temperature 
predictions.    
 

3. Extreme Gradient Boosting (XGBoost) 
XGBoost is an enhancement of the Gradient 
Boosting algorithm, designed to increase both 
efficiency and predictive accuracy through 
advanced regularization and optimization 
techniques. The model constructs decision 
trees iteratively, minimizing loss functions at 
each step. Mathematically, XGBoost is 
formulated as: 
 

𝑦𝑖̂ =  ∅(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖) 𝑓𝑘 ∈ 𝐹𝐾
𝑘=1                                

(6) 
 
where 𝑦𝑖  is the predicted value, and 𝑓𝑘  is the 
regression tree function at iteration 𝑘, from the 
function space 𝐹. The model is optimized by 
sequentially adding trees to minimize the loss 
function and applying regularization to control 
model complexity. 
 

4. Implementation Model for Each Cluster 
After clustering using K-Means, the predictive 
models (SVR, RF, and XGBoost) are applied 
independently to each cluster [35]. Since each 
cluster contains data with similar 
characteristics, this approach allows each 
model to be specifically trained and optimized, 
thereby improving the contextual accuracy of 
daily maximum temperature predictions [36]. 

 
These three models were specifically chosen 
because they have been consistently proven to 
deliver high accuracy in capturing complex, non-
linear patterns in climatic datasets, as shown in 
recent studies [14], [15], [16]. Compared to other 
machine learning or deep learning methods, SVR, 
RF, and XGBoost offer a practical balance of 
predictive performance, computational efficiency, 
and model interpretability, making them highly 
suitable for this study’s objectives and data scale. 
 
Model Evaluation and Validation 
To ensure the reliability and robustness of the 
developed models, evaluation is carried out using 
the testing data. Three primary performance 
metrics are applied: 
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1. Root Mean Square Error (RMSE) 
RMSE measures the average magnitude of 
prediction errors. A lower RMSE indicates 
better model performance [37]. 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑥𝑡 − 𝑥𝑡

𝑛
𝑡=1 )2

           (7) 

 
 

2. Mean Absolute Percentage Error (MAPE) 
MAPE expresses prediction error as a 
percentage of the actual value, making it easier 
to interpret: 
 

MAPE =
∑ |

𝐴𝑖−𝑃𝑖
𝐴𝑖

|𝑛
𝑖=1 ×100

𝑛
                                  (8) 

where 𝐴𝑖 and 𝑃𝑖 are actual and predicted values, 
respectively [38]. 
 

3. Mean Absolute Error (MAE) 
MAE calculates the average absolute difference 
between actual and predicted values, providing 
a direct assessment of prediction deviations 
[39]: 
 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                                  (9) 

 
RESULTS AND DISCUSSION 

 
In the data preparation stage, analysis showed no 
missing values or duplicate entries in the BNU-ESM 
or ERA5 datasets. Both datasets have been 
thoroughly cleaned and are ready for reliable use in 
this study. 
              The next step involves aligning the spatial 
structure and harmonizing the resolution of the 
datasets using the Climate Imprint method. This 
process ensures that both datasets share consistent 
spatial characteristics, enabling more accurate and 
coherent integration for temperature prediction 
analysis. 
              Following spatial alignment, the BNU-ESM 
dataset undergoes further analysis using the K-
Means Clustering algorithm to group regions based 
on similar temperature patterns. To determine the 
optimal number of clusters, both the Elbow Method 
and Silhouette Score were used. The Elbow Method 
identified the point of diminishing returns, while 
the Silhouette Score validated cluster cohesion and 
separation. 

 
Source : (Research Result, 2025) 

Figure 2. Elbow Method 
 

 Based on the Elbow Method illustrated in 
Figure 2; the inertia value decreases significantly 
from K = 1 to K = 4. Beyond K = 4, the reduction in 
inertia becomes more gradual, indicating a point of 
diminishing returns in reducing within-cluster 
variance. This inflection point suggests that K = 4 is 
a reasonable choice, as it balances clustering 
compactness with interpretability. 

 
Source : (Research Result, 2025) 

Figure 3. Silhoutte Score 
 

 As shown in Figure 3, the highest Silhouette 
Score occurs at K = 2, indicating the most distinct 
average separation between clusters at that point. 
However, the score gradually decreases for K > 2, 
suggesting that increasing the number of clusters 
leads to slightly less cohesive groups in terms of 
internal similarity and inter-cluster separation 
 Although the Silhouette Score peaks at K = 2, 
this study selected K = 4 as the optimal number of 
clusters based on the Elbow Method and the specific 
context of the data. In climate-related datasets, 
choosing K = 2 is often too coarse to capture the full 
complexity of daily temperature variation, which 
may involve transitional regimes, seasonal shifts, 
and localized patterns. Selecting K = 4 allows for a 
more detailed segmentation of temperature 
characteristics, which is particularly relevant for 
downstream applications such as daily maximum 
temperature prediction. 
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 The clustering labels derived from the BNU-
ESM data were subsequently used to classify the 
ERA5 dataset. This approach ensures structural 
consistency between the two datasets, enabling a 
more focused and coherent predictive analysis 
across both sources. 
 

Table 1. BNU-ESM Clustering Characteristics 
Cluster Mean (℃) Var Min (℃)  Max (℃) 

0 27.24 0.71 22.85 30.08 
1 30.23 1.67 26.58 34.12 
2 27.81 0.66 25.05 31.37 
3 21.20 7.15 14.50 25.63 

Source : (Research Result, 2025) 
 
The visualization of the clustering results based on 
the BNU-ESM data is presented in Figure 3. 

 
Source : (Research Result, 2025) 

Figure 3. Cluster of BNU-ESM 
  
 Figure 3 presents the spatial distribution of 
clusters derived from daily maximum temperature 
data across Indonesia, covering the period from 
1980 to 2025. The data were classified into four 
main clusters, each representing areas with distinct 
thermal characteristics. Average values for each 
cluster are shown in the figure legend and detailed 
in Table 1. 
 
1. Cluster 0 is located in mountainous regions of 

western Sumatra, northern Java coast, and 
western Papua coastal areas, with a moderate 
mean maximum temperature of approximately 
27.25℃ and low variance (0.71). These regions 
are thermally stable with minimal daily 
fluctuations, likely influenced by elevation or 
persistent cloud cover. 

2. Cluster 1 covers extensive regions including 
eastern Sumatra, central Kalimantan, southern 
Sulawesi, and parts of Papua. It exhibits the 
highest mean daily maximum temperature of 
30.23℃ and the greatest variability (variance of 
1.67), suggesting hot tropical lowland zones or 
areas experiencing extreme dry seasons with 
significant daily temperature swings. 

3. Cluster 2 is found in central Sulawesi, western 
coastal Kalimantan, and southern Papua, with a 

mean maximum temperature of 27.81℃ and 
similarly low variability (variance of 0.66), 
reflecting warm yet thermally stable 
environments that may offer relatively 
comfortable conditions. 

4. Cluster 3, primarily situated in highland areas 
such as mountainous zones of Papua and 
central Sulawesi, records the lowest mean 
maximum temperature of 21.20℃ but the 
highest variance (7.15), indicative of cooler 
mountain climates characterized by wide 
diurnal temperature ranges. 
 

 The minimum and maximum daily maximum 
temperatures observed from 1980 to 2025 also vary 
notably among the clusters. Cluster 0 ranges from 
about 22.86℃ to 30.08℃, while Cluster 1 spans 
from 26.59℃ to 34.12℃, indicating hotter extremes. 
Cluster 2 shows temperatures between 25.05℃ and 
31.37℃, and Cluster 3 has the widest range from 
14.50℃ up to 25.64℃, reflecting the pronounced 
diurnal and seasonal temperature swings typical of 
highland areas.  
 After determining the clusters and 
thoroughly understanding their distinct thermal 
characteristics, the next step is to develop machine 
learning models tailored for each cluster. This 
targeted modeling approach aims to correct biases 
inherent in the original temperature data by 
accounting for the unique climatic conditions within 
each cluster. By building specialized models per 
cluster, the prediction accuracy can be improved, 
leading to more reliable regional climate analyses 
and better-informed natural resource management 
decisions. 
 The visualization presented reflects the 
entirety of the testing data from 2000 to 2005. This 
period was intentionally selected to capture the 
dynamics of daily maximum temperatures over an 
extended timeframe, allowing for a more 
representative observation of temperature 
variation patterns. 
 The first model employed in this process is 
Support Vector Regression (SVR). For Support 
Vector Regression (SVR), the parameter search 
included values for C [0.1, 1, 10, 100, 500], which 
controls the balance between model complexity and 
error tolerance; epsilon [0.01, 0.1, 0.5], which 
defines the margin where no penalty is applied 
during training; and gamma, tested with options 
['scale', 0.001, 0.01, 0.1], which determines how far 
the influence of a single training point reaches in the 
feature space. The RBF kernel was chosen because 
it effectively captures non-linear relationships in 
the data. 
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Source : (Research Result, 2025) 

Figure 4. SVR Cluster 0 
 

 Based on the graph in Figure 4, the daily 
maximum temperature predictions for Cluster 0 
using the Support Vector Regression (SVR) model 
on the testing dataset (2000–2005). The results 
demonstrate excellent performance, with the SVR 
model’s prediction line (in orange) closely following 
the pattern of actual temperature fluctuations (in 
blue) with a high level of accuracy. The model 
effectively captures the consistent annual 
temperature cycle in this cluster, with maximum 
temperatures ranging from approximately 25.5℃ at 
the lowest points to peaks around 28.5℃. This 
accurate performance was achieved after 
optimization, with the best-selected parameters 
being {'C': 100, 'epsilon': 0.1, 'gamma': 0.001, 
'kernel': 'rbf'}. Consequently, the final SVR model 
SVR(C=100, gamma=0.001) has proven to be highly 
reliable for predicting temperatures in Cluster 0, 
which was previously identified as having moderate 
and stable temperature characteristics. 
 

 
Source : (Research Result, 2025) 

Figure 5. SVR Cluster 1 
 
 As illustrated in Figure 5, characterized by 
significantly higher and more fluctuating 
temperature variability, the SVR model 
demonstrates a fairly good performance in 
capturing the overall temperature trend. As shown 
in the graph, the SVR prediction line (orange) 
follows the movement pattern of the actual 
temperature data (blue), although the model tends 
to slightly smooth the data, making it challenging to 
precisely capture some extreme temperature peaks 
and the lowest valleys. Specifically, the SVR model 
produces temperature predictions mostly within 
the range of 29.5℃ to 32.0℃. This optimal 
performance was achieved using the best 
parameters selected through tuning: {'C': 10, 

'epsilon': 0.01, 'gamma': 0.001, 'kernel': 'rbf'}. Thus, 
the final SVR model established for this cluster is 
SVR(C=10, gamma=0.001), optimized to handle the 
more complex temperature dynamics in this hottest 
cluster. 
 

 
Source : (Research Result, 2025) 

Figure 6. SVR Cluster 2 
 
 Based on the graph in Figure 6, the SVR 
model for Cluster 2 once again demonstrates 
outstanding performance in predicting daily 
maximum temperatures. The graph shows that the 
SVR prediction line (in orange) closely follows the 
fluctuations of the actual data (in blue) with 
remarkable precision, successfully capturing rapid 
and complex temperature variations. The model 
effectively maps temperature changes within a 
range of approximately 27.25℃ to 29.0℃. This 
exceptional performance was achieved using the 
optimized best-fit parameters: {'C': 10, 'epsilon': 
0.01, 'gamma': 0.001, 'kernel': 'rbf'}. Accordingly, 
the final SVR model—SVR(C=10, epsilon=0.01, 
gamma=0.001)—is established as a highly reliable 
and accurate model for regions exhibiting the 
temperature characteristics observed in Cluster 2. 
 

 
Source : (Research Result, 2025) 

Figure 7. SVR Cluster 3 
 
 Based on the graph in Figure 7, for Cluster 
3 which represents the most challenging region 
with the lowest temperature range and highest 
variability (characteristic of mountainous areas) 
the SVR model demonstrates a reasonably good 
ability to capture the general temperature pattern. 
The graph indicates that although the SVR 
predictions (in orange) follow the main trend of the 
actual data (in blue), the model tends to apply 
significant smoothing. As a result, it struggles to 
capture extreme temperature points, both the 
highest peaks and the lowest valleys, within this 
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highly fluctuating dataset. The model is able to 
predict temperatures within a range of 
approximately 20.5℃ to 23.0℃. This performance 
was achieved using the optimal parameter set: {'C': 
1, 'epsilon': 0.1, 'gamma': 0.001, 'kernel': 'rbf'}. 
Therefore, the final model configuration SVR(C=1, 
gamma=0.001) is considered the most suitable for 
balancing trend detection and model complexity in 
regions with highly unpredictable climate 
conditions. 
 For the second algorithm, Random Forest 
(RF), hyperparameter tuning was conducted by 
adjusting several key parameters: n_estimators 
[100, 200], which defines the number of decision 
trees in the ensemble; max_depth [10, 20, None], 
which controls the maximum depth of each tree; 
min_samples_split [2, 5], specifying the minimum 
number of samples required to split an internal 
node; min_samples_leaf [1, 2], indicating the 
minimum number of samples needed at a leaf node; 
and max_features ['sqrt', 1.0], which determines the 
number of features considered when selecting the 
best split. These configurations were explored to 
optimize the trade-off between model complexity, 
accuracy, and generalization capability. 
 

 
Source : (Research Result, 2025) 

Figure 8. RF Cluster 0 
 
 Based on the graph in Figure 8, the Random 
Forest (RF) model for Cluster 0 demonstrates an 
exceptionally high level of accuracy. The graph 
clearly shows that the RF prediction line (in orange) 
almost perfectly overlaps the actual temperature 
line (in blue). This indicates the model’s capability 
to capture not only the stable annual temperature 
cycles but also sharper daily fluctuations with 
remarkable precision. The model effectively 
predicts maximum temperatures across the full 
range, varying from approximately 25.5℃ to 28.7. 
This superior performance was achieved using the 
optimized best parameters: {'max_depth': 10, 
'max_features': 1.0, 'min_samples_leaf': 2, 
'min_samples_split': 5, 'n_estimators': 200}. 
Therefore, the final Random Forest model Random 
Forest Regressor (max_depth= 10, 
min_samples_leaf= 2, min_samples_split= 5, 
n_estimators= 200) proves to be a highly robust and 
accurate model for the Cluster 0 region. 
 

 
Source : (Research Result, 2025) 

Figure 9. RF Cluster 1 
 
 For Cluster 1, characterized by high 
temperatures and volatility, the Random Forest 
(RF) model demonstrates highly accurate 
performance. The RF prediction line (orange) 
closely follows the actual temperature data (blue), 
successfully capturing most of the temperature 
peaks and valleys. The model predicts maximum 
temperatures ranging from 29.0℃ to 32.5℃ using 
the optimized parameters: {'max_depth': 10, 
'max_features': 'sqrt', 'min_samples_leaf': 2, 
'min_samples_split': 5, 'n_estimators': 200}. 
Consequently, this Random Forest Regressor 
proves to be reliable for Cluster 1. 
 

 
Source : (Research Result, 2025) 

Figure 10. RF Cluster 2 
 
 For Cluster 2, the Random Forest (RF) 
model once again demonstrates highly precise and 
reliable performance. The visualization shows the 
RF prediction line (in orange) accurately tracking 
the movements of the actual temperature data (in 
blue), including complex daily fluctuations. The 
model successfully predicts maximum 
temperatures within the range of 27.25℃ to 29.0℃. 
This performance was achieved using the optimal 
parameters: {'max_depth': 10, 'max_features': 1.0, 
'min_samples_leaf': 2, 'min_samples_split': 5, 
'n_estimators': 200} and proves to be highly 
effective for Cluster 2. 
 

 
Source : (Research Result, 2025) 

Figure 11. RF Cluster 3 
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 For Cluster 3, characterized by the highest 
temperature variability and the most challenging 
conditions, the Random Forest (RF) model 
demonstrates a significant improvement in 
performance. The RF prediction line (in orange) 
captures the main temperature patterns more 
effectively than the SVR model, responding more 
sensitively to temperature fluctuations despite 
reduced precision at extreme points. The model 
predicts maximum temperatures ranging from 
approximately 20.0℃ to 23.0℃ using the optimal 
parameters {'max_depth': 10, 'max_features': 'sqrt', 
'min_samples_leaf': 2, 'min_samples_split': 2, 
'n_estimators': 200}. These results confirm that RF 
offers a more adaptive and robust solution for 
mountainous regions with highly dynamic 
temperature patterns. 
 The final model applied in this study is 
Extreme Gradient Boosting (XGBoost). For the 
XGBoost Regressor, the hyperparameter tuning 
involved exploring a grid that included n_estimators 
[100, 200, 300] to determine the number of 
boosting rounds; max_depth [5, 7] to control the 
complexity of each tree; and learning_rate [0.05, 
0.1] to regulate the contribution of each tree during 
training. Additionally, fixed values were set for 
subsample [0.8] and colsample_bytree [0.8], which 
specify the fractions of training data and features 
used in each boosting iteration, respectively. Model 
optimization was carried out using Grid Search, 
with negative mean squared error 
(neg_mean_squared_error) as the scoring metric, 
allowing the identification of the best parameter 
combination for accurate temperature prediction 
within each cluster. 
  

 
Source : (Research Result, 2025) 

Figure 12. XGBoost Cluster 0 
 
 Figure 12 illustrates that the XGBoost 
model for Cluster 0 delivers highly accurate 
predictions, comparable to the outstanding 
performance of the Random Forest model. The 
graph shows an almost perfect alignment, where the 
XGBoost prediction line (in orange) precisely 
follows every detail of the actual temperature data 
(in blue), capturing both the annual cycles and daily 
fluctuations with remarkable accuracy. The model 
effectively predicts maximum temperatures within 
the range of 25.75℃ to 28.75℃. This high level of 

precision was achieved using the optimized 
parameter set: {'colsample_bytree': 0.8, 
'learning_rate': 0.05, 'max_depth': 5, 'n_estimators': 
100, 'subsample': 0.8}. These results confirm that 
XGBoost is a highly robust and effective model for 
temperature prediction in Cluster 0. 
 

 
Source : (Research Result, 2025) 

Figure 13. XGBoost Cluster 1 
 

 In Cluster 1, characterized by high 
temperatures and extreme variability, the XGBoost 
model demonstrates strong and competitive 
performance. The graph shows that the XGBoost 
prediction line (in orange) closely tracks the actual 
temperature data (in blue), effectively capturing 
rapid dynamics and wide temperature swings—an 
indication of the model’s robustness under 
challenging conditions. The predicted maximum 
temperatures accurately span the range from 
29.0°C to 32.5°C. This level of accuracy was 
achieved using the optimal parameter 
configuration: {'colsample_bytree': 0.8, 
'learning_rate': 0.05, 'max_depth': 5, 'n_estimators': 
100, 'subsample': 0.8}. These results reaffirm that 
XGBoost, like Random Forest, is a highly suitable 
and reliable model for predicting temperatures in 
this highly dynamic cluster. 
 

 
Source : (Research Result, 2025) 

Figure 14. XGBoost Cluster 2 
 For Cluster 2, the XGBoost model continues 
its trend of exceptional performance, delivering 
highly accurate and precise results. The 
visualization reveals a very close alignment 
between the XGBoost prediction line (in orange) 
and the actual temperature data (in blue), with the 
model adeptly capturing the complex fluctuations 
that characterize this cluster. The predicted 
maximum temperatures consistently fall within the 
range of 27.25℃ to 29.0℃. This strong performance 
is supported by the optimal parameter set: 
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{'colsample_bytree': 0.8, 'learning_rate': 0.05, 
'max_depth': 5, 'n_estimators': 100, 'subsample': 
0.8}. These findings confirm that XGBoost is a highly 
reliable and effective model for temperature 
prediction in Cluster 2. 
 

 
Source : (Research Result, 2025) 

Figure 15. XGBoost Cluster 3 
 
 Figure 15 presents the XGBoost model for 
Cluster 3—identified as the most challenging 
cluster due to its high temperature variability. 
Despite this complexity, the model delivers solid 
and competitive performance. The visualization 
illustrates how the XGBoost predictions (in orange) 
closely follow the main trends of the actual 
temperature data (in blue). Similar to Random 
Forest, this model outperforms SVR in handling high 
volatility, although a smoothing effect remains 
apparent, where the model struggles to fully 
capture the most extreme temperature points. It 
effectively predicts maximum temperatures within 
a range of approximately 20.0℃ to 23.0℃. This 
reliable performance was achieved using the 
optimal hyperparameters: {'colsample_bytree': 0.8, 
'learning_rate': 0.05, 'max_depth': 5, 'n_estimators': 
100, 'subsample': 0.8}. These results complete the 
analysis by demonstrating that XGBoost remains a 
robust model, even under the most difficult climate 
prediction conditions. 
 

Table 2. Evaluation and Validation Model 
Cluster Model RMSE MAPE MAE 

0 
SVR 0.10 0.31 0.08 
RF 0.11 0.33 0.09 
XGBoost 0.12 0.34 0.09 

1 
SVR 0.43 1.13 0.34 
RF 0.44 1.17 0.35 
XGBoost 0.44 1.17 0.35 

2 
SVR 0.11 0.31 0.08 
RF 0.11 0.33 0.09 
XGBoost 0.11 0.32 0.09 

3 
SVR 0.72 2.63 0.56 
RF 0.73 2.68 0.58 
XGBoost 0.73 2.70 0.58 

 
 As shown in Table 2, the performance of 
SVR, Random Forest (RF), and XGBoost was 
assessed across four climatic clusters. The results 
revealed that SVR consistently achieved the best 
accuracy across all clusters, based on standard 
evaluation metrics—Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE). 
 In Cluster 0, all models performed well due 
to the relatively low variability of the temperature 
data. SVR recorded the lowest RMSE (0.10) and 
MAE (0.08), outperforming both RF and XGBoost, 
which produced slightly higher error rates (RMSE 
up to 0.12, MAE up to 0.09). This suggests that in 
stable climatic regions, SVR benefits from its ability 
to approximate continuous and smooth 
relationships without overfitting. 
 In Cluster 1, a region with slightly higher 
variability, SVR again outperformed both tree-
based models with RMSE of 0.43, MAE of 0.34, and 
MAPE of 1.13%. RF and XGBoost both recorded 
RMSE of 0.44 and MAE of 0.35. The marginal 
advantage in error metrics demonstrates that SVR 
can capture subtle local fluctuations that are not 
easily modeled by discrete tree splits. 
 Cluster 2 also showed uniform model 
performance, with SVR maintaining a slight lead 
(RMSE = 0.11, MAE = 0.08) over RF and XGBoost. 
This reinforces SVR’s robustness in modeling 
moderately variable data across geographical areas. 
 Cluster 3, characterized by the highest 
temperature volatility, posed the greatest challenge. 
Despite an increase in error values across all 
models, SVR still achieved the lowest RMSE (0.72) 
and MAE (0.56), compared to RF and XGBoost 
(RMSE = 0.73, MAE = 0.58). This indicates that SVR 
retains stability even under high-variance 
conditions, where overfitting and noise sensitivity 
typically degrade model performance. 
 In addition, SVR’s uniform dominance 
across all clusters implies the presence of complex 
nonlinear interactions and localized behaviors in 
the underlying temperature data structure—
patterns that ensemble learners like RF and 
XGBoost often struggle to capture. Unlike tree-
based methods, which approximate functions via 
hierarchical partitioning, SVR—particularly when 
paired with the Radial Basis Function (RBF) 
kernel—projects input features into a higher-
dimensional space, allowing the model to learn 
subtle, nonlinear spatial-temporal dependencies 
that are otherwise inaccessible in the original 
feature space. 
 This insight aligns with the nature of the 
data used: daily maximum temperature records 
over diverse Indonesian regions, characterized by 
topographic variability, region-specific climate 
drivers, and moderate noise. The ability of SVR to 
generalize across this heterogeneity stems from its 
structural risk minimization framework, which 
prioritizes optimal generalization rather than fitting 
all training samples tightly, as is often the case in 
ensemble tree learners. 
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 Moreover, hyperparameter tuning 
revealed that SVR adapts well to local dynamics. For 
example, stable clusters performed best with higher 
penalty (C=100) and smaller gamma values, while 
volatile clusters required less aggressive 
regularization (C=1), reflecting its flexibility in 
controlling bias-variance tradeoffs depending on 
spatial complexity.. 
 These findings are also consistent with 
prior research such as Syahreza et al. [31], which 
reported that XGBoost achieved a general MAE of 
0.3744 and MSE of 0.2278 on unsegmented 
temperature datasets. In comparison, the cluster-
based SVR approach in this study achieved an 
overall MAE of just 0.265, with values as low as 0.08 
and RMSE down to 0.10 in certain clusters. This 
indicates that spatial segmentation, when combined 
with nonlinear modeling using SVR, effectively 
reduces prediction errors and enhances the model’s 
capacity to capture local climatic patterns. While 
tree-based models like XGBoost and RF remain 
effective in generalized conditions, they are less 
capable in high-resolution, location-specific 
forecasting—highlighting the superior adaptability 
of cluster-based SVR in modeling spatial climate 
variability. 
 Overall, Support Vector Regression (SVR) 
emerged as the most consistently accurate and 
technically robust model across all climatic clusters. 
It achieved the lowest average RMSE and MAE 
scores, ranging from 0.10 to 0.72 and 0.08 to 0.56 
respectively, outperforming both Random Forest 
and XGBoost in all evaluated segments. The model’s 
effectiveness stems not only from superior 
numerical results but also from its underlying 
ability to capture spatial-temporal nonlinearities 
through kernel-based learning. This combination of 
statistical performance and technical soundness 
reinforces SVR as the most reliable model for high-
resolution, cluster-based temperature forecasting 
in the context of Indonesia's diverse climatic zones. 
  

CONCLUSION 
 

 This research successfully developed a 
daily maximum temperature prediction model for 
Indonesia using bias-corrected BNU-ESM and ERA5 
data (1980–2005). Using climate-based clustering 
(Climate Imprint and K-Means), three models—
SVR, Random Forest, and XGBoost—were trained 
across four clusters, with SVR consistently 
performing best across all segments. 
 The cluster-based approach enabled better 
capture of local temperature patterns, offering high-
resolution insights that support early warning 
systems and local climate services. 

 However, this study has several limitations. 
First, the model only used daily temperature data, 
without other environmental variables like 
humidity, radiation, or land surface conditions. 
Second, performance in Cluster 1 and Cluster 3 
showed that all models struggled to capture sharp 
fluctuations—likely due to not just high variance, 
but also coarse or noisy data in those areas. This 
suggests a need for more refined inputs and 
methods. 
 For future research, we recommend using 
richer predictors, higher-resolution data (e.g., sub-
daily or satellite), and exploring deep learning 
models like LSTM that can better handle sequence 
and noise in volatile clusters. 
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