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Abstract—Ensuring beef freshness is essential to protect consumer health and maintain public trust in the 
food supply chain. However, conventional freshness assessment relies on subjective human sensory judgment 
and can be inconsistent. This study presents a comparative evaluation of three YOLO models, YOLOv5sM (with 
targeted augmentations Flip, Rotation, Mosaic), YOLOv8, and YOLOv11 for automated beef freshness detection 
in digital images. Unlike prior studies focusing on a single YOLO version, this work systematically compares 
multiple YOLO generations to assess accuracy and computational efficiency. Evaluation metrics included 
precision, recall, mAP@0.5, mAP@0.5:0.95, and training time. A labeled dataset of 4,000 beef images (fresh 
and non-fresh) was split into training, validation, and test sets, with augmentation applied only to YOLOv5sM. 
All three models achieved 100% precision and recall on the test set; however, this likely reflects dataset 
homogeneity and potential overfitting, limiting interpretation of these results. YOLOv11 achieved the highest 
localization accuracy (mAP@0.5:0.95 = 97.0%), followed by YOLOv8 (96.9%) and YOLOv5sM (96.2%). YOLOv8 
had the shortest training time (54 minutes), whereas YOLOv11 offered the best balance of accuracy, model size 
(5.4 MB), and computational efficiency. Overall, YOLOv11 emerged as the optimal model, offering superior 
performance and practical deployment advantages over earlier YOLO versions. As the first systematic 
comparison of multiple YOLO generations for beef freshness detection, this study provides novel insights into 
detection accuracy and computational efficiency. 
 

 
Keywords: beef freshness, deep learning, object detection, YOLO 

 
Intisari— Menjaga kesegaran daging sapi sangat penting untuk melindungi kesehatan konsumen dan 
menjaga kepercayaan publik terhadap rantai pasok pangan. Namun, penilaian kesegaran secara 
konvensional masih bergantung pada penilaian sensorik manusia yang bersifat subjektif dan tidak konsisten. 
Penelitian ini menyajikan evaluasi komparatif terhadap tiga model YOLO, YOLOv5sM (dengan augmentasi 
Flip, Rotasi, dan Mosaic), YOLOv8, dan YOLOv11 untuk deteksi otomatis kesegaran daging sapi berbasis citra 
digital. Berbeda dengan studi sebelumnya yang hanya berfokus pada satu versi YOLO, penelitian ini secara 
sistematis membandingkan beberapa generasi YOLO dalam hal akurasi dan efisiensi komputasi. Evaluasi 
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dilakukan menggunakan metrik precision, recall, mAP@0.5, mAP@0.5:0.95, dan waktu pelatihan. Dataset 
berisi 4.000 citra daging sapi (segar dan tidak segar) dibagi menjadi data pelatihan, validasi, dan pengujian, 
dengan augmentasi hanya diterapkan pada YOLOv5sM. Ketiga model menunjukkan precision dan recall 
sebesar 100% pada data uji; namun, hasil ini kemungkinan besar mencerminkan homogenitas dataset dan 
potensi overfitting, sehingga membatasi interpretasi performa sebenarnya. YOLOv11 mencatat akurasi 
lokalisasi tertinggi (mAP@0.5:0.95 = 97,0%), diikuti oleh YOLOv8 (96,9%) dan YOLOv5sM (96,2%). YOLOv8 
memiliki waktu pelatihan tercepat (54 menit), sementara YOLOv11 menunjukkan keseimbangan terbaik 
antara akurasi, ukuran model (5,4 MB), dan efisiensi komputasi. Secara keseluruhan, YOLOv11 tampil sebagai 
model paling optimal dengan keunggulan kinerja dan kesiapan implementasi. Sebagai studi pertama yang 
membandingkan beberapa generasi YOLO untuk deteksi kesegaran daging sapi, penelitian ini memberikan 
wawasan baru mengenai keseimbangan antara akurasi deteksi dan efisiensi komputasi. 
 
 
Kata Kunci: deteksi objek, deep learning, kesegaran daging sapi, YOLO. 
 

INTRODUCTION 
 

Beef is a crucial source of animal protein and 
essential nutrients for human nutrition [1][2][3], 
making it one of the most widely consumed foods. 
However, unscrupulous vendors may mix fresh beef 
with non-fresh or spoiled meat to increase profits, 
undermining consumer trust and posing health 
risks. This adulteration can lead to foodborne 
illnesses and other health problems [4][5].  
Conventional methods for assessing meat freshness 
rely on human sensory evaluations (visual 
inspection, odor, and texture), which are inherently 
subjective and require specialized expertise [6] 
[7][8]. 

Such traditional techniques are often 
inconsistent and can yield inaccurate results. These 
limitations motivate the development of automated, 
objective detection systems based on digital 
imaging and artificial intelligence, which can assess 
meat freshness more reliably and efficiently  

The You Only Look Once (YOLO) family of 
single-stage object detectors has evolved rapidly 
since its introduction by Redmon et al. in 2016 [9] 
[10]. Subsequent versions have continuously 
improved accuracy and efficiency.  YOLOv2 [11] 
introduced enhancements to the original 
architecture,  and YOLOv3 [12][13] further refined 
these improvements, enhanced the architecture. 
YOLOv4 [14][13], incorporated advanced 
augmentation (Mosaic) to boost generalization, and 
YOLOv5 [15] was the first PyTorch implementation, 
simplifying deployment and optimization. Later 
releases achieved state-of-the-art performance: 
YOLOv6 [16] enhanced speed and practicality, 
YOLOv7 [17] delivered top real-time detection 
accuracy, YOLOv8 [11] (Ultralytics) further 
increased speed and accuracy, and recently YOLOv9 
[19], YOLOv10 [20], and YOLOv11 [21]   have been 
proposed for specialized applications. 

Multiple studies have benchmarked these 
YOLO variants across diverse tasks. For example, in 
smoke/forest-fire detection, YOLOv9, YOLOv10, 
and YOLOv11 were compared achieving high 
precision (84.5%) and recall (80.1%) [22]. In weed 
species detection, comparisons among YOLOv8–
v11 and Faster-RCNN found YOLOv11 to be the 
fastest model while YOLOv9 attained the highest 
average precision [23]. In detecting parasite eggs, 
YOLOv5, YOLOv7, YOLOv8, and YOLOv10 were 
evaluated, with YOLOv7-tiny achieving the highest 
mAP (98.7%) and YOLOv8-n ensuring the fastest 
inference [24].   

YOLO models have also been applied in 
automotive and medical imaging. In Advanced 
DriverAssistance Systems (ADAS), combinations 
like YOLOv5 or YOLOv8 with tracking achieved real-
time performance [25].  For pothole detection, 
YOLOv9 outperformed YOLOv10 and YOLOv11 
[26]. In medical imagery, YOLOv5, YOLOv8, and 
YOLOv9 were compared on laryngoscopy images, 
with YOLOv8 obtaining the highest mean average 
precision [27]. These studies illustrate that different 
YOLO versions offer varied trade-offs between 
speed and accuracy depending on the task. 

In the domain of protein or food freshness 
detection, earlier approaches used classical 
methods. For instance, fish freshness was classified 
using K-Nearest Neighbors and Naïve Bayes on eye 
image features, achieving around 97% accuracy    
[28]. A Mask R-CNN model segmented fish images 
and achieved 96.5% accuracy [6].  

In the case of beef detection, researchers 
implemented YOLOv5 combined with a ResNet 
classifier and achieved 99% classification accuracy 
with an mAP of 89% [29]. 

Specifically for beef, a YOLOv5 model 
combined with a ResNet classifier attained 99% 
classification accuracy [30].  Another study used 
fluorescence changes (hypoxanthine levels) to 
detect freshness in beef, chicken, and pork, 
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achieving 99.6% accuracy [31]. Furthermore, the 
performance of YOLOv5 was shown to vary with the 
number of object classes: training on eight classes 
yielded significantly better precision and recall than 
training on two or ten classes [32].  These findings 
highlight the potential of deep learning for meat 
freshness assessment and the importance of model 
selection and training strategy. Unlike earlier 
research that typically evaluated a single YOLO 
version for meat freshness detection, this study is 
the first to directly compare three YOLO 
generations under identical experimental 
conditions, highlighting differences in accuracy, 
computational efficiency, and deployment 
suitability. Recent studies on YOLO in food 
freshness detection [33][34][35][36] further 
validate the novelty of this work. 

Despite these advances, a systematic 
comparison of modern YOLO models for beef 
freshness detection remains unexplored. We 
explicitly aim to evaluate and compare three YOLO 
architectures (YOLOv5sM, YOLOv8, and YOLOv11) 
on a dataset of digital beef images labeled fresh or 
non-fresh. We hypothesize that the newer models 
(YOLOv8, YOLOv11) will offer better accuracy and 
efficiency trade-offs than the older YOLOv5sM. Our 
objectives are to train each model under consistent 
conditions and to assess their performance using 
accuracy metrics (Precision, Recall, mAP@0.5, 
mAP@0.5:0.95) as well as computational criteria 
(training time and model size). 

This study’s novelty lies in its focused 
comparative analysis of YOLO variants for beef 
freshness classification, including consideration of 
training efficiency and model size for deployment in 
resource-constrained settings. Key contributions 
include: 
1. Implementing and optimizing three YOLO 

models (YOLOv5sM, YOLOv8, YOLOv11) 

specifically for automated beef freshness 

detection. 

2. Employing selective data augmentation 

(horizontal flip, rotation, mosaic) exclusively 

on the YOLOv5sM training to investigate its 

impact, while training YOLOv8 and YOLOv11 

on original images. 

3. Conducting a comprehensive evaluation of 

model performance, combining detection 

accuracy (Precision, Recall, mAP metrics) with 

efficiency metrics (training duration, model 

file size), to determine the optimal model for 

practical use in environments with limited 

computational resources. 

 

MATERIALS AND METHODS 
 
Dataset 

This study uses a dataset of 4,000 beef 
images categorized into fresh and not fresh meat. 
We obtained these images from the public data 
source Kaggle.  

 
Preprocessing 

Before training, the images undergo a pre-
processing stage to ensure quality and reliability. 
We resize all images to a resolution of 416x416 
pixels to meet the standard input of the YOLO Model 
[37]. The 416×416 pixel resolution was chosen to 
balance computational efficiency and detection 
accuracy, allowing the model to effectively process 
images while maintaining a manageable 
computational load, ensuring wider accessibility for 
deployment in environments with different models 
[38]. We do not apply any additional filtering or 
enhancement (e.g., no noise reduction or manual 
color adjustment), so that the models learn from the 
raw data, reflecting real-world conditions. 

 
Data Augmentation Technique 

Data augmentation is used to overcome the 
problem of overfitting and is proven to improve 
model robustness in Deep Learning, by expanding 
the dataset and exploring the number of features of 
the training data [39]. 

We selectively apply data augmentation 
techniques in the YOLOv5sM model to evaluate its 
effect in detecting beef freshness, which is an object 
with high complexity, especially in images with 
variations in texture, color, and lighting. The 
YOLOv5sM model, denoting YOLOv5 small 
augmented with Mosaic, Flip, and Rotation, is a 
modified variant of the standard YOLOv5s 
architecture. While Mosaic augmentation was 
originally introduced in YOLOv4 and supported in 
the Ultralytics YOLOv5 framework, it is not enabled 
by default in YOLOv5s. In this study, the 'sM' label 
explicitly reflects a manual modification by the 
authors, in which targeted augmentations were 
intentionally applied during training to improve 
robustness in visually subtle beef freshness 
detection tasks. This configuration serves as a 
controlled benchmark to assess the specific effect of 
classic augmentation techniques, compared to 
newer models like YOLOv8 and YOLOv11 that were 
trained without such augmentations [40].  
Augmentation was applied only to YOLOv5sM to 
test whether traditional augmentation methods 
(Flip, Rotation, Mosaic) could compensate for 
limitations of older architectures, while YOLOv8 
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and YOLOv11 were kept unaugmented to isolate the 
effects of architecture from augmentation. 

This study employs three data augmentation 
techniques to improve the performance of the 
YOLOv5sM model in detecting beef freshness from 
digital images. First, horizontal flipping is applied to 
the training images to introduce variations in object 
orientation, allowing the model to better recognize 
patterns from different viewpoints [41]. Second, 
random rotation is used to rotate the images at 
arbitrary angles within a defined range, which 
enhances the model’s robustness against shifts in 
the camera or object perspective [41]. Finally, the 
Mosaic technique combines four different images 
into a single composite image, increasing contextual 
richness and scene diversity within each training 
batch, thereby improving the model’s 
generalization capability across complex visual 
environments [42]. 

Equation 1 shows the application of 
augmentation transformations A to input X. 𝒜 to the 
input data 𝑋. 

𝑋′ = 𝒜(𝑋) =
{flip(𝑥),rotate(𝑥, 𝜃),mosaic(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∣
𝑥, 𝑥𝑖 ∈ 𝑋, 𝜃 ∈ [−𝜃𝑚𝑎𝑥 , +𝜃𝑚𝑎𝑥]} (1) 

 

 
Architecture and Loss Function of YOLO Model 

The three YOLO models (YOLOv5sM, 
YOLOv8, YOLOv11) use the principle of a single-
stage CNN-based object detector. We outline their 
working principles as follows: 
1. Output Representation  

YOLO is a single-stage CNN detector that 
processes an entire image in one pass. The input 
image 𝑥 ∈ ℝ𝐻×𝑊×3  is divided into as  𝑆 × 𝑆 grid, and  
each grid cell (𝑖, 𝑗) is responsible for detecting 
objects whose centers fall in that cell [9]. Each cell 
predicts 𝐵 bounding boxes, for each box it outputs 
five numbers and a class probability vector. 
Concretely, each bounding‐box prediction includes 
the box center (𝑥, 𝑦) relative to the cell, the box 
width and height (𝑤, ℎ) (relative to the image), and 
an objectness confidence score 𝑝 (which reflects 
both the probability of an object being present and 
the box IoU with ground truth) [9][43]. In addition, 
each cell predicts a vector of 𝐾 conditional class 
probabilities 𝑝(𝑐) (one value per class) that indicate 
the class of the object given that some object exists 
in the cell [12]. Altogether, since there are 𝐵 boxes 
with 5 values each, plus 𝐾 class scores per cell, the 
final network output has shape 𝑆 × 𝑆 × (𝐵 × 5 +
𝐾). 

Formally, for grid cell (𝑖, 𝑗) and box index 𝑏, 
we can denote the predicted output vector as shown 
in in equation 2  [43]. 

𝑦̂𝑖𝑗𝑏

= (
𝑥𝑖𝑗𝑏 , 𝑦̂𝑖𝑗𝑏, 𝑤̂𝑖𝑗𝑏, ℎ̂𝑖𝑗𝑏, 𝑝̂𝑖𝑗𝑏,𝑝̂𝑖(1), … ,

𝑝̂𝑖(𝐾)
) 

 

                  (2)  
Here x̂ijb and  ŷijb denote the relative coordinates of 

the bounding box center within the cell, ŵijb and  

ĥijb  denote the normalized width and height (scaled 

to the image), and p̂ijb is the predicted confidence 

for box b. The entries p̂i
(k)

 where k = 1, … , K 

represent the predicted class probabilities for each 
class k at grid cell for cell (i, j), conditioned on an 
object being present. During inference the class‐
specific confidence score for class c and bounding 

box b is taken as p̂ijb × p̂i
(c)

. This formulation allows 

YOLO to simultaneously perform object localization 
and classification in a single forward pass, enabling 
real-time efficiency with robust performance. 

 
2. Loss function on YOLO 

The YOLO loss function is composed of three 
main components that collectively optimize the 
model for accurate and efficient object detection 
[12][44][45]. 
1. Classification loss penalizes discrepancies 

between the predicted class probabilities and 

the ground truth, ensuring correct category 

identification. 

2. Localization loss (also known as bounding box 

regression loss) measures the difference 

between the predicted bounding box 

parameters and the ground truth, focusing on 

spatial precision. 

3. Confidence loss evaluates the correctness of 

the objectness score, distinguishing between 

object and background regions. 

These three components, classification, 
localization, and confidence, are combined into a 
single total loss function, which the model optimizes 
during training. The comprehensive loss function 
serves as a unified objective that balances detection 
accuracy with precise localization and reliable 
confidence estimation, as formally defined in 
Equation (3) [43] [46]. 

ℒ𝑌𝑂𝐿𝑂 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

[(𝑥𝑖 − 𝑥̂𝑖)
2

𝑠2

𝑖=0

+ (𝑦𝑖 − 𝑦̂𝑖)2] 

(3) 
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+𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

[(√𝑤𝑖 − √𝑤̂𝑖)
2

𝑠2

𝑖=0

+ (√ℎ𝑖 − √ℎ̂𝑖)

2

] 

+ ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

(𝑐𝑖 − 𝑐𝑖̂)
2   

𝑠2

𝑖=0

 

+𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

𝐵

𝑗=0

(𝑐𝑖 − 𝑐𝑖̂)
2   

𝑠2

𝑖=0

 

+ ∑ 1𝑖
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ (𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))
2

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

 
The YOLO total loss function, denoted as 

ℒ𝑌𝑂𝐿𝑂 combining multiple components, including 
coordinate loss, confidence loss, and classification 
loss. The model assigns a higher weight to 
coordinate loss using a coefficient 𝜆𝑐𝑜𝑜𝑟𝑑 which is 
typically set to 5, to emphasize the accuracy of 

bounding box localization. The summation  ∑  𝑆2

𝑖=0  
iterates over all grid cells in the image, where 
𝑆 × 𝑆 represents the total number of grid cells. Each 
cell predicts 𝐵 bounding boxes, and the summation 
∑  𝐵

𝑗=0  Includes all these predictions. The indicator 

function   1𝑖𝑗
𝑜𝑏𝑗

 activates (value 1) if an object is 

present in cell i and bounding box j is responsible 
for the prediction; otherwise, it is 0. The 

complementary term 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is defined as 1 −, 1𝑖𝑗
𝑜𝑏𝑗

 

serving as a penalty for false positives. The notation 
with a hat symbol (e.g., 𝑥̂) indicates predicted 
values. Additionally, the loss function uses  𝜆𝑛𝑜𝑜𝑏𝑗 as 

a penalty coefficient to reduce the influence of 
predictions made in grid cells without any objects, 
thereby improving detection precision. 

 
Key Differences in YOLOv5sM, YOLOv8, and 
YOLOv11 
1. YOLOv5sM with Data Augmentation 

YOLOv5sM uses CSPDarknet backbone and 
PANet neck, and applies data augmentation such as 
Flip, Rotation, and Mosaic to enrich the variety of 
training data.  

 
2. YOLOv8 (anchor-free) 

YOLOv8 adopts an anchor-free architecture 
with a decoupled detection head that separates 
bounding box prediction and classification. The 
bounding box loss function uses Complete 
𝐼𝑜𝑈 (𝐶𝐼𝑜𝑈) loss as shown in equation 4 [47][48]. 

ℒ𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 

(4) 

 

This loss function not only evaluates the 
overlap between predicted and ground truth boxes 
but also incorporates spatial and aspect ratio 
constraints to improve convergence. Specifically, 
the 𝐶𝐼𝑜𝑈 loss introduces a penalty based on the 
Euclidean distance 𝜌 between the center points of 
the predicted and ground truth bounding boxes, 
normalized by the diagonal length 𝑐 of the smallest 
enclosing box. In addition, the term 𝛼𝑣 accounts for 
the difference in aspect ratio between the two 
boxes, where 𝛼 serves as a balancing coefficient. 
This combination allows YOLOv8 to produce more 
ccurate ad stable bounding box predictions across 
varied object shapes and sizes. 

 
3. YOLOv11 

YOLOv11 implements the attention 
mechanism on the backbone and neck, and the loss 
function uses Generalized 𝐼𝑜𝑈 (𝐺𝐼𝑜𝑈) loss as 
equation 5 [48][49]. 

ℒ𝐺𝐼𝑜𝑈 = 1 − IoU

+
∣ 𝒞 − (𝐴 ∪ 𝐵) ∣

∣ 𝒞 ∣
 

(5) 

 
The 𝐺𝐼𝑜𝑈 loss extends the conventional 𝐼𝑜𝑈 

by introducing a penalty for non-overlapping 
bounding boxes, making it more effective in 
scenarios with poor localization. Specifically, the 
𝐺𝐼𝑜𝑈 loss calculates the difference between the 𝐼𝑜𝑈 
score and the normalized area of the smallest 
enclosing box (𝐶) minus the union of the predicted 
(𝐴) and ground truth (𝐵) boxes. This approach 
allows YOLOv11 to better align predicted bounding 
boxes with ground truth, especially in complex 
scenes where objects are partially occluded or 
closely located.  

The differences in loss functions among the 
models have practical implications for detection 
performance. YOLOv5sM employs a 𝐺𝐼𝑜𝑈-Based 
loss, which focuses on bounding box overlap but 
may be less sensitive to spatial misalignment, 
particularly for small or irregularly shaped objects. 
In contrast, YOLOv8 and YOLOv11 adopt 𝐷𝐼𝑜𝑈/
𝐶𝐼𝑜𝑈 losses that incorporate both overlap and the 
distance between bounding box centers, as well as 
aspect ratio consistency. These additional penalty 
terms enable more accurate localization of small or 
partially occluded beef regions, reducing false 
positives and improving detection precision under 
challenging visual conditions. 

While all three models are based on the YOLO 
object detection architecture, they were trained 
under different data preparation schemes. Only 
YOLOv5sM was deliberately configured with an 
augmentation pipeline comprising Mosaic, Flip, and 
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Rotation. This augmentation strategy was explicitly 
enabled by the authors and is not a default or 
intrinsic feature of the standard YOLOv5s model. In 
contrast, YOLOv8 and YOLOv11 were trained using 
unaugmented original images, allowing this study to 
isolate and compare the impact of conventional 
augmentations on performance. This differential 
setup was intentional to evaluate whether basic 
augmentation can significantly improve model 
robustness and generalization in visually subtle 
tasks such as meat freshness detection. 

 
Research Design 

This study employs a comparative 
experimental design to measure the performance of 
three object detection models, namely YOLOv5sM, 
YOLOv8, and YOLOv11. We apply each model to the 
same set of fresh and non-fresh beef images to 
detect the meat’s freshness status. We apply each 
model to the same set of fresh and non-fresh beef 
images to detect the meat’s freshness status. Figure 
1 illustrates the overall research flow.

 
Source: (Research Results, 2025) 

Figure 1. Research Flow Diagram 
 

Model Training 
Each model trains on the same dataset using 

identical parameters and procedures. We split the 
dataset into 70% training data, 20% validation data, 
and 10% test data (70-20-10) [50]. This division is 
via stratified random sampling to maintain 
balanced representation of fresh and non-fresh 
categories. We train all models for a fixed 100 
epochs and monitor validation performance after 
each epoch. We deliberately avoid early stopping or 
validation-based checkpoint selection to ensure 
consistent comparison across models. However, 
this choice raises the risk of overtraining, because 
early stopping is a well-established regularization 
technique that halts training when the validation 
loss stops improving, thereby preventing overfitting 
and often preserving model generalizability 
[51][52]. To mitigate this risk, we analyze validation 
learning curves post-training, looking for signs of 
overfitting, such as rising validation loss or 
plateauing accuracy in later epochs. We report these 
trends in the Results section to support our training 
strategy’s transparency and justify not using early 
stopping. 

 
Model evaluation 

The final stage of the process is model 
evaluation, which measures each model’s 
performance on unseen test data. After training, we 
select the model checkpoint with the best validation 
performance and evaluate it on the test set. This test 
evaluation yields the final metrics (precision, recall, 
mAP) for each model, which we use for the 
comparative analysis. 

 
Hardware and Computing Environment 

We use Google Colab platform equipped with 
an NVIDIA Tesla T4 GPU. The Tesla T4 GPU has 16 
GB of memory and sufficient computational 
capability for training medium-sized YOLO models. 
During the experiments, we utilize Python runtimes 
with Deep Learning libraries (such as PyTorch), as 
per the implementation needs of each model 
(Ultralytics YOLOv5/YOLOv8, etc.). All models were 
trained individually in the same environment to 
ensure there were no differences in computational 
conditions. The use of Google Colab allowed for easy 
standardization of the environment (with 
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compatible CUDA/cuDNN) and free GPU access, 
albeit limited to specific time sessions. This 
hardware configuration was noted as it affected the 
observed training time and memory usage, which 
was later reported as part of the experimental 
results. 
 

RESULTS AND DISCUSSION 
 

Detection Result 
Table 1 shows the training results for 100 

epochs, the three YOLO models show a consistent 
trend of decreasing loss and increasing accuracy. 
YOLOv11 recorded the best performance with the 
lowest train loss value of 0.045 at the 100th epoch, 
followed by YOLOv8 at 0.072 and YOLOv5sM at 
0.154. This is also reflected in the mAP@0.5 value 
during training, where YOLOv11 achieved a score of 
99.9%, higher than YOLOv8 at 99.7% and 
YOLOv5sM at 0.99.2%. In addition, YOLOv11 also 
shows better training time efficiency, requiring only 
22 seconds per epoch on average, compared to 28 
seconds for YOLOv8 and 36 seconds for YOLOv5sM. 

Table 2 shows the validation results 
reinforcing the superiority of YOLOv11, achieving 
the lowest val loss (0.058) and the highest 
mAP@0.5:0.95 of 99.5 at the 100th epoch. YOLOv8 
came in second with a val loss of 0.092 and 
mAP@0.5:0.95% of 98.2%, while YOLOv5sM 
recorded a val loss of 0.202 and mAP@0.5:0.95 of 
96.2%. This comparison shows that the 
architectural improvements in YOLOv11 contribute 
significantly to improving the accuracy and 
efficiency of the model in detecting objects with 
precision. Thus, YOLOv11 can be recommended as 
the best model in the digital image-based meat 
freshness detection task in this scenario. 

The superiority of YOLOv11 can be 
understood in light of its architectural and loss-
function innovations, which have been shown to 
improve detection performance in other domains. 
In particular, YOLOv11 replaces the YOLOv8 
backbone’s CSP C2f blocks with a novel C3k2 
module (two smaller convolutions) and adds a 
Cross-Stage Partial block with Spatial Attention 
(C2PSA) after the SPPF stage [53]. These changes 
enhance feature extraction and force the network to 
focus on the most relevant image regions. In 
parallel, YOLOv11 uses generalized IoU (GIoU)–
based bounding-box loss (and related novel loss 
terms) to improve localization precision [54]. 
Together, these technical enhancements explain 
why YOLOv11 attains higher precision/recall and 
mAP: sharper attention and more precise box 
regression reduce missed detections and false 
positives. Indeed, recent studies report results 

consistent with our findings. Cerqueira et al. found 
that YOLOv11 achieved the highest precision and 
recall on a food-plate waste dataset – significantly 
outperforming YOLOv8 and nearly matching 
YOLOv5’s precision [55]. Likewise, Sapkota et al. 
showed YOLOv11-based models achieving superior 
mask and box mAP in fruit-segmentation tasks 
compared to YOLOv8 [56]. Then comparing 
YOLOv5, YOLOv8, and YOLOv11 on solar panel 
defect detection, found that YOLOv11 achieved the 
highest mAP@0.5 (93.4%) while maintaining 
efficient inference speed (~7.7 ms), thus 
outperforming YOLOv8 and YOLOv5 in both 
accuracy and processing time [57]. In summary, 
these reports attribute YOLOv11’s gains to its 
improved CSP blocks, spatial-attention modules, 
and optimized loss functions – exactly the factors 
that, in our experiments, gave YOLOv11 an edge in 
detecting subtle freshness cues in beef. Thus, the 
literature supports that YOLOv11’s architectural 
refinements directly translate into the accuracy 
advantage observed in this study. 

 
Table 1. Evaluation Results During Training 

Epoch Model Train 
Loss 

Train 
mAP@0.5 

(%) 

Time/Epoch 
(s) 

10 YOLOv5sM 2.876 62.4 36  
YOLOv8 2.215 71.5 28  
YOLOv11 1.876 80.2 22 

20 YOLOv5sM 1.954 78.2 36  
YOLOv8 1.423 84.2 28  
YOLOv11 1.035 89.2 22 

30 YOLOv5sM 1.254 86.2 36  
YOLOv8 0.876 91.2 28  
YOLOv11 0.652 93.8 22 

40 YOLOv5sM 0.872 91.2 36  
YOLOv8 0.532 95.2 28  
YOLOv11 0.385 97.2 22 

50 YOLOv5sM 0.624 94.2 36  
YOLOv8 0.352 97.2 28  
YOLOv11 0.245 98.5 22 

60 YOLOv5sM 0.452 96.2 36  
YOLOv8 0.248 98.2 28  
YOLOv11 0.168 99.2 22 

70 YOLOv5sM 0.328 97.5 36  
YOLOv8 0.182 98.8 28  
YOLOv11 0.118 99.5 22 

80 YOLOv5sM 0.245 98.2 36  
YOLOv8 0.132 99.2 28  
YOLOv11 0.085 99.8 22 

90 YOLOv5sM 0.188 98.8 36  
YOLOv8 0.095 99.5 28  
YOLOv11 0.062 99.9 22 

100 YOLOv5sM 0.154 99.2 36  
YOLOv8 0.072 99.7 28 

  YOLOv11 0.045 99.9 22 

Source: (Research Results, 2025) 
 

 

mailto:mAP@0.5
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Table 2. Evaluation Results During Validation 
Epoch Model Val Loss Val 

mAP@0.5 
(%) 

Val 
mAP@0.5:
0.95 (%) 

10 YOLOv5sM 3.012 59.8 41.2 

 YOLOv8 2.324 69.2 52.3 

 YOLOv11 1.952 78.5 63.5 

20 YOLOv5sM 2.105 76.5 61.2 

 YOLOv8 1.532 83.1 71.2 

 YOLOv11 1.124 88.5 79.8 

30 YOLOv5sM 1.372 84.5 73.2 

 YOLOv8 0.942 90.2 82.3 

 YOLOv11 0.712 93.2 87.5 

40 YOLOv5sM 0.953 90.2 81.5 

 YOLOv8 0.598 94.8 89.2 

 YOLOv11 0.432 96.8 92.5 

50 YOLOv5sM 0.712 93.5 86.5 

 YOLOv8 0.412 96.8 92.8 

 YOLOv11 0.285 98.2 95.2 

60 YOLOv5sM 0.532 95.5 89.5 

 YOLOv8 0.302 97.8 94.2 

 YOLOv11 0.198 98.8 96.8 

70 YOLOv5sM 0.412 96.8 92.2 

 YOLOv8 0.228 98.5 95.8 

 YOLOv11 0.142 99.2 97.8 

80 YOLOv5sM 0.312 97.8 94.2 

 YOLOv8 0.168 98.8 96.8 

 YOLOv11 0.105 99.5 98.5 

90 YOLOv5sM 0.245 98.5 95.2 

 YOLOv8 0.122 99.2 97.5 

 YOLOv11 0.078 99.7 99.2 

100 YOLOv5sM 0.202 98.8 96.2 

 YOLOv8 0.092 99.5 98.2 

  YOLOv11 0.058 99.8 99.5 

Source: (Research Results, 2025) 
 
Evaluation Metrics 

Figures 2, 3, and 4 show the confusion matrix 
analysis, which confirms that all three YOLO models, 
YOLOv5sM, YOLOv8, and YOLOv11, accurately 
classify “Daging_Sapi_Segar” and 
“Daging_Sapi_Tidak_Segar” images with consistent 
performance. Each model achieves identical True 
Positive (TP) values, with 380 for fresh beef and 423 
for non-fresh beef, without producing any False 
Positives (FP) or False Negatives (FN). This result 
indicates that the models detect the target classes 
with high precision and supports earlier 
quantitative findings showing mAP values of up to 
99.9%. However, this seemingly perfect result 
deserves further clarification. While the confusion 
matrices show 100% True Positives with no False 
Positives or False Negatives, the mAP@0.5 remains 
slightly below 100% (at 99.5%). This is not a 
contradiction, but rather a reflection of how the 
metrics differ. The confusion matrix reflects 
classification accuracy for successfully detected 
objects, while the mAP metric considers both 
classification and localization quality across varying 
confidence and IoU thresholds. Thus, minor 

localization errors or confidence threshold effects 
can reduce mAP without appearing as errors in the 
confusion matrix. 

This nearly perfect detection performance 
suggests that the models not only provide high 
classification accuracy but also maintain stable 
feature recognition across the test data. However, 
since the test dataset exhibits relatively uniform and 
distinguishable visual patterns, further evaluation 
on more complex and varied datasets is necessary. 
This step aims to assess the generalization ability of 
each YOLO model in real-world scenarios where 
object characteristics may vary significantly. This 
reinforces a critical limitation of our current study: 
the models were evaluated on a relatively uniform 
dataset with minimal variation in lighting, texture, 
and background. Such homogeneity likely made the 
classification task easier than it would be in 
practical applications. As a result, the high 
performance seen in both the confusion matrices 
and mAP scores must be interpreted with caution. 
These findings demonstrate what is achievable 
under controlled conditions, not necessarily what 
would be expected in real-world deployments. 
Future studies should incorporate more complex 
and diverse datasets to assess the true robustness 
of the models. 

 
Source: (Research Results, 2025) 

Figure 2. Confusion Matrix of Model YOLOv5sM 
 

 
Source: (Research Results, 2025) 

Figure 3. Confusion Matrix of Model YOLOv8 
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Source: (Research Results, 2025) 

Figure 4. Confusion Matrix of Model YOLOv11 
 

ClassificationReport 
Table 3 presents the key evaluation metrics 

for each model on the test data. In general, all three 
models were able to achieve very high detection 
performance. It can be seen that the precision and 
Recall of the three models both reach almost 100%, 
which means that the models successfully detect all 
beef objects with very few (false positive and false 
negative are almost zero). The mAP50 metric (Mean 
Average Precision at IoU 0.5) is also very high for all 
models (99.5%) indicating that at a loose IoU 
threshold, all three models can detect and localize 
objects accurately. New performance differences 
are seen in the mAP@0.5:0.95 metric (average mAP 
at IoU 0.5 to 0.95), where YOLOv5SM is around 
96.2%, while YOLOv8 is slightly higher at 96.9%, 
and YOLOv11 is highest with 97.0%. This indicates 
that YOLOv11 has a slightly better ability to localize 
objects with high precision (tighter IoU) than the 
other two models, although the difference is slight.  

 
Table 3. Classification Report 

Model Evaluation Metrics (%) Time 
(Seco
nd) 

 Precess
ion 

Rec
all 

mAP@
0.5 

mAP@0.5:
0.95 

YOLOv
5sM 

100 100 99.5 96.2 1358
5 

YOLOv
8 

100 100 99.5 96.9 3272 

YOLOv
11 

100 100 99.5 97.0 3841 

Source: (Research Results, 2025) 
 
Table 3 shows that YOLOv5SM is able to 

achieve excellent detection performance (100% 
Precision and Recall). While the models achieved 
perfect precision and recall on the test set, this may 
reflect overfitting due to the dataset’s homogeneity 
and limited variation in meat parts. Because the 
training and testing data were collected under 
controlled conditions rather than diverse real-

world environments such as meat markets or 
slaughterhouses, there is a risk that performance 
may degrade when faced with more complex visual 
scenarios.  For example, models trained on a single 
homogeneous dataset often demonstrate 
overfitting and poor generalization when applied to 
new conditions [58]. Similarly, models developed 
solely on “clean” or limited-variation data have been 
observed to suffer performance drops in 
unconstrained, real-world environments [59].  his 
suggests that our near-perfect results on the test set 
might not fully translate to other contexts beyond 
this controlled dataset. Indeed, recent studies 
emphasize that a small, uniform dataset cannot 
capture the breadth of real-world variability, 
potentially introducing hidden biases and 
recommend using larger, more diverse data to 
properly assess and improve model generalizability 
[60]. The use of data augmentation techniques (Flip, 
Rotation, Mosaic) during training helps YOLOv5SM 
to recognize objects under various conditions, as 
evidenced by the high recall (the model does not 
miss objects) and precision (almost no detection 
errors). YOLOv5SM's mAP0.5:0.95 value of 96.2% 
shows that there is a slight drop in performance at 
stricter IoU thresholds, but the overall accuracy 
remains high. This performance indicates that 
although YOLOv5SM is an older architecture, with 
proper augmentation, it is still very competent for 
this two-class object detection task.  

The YOLOv8 model also showed superior 
evaluation results. The precision and recall of 
YOLOv8 reached 100%, which means that every 
piece of meat in the test data was detected correctly 
without error. Even without data augmentation, 
YOLOv8 achieved an mAP@0.5 of 99.5%, equivalent 
to YOLOv5SM, and a slightly higher mAP@0.5:0.95 
(96.9%). This reflects the advantages of YOLOv8's 
newer architecture: the anchor-free detection head 
and enhanced backbone model enable it to better 
capture object features so that performance 
remains high even when training data is not 
artificially augmented. Compared to YOLOv5sM, 
YOLOv8 has a slight edge in terms of high-precision 
localization capabilities. In other words, YOLOv8 is 
able to provide a slightly more precise bounding box 
at high IoU levels, although the difference is 
marginal. 

As for YOLOv11, this model came out as the 
best in terms of accuracy among the three. The 
evaluation results of YOLOv11 show 100% 
Precision and Recall (same as the other two models 
for overall detection), mAP@0.5 of 99.5%, and the 
highest mAP@0.5:0.95 of 97.0%. The highest 
mAP50-95 metric indicates that YOLOv11 is best at 
detecting objects with precise localization at 



 

 

VOL. 11. NO. 1 AUGUST 2025. 
 . 

DOI: 10.33480/jitk.v11i1.6784. 
 

  

259 

various IoU threshold levels. This achievement was 
obtained without data augmentation, signifying the 
design advantage of YOLOv11. As the latest 
generation model, YOLOv11 has likely integrated 
various updates (e.g. improvements to the 
backbone component, neck, or training algorithms 
such as NMS-free or certain attention mechanisms) 
that provide a slight improvement in accuracy over 
its predecessors. Although the accuracy difference 
with YOLOv8 is very small, YOLOv11's consistency 
in maintaining high performance across various 
metrics confirms its reliability.  

It is also important to clarify the slight 
discrepancy between the mAP@0.5 values reported 
for training and validation (99.9% and 99.8%, 
respectively) and the 99.5% values shown in 
Table 3 for the test set. This difference is expected 
and results from evaluating on different data 
partitions. While training and validation sets are 
used during model development and tuning, the test 
set represents previously unseen data. The minor 
drop of approximately 0.3–0.4% in test 
performance reflects a small and normal 
generalization gap, indicating that the models 
maintain robust predictive ability even on unseen 
samples. Therefore, this difference is not 
inconsistent but demonstrates that the models 
generalize well beyond their training conditions. 

 

 
Source: (Research Results, 2025) 

Figure 5. Detection results of fresh beef by the 
YOLOv5sM model 

 
Figure 5 provides a visual example of 

YOLOv5sM detecting a fresh beef sample, 
supporting the quantitative evaluation with 100% 
precision and recall. The model accurately identifies 
a fresh beef cut, as shown by the highlighted 
bounding box labeled 'fresh beef'. This qualitative 
evidence confirms the quantitative results 100% 
precision and recall on the test set, with an 
mAP@0.5:0.95 of 96.2%. Even with its simpler 
architecture and targeted data augmentation, 
YOLOv5sM provides tight bounding boxes 

consistent with its high evaluation scores, 
reinforcing the confusion matrix findings. 

 

 
Source: (Research Results, 2025) 

Figure 6. Detection results of fresh beef by the 
YOLOv8 model 

 
As shown in Figure 6, YOLOv8 also 

successfully detects fresh beef with slightly 
improved localization accuracy compared to 
YOLOv5sM. The model correctly identifies the fresh 
beef sample with no false negatives, in line with its 
perfect recall. YOLOv8 achieved 100% precision 
and recall, with a slightly higher mAP@0.5:0.95 
(96.9%) than YOLOv5sM, indicating marginally 
improved localization accuracy. The bounding box 
closely encloses the meat, supporting the 
precision/recall metrics and validating the 
confusion matrix results. 

 

 
Source: (Research Results, 2025) 

Figure 7. Detection results of fresh beef by the 
YOLOv11 model 

 
Figure 7 highlights YOLOv11’s ability to 

detect fresh beef with the highest localization 
accuracy among the evaluated models. The model 
successfully detects the beef with perfect 
classification, achieving the highest mAP@0.5:0.95 
(97.0%) among the models. The bounding box 
tightly matches the beef’s contours, visually 
confirming YOLOv11’s superior localization 
performance. Together with Figures 5 and 6, this 
reinforces that all models reliably detect fresh beef 
with no missed detections or false positives. 
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Source: (Research Results, 2025) 
Figure 8. Detection results of non-fresh beef by the 

YOLOv5sM model 

Figure 8 demonstrates YOLOv5sM’s 
detection capability for non-fresh beef, consistent 
with its perfect confusion matrix performance. The 
model correctly identifies the non-fresh meat 
sample, consistent with its perfect confusion matrix 
results for both classes. Despite being trained on 
augmented data, YOLOv5sM maintains 100% 
precision and recall for non-fresh beef, producing 
tight bounding boxes that match its reported 
mAP@0.5:0.95 (96.2%). This shows its robustness 
across both fresh and non-fresh categories. 

 
Source: (Research Results, 2025) 
Figure 9 Detection results of non-fresh beef by the 

YOLOv8 model 

As depicted in Figure 9, YOLOv8 effectively 
detects non-fresh beef, confirming its robustness 
across both classes. The detection overlay confirms 
accurate identification of all non-fresh meat 
portions with no false negatives. This supports the 
model’s perfect precision and recall and its high 
mAP@0.5:0.95 (96.9%), demonstrating precise 
localization. The bounding boxes further validate 
YOLOv8’s ability to distinguish non-fresh beef 
reliably across all test samples. 

 
Source: (Research Results, 2025) 

Figure 10. Detection results of non-fresh beef by 
the YOLOv11 model 

Finally, Figure 10 illustrates YOLOv11 
detecting non-fresh beef with the highest overall 
localization precision, further validating the 
quantitative results. The model detects the large 
non-fresh beef cut with perfect accuracy, achieving 
the highest mAP@0.5:0.95 (97.0%) among all 
models. The bounding box closely matches the 
meat’s outline, confirming YOLOv11’s exceptional 
localization ability. Figures 8–10 collectively show 
that all three YOLO models consistently detect both 
fresh and non-fresh beef with zero detection errors, 
supporting the quantitative results. 

 
Comparison of Resource Training 

Additionally, the “Time (Second)” column in 
Table 3 refers to the total training time required for 
each model to complete 100 epochs. This is not the 
inference time per image but the full cumulative 
training duration. Table 4 presents the same data in 
a more reader-friendly format (hours:minutes), 
illustrating, for example, that 13,585 seconds for 
YOLOv5sM is approximately equivalent to 3 hours 
and 46 minutes. By providing both formats, we aim 
to maintain clarity and consistency across the 
manuscript, ensuring that readers understand these 
metrics represent full model training time under 
consistent conditions. 

The evaluation of model performance is not 
only based on accuracy, but also on the efficiency of 
each model. Table 4 summarizes the comparison of 
training time, iteration speed, GPU memory usage, 
and model file size for YOLOv5SM, YOLOv8, and 
YOLOv11. This comparison is important to assess 
the feasibility of the models in real applications that 
may have limited computing resources. 

 
Table 4. Comparison of Training Performance and 

Model Complexity 
Model Training 

Time 
Speed 
(it/s) 

GPU 
Memory 

(GB) 

Model 
Size 

(MB) 
YOLOv5sM 3 hours 

46 
minutes 

2.59 1.98  14.8  

YOLOv8 54 
minutes 

32 
seconds 

3.99  1.00  6.2  

YOLOv11 1 hour 4 
minutes 

4.64  1.05  5.4  

Source: (Research Results, 2025) 
 
Table 4 shows that YOLOv5SM has the 

longest training time, which is about 3 hours and 46 
minutes for 100 epochs. This long time is due to two 
factors, namely the YOLOv5SM architecture, which 
(relative to the YOLOv8/YOLOv11 variants in this 
experiment) is more complex or larger, and the use 
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of augmentation (especially mosaic), which adds 
computational overhead per iteration. The average 
iteration speed of YOLOv5SM is only 2.59 it/s, the 
slowest among the three, with the highest GPU 
memory usage of 1.98 GB. The size of the YOLOv5SM 
model after training was 14.8 MB, indicating that it 
has a larger number of parameters and thus takes 
up the most space. Consequently, in terms of 
efficiency, YOLOv5SM is less favorable for 
deployment on systems with memory constraints or 
real-time inference needs, despite its high accuracy. 

The YOLOv8 model stands out in terms of 
training efficiency. The training time of YOLOv8 is 
only about 54 minutes for 100 epochs, which is the 
fastest among the three models. Its iteration speed 
is 3.99 it/s, higher than YOLOv5SM, indicating that 
each batch can be processed faster. The GPU 
memory usage of YOLOv8 is also very low, only 1.0 
GB, indicating its lightweight architecture. This is in 
line with YOLOv8's model size of only 6.2 MB, much 
smaller than YOLOv5SM, with a more compact 
model but equivalent accuracy. YOLOv8 offers an 
optimal trade-off between accuracy and efficiency. 
It is suitable for scenarios where training time and 
resources are limited, without having to sacrifice 
detection accuracy.  

YOLOv11 shows an interesting performance 
as it successfully combines high accuracy with good 
efficiency. The training time of YOLOv11 is about 1 
hour and 4 minutes, slightly longer than YOLOv8, 
but still much faster than YOLOv5SM. The iteration 
speed is the highest, reaching 4.64 it/s, which 
means YOLOv11 processes the fastest batches per 
second. The GPU memory usage is 1.05 GB, only 
slightly above YOLOv8, and its model size of 5.4 MB 
is actually the smallest among the three models. 
This result is significant because while YOLOv11 
provides a slight improvement in accuracy (highest 
mAP@0.5:0.95), the model complexity and resource 
requirements are the lowest. This small model size 
is advantageous for deployment in resource-limited 
environments (e.g., edge or mobile devices) where 
memory and storage are constrained. Possibly, 
YOLOv11 is designed with a more efficient 
architecture (e.g. layer optimization or better label 
assignment algorithm) so that it can marginally 
outperform YOLOv8 in accuracy, while still 
maintaining a small model size and high speed. 

 
Comparative Analysis 

Based on the results of  Table 1, Table 2, 
Table 3, and Table 4, the three tested YOLO models 
all performed very well for the two-class fresh vs. 
non-fresh beef detection task. Precision and recall 
reached 100% for all of them, which means that in 
this dataset, all three models were able to detect 

each beef object correctly without error. This 
suggests that either the test cases are relatively 
simple or the models are very capable of handling 
the task. However, this “perfect classification” result 
should be interpreted with caution. The test dataset 
is relatively homogeneous, which likely makes the 
task easier and can lead to overestimation of model 
performance. In practice, such flawless accuracy 
may not generalize to more complex or varied data, 
highlighting a potential gap in generalization. 
Additionally, no early stopping was used during 
training; although we evaluated the best validation 
checkpoint, training for a fixed number of epochs 
without an early-stop mechanism can risk 
overtraining beyond the optimal point. The 
difference in performance is more pronounced in 
the localization metrics (mAP@50-95) and 
computational efficiency aspects.  

In terms of detection accuracy, YOLOv11 was 
slightly ahead with the highest mAP@0.5:0.95 
(97.0%), followed very closely by YOLOv8 (96,9%), 
and then YOLOv5SM (96.2%). The difference is less 
than 1% absolute, which may not be practically 
significant for the detection output (all of these 
differences are difficult to see with the naked eye in 
the detection results). However, this trend 
consistently shows that newer model generations 
provide accuracy improvements, albeit small ones. 
One important finding is that YOLOv5SM with 
intensive augmentation still slightly lags behind 
YOLOv8 and YOLOv11 without augmentation. This 
indicates that the model architecture plays more of 
a role in improving accuracy than just data 
augmentation, at least in this scenario and dataset. 
Augmentation in YOLOv5SM helped the model 
achieve very high performance, but not enough to 
surpass the built-in capabilities of the more modern 
YOLOv8/YOLOv11.  

This study compares the computational 
efficiency of three YOLO models and identifies 
notable differences. YOLOv5sM achieves high 
accuracy but requires nearly 4 hours for training, 
which is significantly longer than YOLOv8 and 
YOLOv11, which complete training in less than 1.5 
hours. The YOLOv5sM model also consumes more 
memory, as its file size is 2–3 times larger than the 
others. In contrast, YOLOv11 demonstrates the best 
performance by combining high detection accuracy, 
especially with the highest mAP@0.5:0.95, and 
efficient resource usage. YOLOv8 delivers the 
fastest training time and offers accuracy that closely 
matches YOLOv11, making it a strong alternative 
when time is limited. Overall, this study 
recommends YOLOv11 for real-world scenarios 
that require accurate and efficient object detection, 
especially in resource-constrained environments 



 

VOL. 11. NO. 1 AUGUST 2025 
. 

DOI: 10.33480 /jitk.v11i1.6784 
 

 

 

262 

 
CONCLUSION 

 
This research has compared the performance 

of three YOLO models, YOLOv5sM, YOLOv8, and 
YOLOv11, in detecting meat freshness from digital 
images. Based on the test results and analysis, all 
three models achieved very high accuracy in 
detecting beef freshness, with precision and recall 
values reaching 100% on the test set. However, it is 
essential to emphasize that these results were 
obtained on a relatively uniform test dataset 
characterized by consistent visual patterns, which 
may have influenced the performance metrics. As 
such, further validation on more complex and 
heterogeneous datasets is necessary to assess the 
generalizability and robustness of the models in 
real-world applications. Among the models 
evaluated, YOLOv11 exhibited the best overall 
performance, achieving the highest mAP@0.5:0.95 
(97%) and superior efficiency compared to the 
others. However, the performance gain of YOLOv11 
over YOLOv8 was marginal (less than 1% mAP 
difference), indicating that the two models 
performed almost equally well on this task. This 
slight advantage may not hold on more complex 
datasets where more variability could diminish 
YOLOv11’s edge. YOLOv8 demonstrated advantages 
in training speed and memory usage, whereas 
YOLOv5sM, although enhanced with data 
augmentation, did not surpass the performance of 
the newer models. These comparative experiments 
consistently indicate that newer YOLO generations 
(YOLOv8, YOLOv11) provide notable improvements 
in both detection accuracy and computational 
efficiency, largely due to advancements in model 
architecture and learning algorithms. 
For similar image-based object detection tasks, the 
adoption of the latest YOLO versions, particularly 
YOLOv11, is recommended to achieve optimal 
results. It is important to note that the dataset used 
in this study was collected under controlled and 
visually uniform conditions, which may limit the 
generalisability of these results. Further validation 
on more heterogeneous and complex datasets is 
essential before large-scale deployment. Future 
research should focus on enhancing the YOLOv11 
architecture with advanced modules, such as 
lightweight attention mechanisms, multi-scale 
feature fusion, or self-supervised learning strategies 
to further improve training efficiency and 
generalization capability across diverse 
environments.  
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