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Abstract— The agricultural sector, particularly coffee production, plays a crucial role in Indonesia’s economy 
as both a domestic commodity and an export product. However, efforts to optimize coffee production are often 
constrained by traditional Multi-Criteria Decision-Making (MCDM) methods that rely heavily on subjective 
judgments, leading to potential inconsistencies—especially in the presence of multicollinearity among 
variables. This study addresses that challenge by proposing a data-driven and consistent weighting method 
that integrates Multiple Linear Regression (MLR) with the Analytic Hierarchy Process (AHP). Regression 
coefficients derived from MLR—based on variables such as the area of immature (-0.2419), mature (0.8357), 
and damaged (0.5119) coffee plantations—are normalized and incorporated into the AHP pairwise 
comparison matrix. The resulting Consistency Ratio (CR) values are all below 0.1, indicating high internal 
consistency and statistical reliability of the derived weights. This integrated approach offers an objective and 
systematic foundation for MCDM in coffee production analysis, enhances the accuracy of agricultural planning, 
and supports evidence-based policymaking, while also providing a replicable model for addressing similar 
challenges in other sectors. 
 
Keywords: AHP, coffee production, consistency ratio, MCDM, multiple linear regression. 
 
Intisari—Sektor pertanian, khususnya produksi kopi, memainkan peran krusial dalam perekonomian 
Indonesia, baik sebagai komoditas domestik maupun produk ekspor. Namun, upaya optimalisasi produksi kopi 
seringkali terhambat oleh metode pengambilan keputusan multikriteria (MCDM) tradisional yang sangat 
bergantung pada penilaian subjektif, sehingga berisiko menimbulkan inkonsistensi—terutama ketika 
terdapat multikolinearitas antar variabel. Penelitian ini mengatasi tantangan tersebut dengan mengusulkan 
metode pembobotan yang konsisten dan berbasis data melalui integrasi Multiple Linear Regression (MLR) 
dengan Analytic Hierarchy Process (AHP). Koefisien regresi yang diperoleh dari MLR—berdasarkan variabel 
seperti luas lahan kopi belum menghasilkan (-0.2419), menghasilkan (0.8357), dan tidak menghasilkan 
(0.5119)—dinormalisasi dan dimasukkan ke dalam matriks perbandingan berpasangan AHP. Nilai 
Consistency Ratio (CR) yang dihasilkan seluruhnya berada di bawah ambang batas 0.1, menunjukkan 
konsistensi internal yang tinggi dan keandalan statistik dari bobot yang dihasilkan. Pendekatan terintegrasi 
ini menawarkan landasan yang objektif dan sistematis untuk analisis MCDM dalam produksi kopi, 
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meningkatkan akurasi perencanaan pertanian, dan mendukung pengambilan kebijakan berbasis data, serta 
menyediakan model yang dapat direplikasi untuk menghadapi tantangan serupa di sektor lainnya. 
 
Kata Kunci: AHP, produksi kopi, rasio konsistensi, MCDM, regresi linear berganda. 
 

INTRODUCTION 
 

Coffee is one of Indonesia’s strategic 
agricultural commodities, contributing significantly 
to the national economy through rural income 
generation and export performance. In the 
2024/2025 marketing year, Indonesia ranked 
fourth among the world’s largest coffee producers, 
accounting for about 6% of global output after 
Brazil, Vietnam, and Colombia [1]. Optimizing 
national coffee production remains challenging due 
to the complex interrelationships among cultivation 
stages—immature, mature, and damaged 
plantation areas—requiring a data-driven approach 
capable of objectively quantifying their 
contributions within a Multi-Criteria Decision-
Making (MCDM) framework. 

Multiple Linear Regression (MLR) is a well-
established statistical method for analyzing 
relationships between dependent and multiple 
independent variables [2]–[10]. Beyond prediction, 
MLR effectively quantifies variable influence and 
has been applied across diverse domains, including 
energy forecasting [5], [8], [11], industrial 
performance [9], [11], material property evaluation 
[12], and agricultural yield prediction [4], [6]. Its 
ability to provide objective quantitative insights 
makes MLR suitable for identifying key factors 
influencing coffee production. 

In Decision Support Systems (DSS), MLR has 
also proven valuable in integrating predictive 
modeling with decision optimization—such as in 
fuel consumption estimation for shipping and 
performance evaluation in material science [11], 
[12]. Moreover, MLR-derived coefficients can serve 
as objective weights within MCDM techniques like 
the Analytic Hierarchy Process (AHP), reducing 
reliance on subjective expert judgment [11], [21]. 
Ensuring the logical consistency of these weights 
through a Consistency Ratio (CR) test is essential for 
reliable decision-making [16]–[20]. 

Therefore, this study proposes an integration 
of MLR and AHP within the MCDM framework to 
develop an objective and consistent criteria-
weighting method for analyzing Indonesia’s coffee 
production factors—Immature Coffee Plantation 
(ICP), Mature Coffee Plantation (MCP), and 
Damaged Coffee Plantation (DCP). The resulting 
model aims to support data-driven strategic 
decisions and enhance national coffee productivity 

through efficient and measurable resource 
allocation. 

 
MATERIALS AND METHODS 

 
This study adopts a quantitative approach to 

develop an objective criteria weighting method by 
integrating Multiple Linear Regression (MLR) into a 
Multi-Criteria Decision Making (MCDM) framework. 
The research methodology, as illustrated in Figure 
1, consists of several key stages.  

The stages in Figure 1 begin with data 
collection through a quantitative survey, using 
secondary data sourced from Indonesian Coffee 
Statistics (BPS, 2023) [22]. The next stage involves 
data preprocessing, including normalization, 
handling missing values, and standardizing the 
format and units of data. Subsequently, the 
determination of criteria weights is carried out 
using MLR, and the results are integrated into the 
Analytic Hierarchy Process (AHP) framework. A 
consistency check is performed by calculating the 
Consistency Ratio (CR); if the CR value is less than 
0.1, the process continues to the final stage—
decision-making using the MCDM method. If not, the 
weighting process is revised to improve 
consistency. 

 

Source: (Research Results, 2025) 
Figure 1. Research Methodology 
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A. Data Collection and Preprocessing 

The data used in this study were obtained 
from Statistics Indonesia (Badan Pusat Statistik – 
BPS, 2023), which serves as the official national 
statistical agency responsible for collecting, 
processing, and publishing Indonesia’s socio-
economic and agricultural data. BPS applies 
standardized data collection methods, periodic field 
surveys, and rigorous validation procedures that 
adhere to national and international statistical 
standards. These include cross-verification with 
regional agricultural offices and consistency checks 
across time series data to ensure data accuracy and 
reliability. 

The dataset utilized in this study includes 
comprehensive information on coffee plantation 
areas categorized as immature, mature, and 
damaged across all major coffee-producing 
provinces in Indonesia. As such, the dataset is 

considered both representative and reliable for 
analyzing patterns and determinants of coffee 
production at the national level. By relying on BPS 
as the primary data source, this study ensures the 
integrity of the empirical analysis and minimizes 
measurement or sampling bias. 
 High-quality data is essential for ensuring 
the validity and robustness of research findings. The 
accuracy and consistency of the dataset directly 
influence the reliability of the statistical and 
modeling results, as any measurement errors or 
inconsistencies could lead to biased estimates or 
misleading interpretations. By using verified and 
standardized data from Statistics Indonesia (BPS), 
this study minimizes the risk of data-related bias 
and enhances the credibility of the empirical 
outcomes. Consequently, the validity of the 
conclusions drawn from this analysis is strongly 
supported by the integrity of the data foundation.

 
Table 1. Area of Coffee by Condition of Crops, Coffee Production, and Productivity of Indonesian Coffee 

Plantation by Province, 2023 

No. Province 
Area (Ha) 

Production (ton) Yield (Kg/Ha) 
Immature Mature Damaged Total 

1 Aceh 12.226 86.327 15.416 113.968 71.084 823 
2 Sumatera Utara 19.252 68.604 10.736 98.592 89.610 1.306 
3 Sumatera Barat 6.605 16.218 945 23.768 13.623 840 
4 Riau 1.795 1.808 726 4.328 1.795 993 
5 Jambi 7.532 20.931 2.833 31.296 19.434 928 
6 Sumatera Selatan 16.502 230.862 20.019 267.383 207.320 898 
7 Bengkulu 14.959 73.296 2.635 90.891 50.745 692 
8 Lampung 7.873 137.760 6.980 152.614 105.807 768 
9 Bangka Belitung 236 105 8 349 86 820 

10 Kepulauan Riau 10 3 5 18 0 131 
11 DKI Jakarta 0 0 0 0 0 0 
12 Jawa Barat 17.520 32.857 3.866 54.243 22.628 689 
13 Jawa Tengah 9.966 38.599 1.587 50.153 27.227 705 
14 D.I. Yogyakarta 176 1.591 68 1.836 1.872 1.177 
15 Jawa Timur 12.238 69.934 9.136 91.309 47.577 680 
16 Banten 337 4.780 1.129 6.246 1.994 417 
17 Bali 3.582 27.879 2.317 33.778 13.005 466 
18 Nusa Tenggara Barat 3.932 9.507 599 14.039 6.429 676 
19 Nusa Tenggara Timur 18.036 48.077 9.442 75.555 25.737 535 
20 Kalimantan Barat 985 3.805 2.662 7.453 2.969 780 
21 Kalimantan Tengah 977 439 649 2.066 194 441 
22 Kalimantan Selatan 526 1.395 310 2.231 884 634 
23 Kalimantan Timur 196 467 667 1.330 125 267 
24 Kalimantan Utara 292 301 330 923 112 372 
25 Sulawesi Utara 1.428 5.498 865 7.791 3.728 678 
26 Sulawesi Tengah 4.387 5.119 1.761 11.267 2.744 536 
27 Sulawesi Selatan 13.005 55.643 10.478 79.126 30.727 552 
28 Sulawesi Tenggara 2.215 5.934 1.410 9.559 2.799 472 
29 Gorontalo 140 591 574 1.305 125 212 
30 Sulawesi Barat 3.103 6.873 6.689 16.664 4.720 687 
31 Maluku 312 757 239 1.308 444 586 
32 Maluku Utara 94 56 241 392 15 262 
33 Papua Barat 91 77 89 257 10 130 
34 Papua 5.349 6.119 3.343 14.811 3.156 516 

  INDONESIA 185.878 962.213 118.757 1.266.848 758.725 789 

Source: (BPS, 2023) 
 

Table 1 presents the dataset, which includes 
ICP, MCP, and DCP—representing the areas of 
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immature, mature, and damaged coffee plantations, 
respectively, measured in hectares—and TCP 
(Total Coffee Production), measured in tons. 

Data were obtained from publicly available 
agricultural statistics over a defined period and 
cleaned to remove inconsistencies or missing 
values. Each independent variable (ICP, MCP, DCP) 
was normalized to standardize the scale before 
regression modeling.  
 
B. Multiple Linear Regression (MLR) 

Modeling 

The primary analysis involved constructing 
an MLR model to estimate the relationship between 
coffee production factors (independent variables) 
and total coffee production (dependent variable). 
The general form of the MLR model is expressed as: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀  (1) 

 
Where 𝑌 represents the dependent variable (TCP), 
and 𝑋1, 𝑋2 , 𝑋3 are the independent variables (ICP, 
MCP, DCP). Parameter β₀ is the intercept term. 
Parameters 𝛽1, 𝛽2, 𝛽3 denote the regression 
coefficients were interpreted as the relative 
contribution of each factor to the total production., 
and ε represents the error term. 

If the data are expressed in matrix form, then 
𝐘 is a 34×1 vector of the dependent variable. 𝐗 is a 
34×4 matrix, where the first column consists of ones 
to account for the intercept, and the subsequent 
columns represent the independent variables 
𝑋1, 𝑋2, 𝑋3. And 𝜷 is a 4×1 vector of regression 
coefficients (including intercept), and ε is the vector 
of errors (residuals). 

The regression coefficients (𝜷̂) are estimated 
using the Ordinary Least Squares (OLS) method 
with the following formula: 

𝜷̂ = (𝐗𝑻𝐗)−𝟏𝐗𝑻𝐘   (2) 

C. Determination of Criteria Weighted from 

Regression Coefficients 

For the purpose of MCDM weighting, the 
absolute value of each independent variable’s 
regression coefficient is taken: 

𝑤𝑖 = |𝛽̂𝑖| (3) 

Normalization is then performed to ensure that the 
total weight equals 1: 

𝑤𝑖
∗ =

𝑤𝑖

∑ 𝑤𝑗
𝑛
𝑗=1

 = 
|𝛽̂𝑖|

∑ |𝛽̂𝑗|
𝑛
𝑗=1

 (4) 

Where 𝑤𝑖
∗ is a normalized weight for criteria 𝑖 and 

the values of 𝛽̂𝑖  are standardized regression 
coefficients with n criteria  (n = 3). These weights 
reflect the objective importance of each criterion 
(ICP, MCP, DCP) based on their statistical influence 
on TCP. 
 
D. Integration into the AHP Matrix and 

Consistency Testing 

The normalized weights were inserted into 
the AHP pairwise comparison matrix 𝑨 = [𝑎𝑖𝑗], is an 

nxn square matrix used to compare n criteria in 
pairs using the AHP scale (1-9). Each element 𝑎𝑖𝑗 
represents the relative importance of criteria i 
compared to criteria j 

𝑎𝑖𝑗 =
𝑤𝑖
∗

𝑤𝑗
∗  (5) 

The element 𝑎𝑖𝑗 satisfies the following properties:  

1. Reciprocal property: 𝑎𝑗𝑖 =
1

𝑎𝑖𝑗
, for all i≠j 

2. Identify property: 𝑎𝑖𝑖 = 1, for all i 
3. Positive values: 𝑎𝑖𝑗 > 0, for all i, j 

 
These properties ensure logical consistency within 
the matrix, which is essential for deriving valid and 
interpretable priority weights. 

Once the pairwise comparison matrix 𝑨 has 
been constructed based on expert judgments using 
the AHP scale, the next step is to derive the priority 
vector (eigenvector) and assess the consistency of 
the matrix. These steps ensure the reliability of the 
resulting weights. 

  
Step 1: Calculating the Priority Vector 
(Eigenvector) 

To obtain the weight of each criterion, the 
normalized principal eigenvector is calculated. This 
vector represents the relative weights of the 
criteria. 
Procedure: Given the pairwise matrix 𝑨 = [𝑎𝑖𝑗],  

perform the following: 
 
1. Sum each column of the matrix: 

  𝒔𝒋 = ∑ 𝒂𝒊𝒋
𝒏
𝒊=𝟏  (6) 

2. Normalize the matrix by dividing each element 

by its column total:  

 𝑎̂𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝒂𝒊𝒋
𝒏
𝒊=𝟏

=
𝑎𝑖𝑗

𝒔𝒋
 (7) 

3. Calculate the average of each row of the 

normalized matrix to obtain the priority vector. 
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  𝑤𝑖 =
1

𝑛
∑ 𝑎̂𝑖𝑗
𝑛
𝑗=1  (8) 

Step 2: Calculating the Principal Eigenvalue 
(𝝀𝒎𝒂𝒙) 

To measure consistency, the maximum 
eigenvalue 𝜆𝑚𝑎𝑥  Of matrix 𝑨 is estimated as follows: 

𝜆𝑚𝑎𝑥 =
∑ (

(𝐴.𝑤)𝑖
𝑤𝑖

𝑛
𝑖=1 )

𝑛
 (9) 

Where 𝐴.𝑤 is the matrix-vector multiplication, and 
𝑤 is the priority vector obtained from step 1 
 
Step 3: Calculating Consistency Index (𝑪𝑰) 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
  (10) 

Step 4: Calculating Consistency Ratio (𝑪𝑹) 
The Consistency Ratio compares the 𝐶𝐼 with a 
Random Index (𝑅𝐼), which is the average 𝐶𝐼 of a 
randomly generated matrix of size n  

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
  (11) 

Where 𝑅𝐼 values for typical matrix sizes are: 
 

Table 2. Random Index with 5 Criteria 

Source: (Research Results, 2025) 

Consistency Decision Rule: 
If  𝐶𝑅 < 0.1 indicate acceptable consistency, while 
values approaching this threshold may reflect 
minor subjective inconsistencies that could affect 
ranking stability. 
If 𝐶𝑅 ≥ 0.1: The judgments are too inconsistent and 
should be revised. 
   

RESULTS AND DISCUSSION 
 

This study aims to determine the most 
influential criteria in national coffee production 
using a quantitative modeling approach. A Multiple 
Linear Regression (MLR) model was employed to 
analyze the impact of three plantation variables: 
Immature Coffee Plantation (ICP), Mature Coffee 
Plantation (MCP), and Damaged Coffee Plantation 
(DCP). The regression output, as presented in 
Figure 2, showed that the model is statistically 
significant with an R-squared of 0.965 and an 
adjusted R-squared of 0.962, indicating excellent 
explanatory power. 

Figure 2 below shows that among the three 
predictors or independent variables, MCP exhibited 
the strongest and most statistically significant 
influence on coffee production, with a coefficient of 
0.8357 (p < 0.001). This result is expected, as 
mature plantations directly contribute to 
harvestable yield. The DCP variable also had a 
positive coefficient (0.5119), though it was not 
statistically significant (p = 0.418), suggesting some 
contribution to production, possibly from partially 
productive damaged plants. Conversely, the ICP 
variable had a negative coefficient (-0.2419) and 
was not statistically significant (p = 0.500), 
indicating that immature plantations currently do 
not contribute positively to production. 

 

 
Source: (Research Results, 2025) 

Figure 2. The Summary of The OLS Regression  
 

The regression analysis strongly indicates 
that the maturity level of coffee plantations is the 
most critical determinant of production outcomes. 
The dominance of MCP in the model underscores 
the importance of maintaining and expanding 
mature coffee areas as a direct strategy to enhance 
productivity. This finding aligns with agronomic 
theories emphasizing that yield performance 
reaches its optimal level during the mature phase, 
where plants are in their highest productive cycle. 
Furthermore, the insignificant impact of ICP 
highlights that replanting and regeneration 
programs require a longer maturation period 
before contributing to output. This study provides a 
quantitative confirmation that maturity structure 
plays a more decisive role than damage control or 
replanting speed. However, the moderate positive 
coefficient of DCP found in this study introduces an 
interesting dimension — suggesting that some 
damaged plantations may still have partial 
productivity, possibly due to incomplete crop loss 
or mixed-age structures within the same plantation 

n 1 2 3 4 5

RI 0.0 0.0 0.58 0.9 1.12
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block. This nuance contributes to the growing body 
of knowledge emphasizing the need for a more 
granular classification of plantation condition 
beyond the binary healthy–damaged distinction, 
which could enhance data accuracy in agricultural 
modeling. 

The results have important implications for 
agricultural policy and coffee production 
management. The high weight assigned to MCP 
suggests that government or cooperative programs 
should prioritize maintenance, rejuvenation, and 
protection of mature coffee areas. Investments in 
pest control, pruning, and fertilization during the 
mature phase can yield immediate productivity 
gains. Meanwhile, resources allocated to ICP should 
focus on long-term sustainability rather than short-
term yield increase. In practice, regional 
agricultural offices could use the derived MCDM-
AHP weights as a decision-support tool to allocate 
budgets and technical assistance proportionally 
across plantation categories. For example, areas 
with a declining MCP-to-ICP ratio may require 
policy interventions to prevent future production 
deficits. 

Integrating MLR-derived coefficients into an 
AHP framework bridges statistical and decision-
making methodologies, ensuring that the weighting 
system is both data-driven and logically consistent. 
This hybrid approach enhances the reliability of 
multi-criteria evaluation in agricultural contexts, 
where subjective expert judgments often dominate. 
The use of normalized regression coefficients as 
AHP inputs minimizes bias and provides a 
quantitative foundation for subsequent pairwise 
comparisons. This method addresses a common 
challenge in MCDM studies, where criteria weights 
are often based solely on expert perception without 
empirical backing. By grounding the AHP matrix in 
regression results, the study introduces a replicable 
model that can be applied to other crops or 
agricultural policy assessments. 

To incorporate these findings into a Multi-
Criteria Decision Making (MCDM) framework, the 
regression coefficients were first converted into 
positive values and then normalized to form 
preliminary weights in Table 3: 

 
Table 3. Normalized Weights of Coffee Production 

Criteria Based on MLR Positive Coefficients 
Criteria Positive Coefficient Normalized Weight 

ICP 0.2419 0.1522 
MCP 0.8357 0.5258 
DCP 0.5119 0.3221 

Source: (Research Results, 2025) 
 

Table 3 presents the transformation of 
regression coefficients derived from the Multiple 

Linear Regression (MLR) model into criteria 
weights applicable in a Multi-Criteria Decision 
Making (MCDM) framework. The "Positive 
Coefficient" column displays the absolute values of 
the regression coefficients for the three input 
variables, i.e. ICP, MCP, and DCP.  

These values were then normalized to 
produce the "Normalized Weight", representing the 
relative importance of each criterion in contributing 
to the national total coffee production. The weights 
sum to 1, making them suitable for further MCDM 
analysis such as integration with the Analytic 
Hierarchy Process (AHP). The normalized weights 
indicate that MCP has the highest influence on total 
coffee production (0.5258), suggesting that MCP 
should be prioritized in strategic resource 
allocation, followed by DCP (0.3221) and ICP 
(0.1522), which have a relatively lower immediate 
impact on output. To ensure logical consistency of 
the derived weights, the normalized coefficients 
were used to construct a pairwise comparison 
matrix for AHP processing (matrix 𝑨): 

 
Table 4. Pairwise Comparison Matrix for AHP 

 ICP MCP DCP 

ICP 1.000 0.289 0.473 

MCP 3.455 1.000 1.630 

DCP 2.116 0.613 1.000 

Source: (Research Results, 2025)  
 

Matrix 𝑨 in Table 4 represents the relative 
importance of one criterion compared to another. 
Values > 1 indicate the row criteria are more 
important than the column criteria. Values < 1 
indicate the row criteria are less important than the 
column criteria. Example: MCP vs ICP = 3.455 
means MCP is about 3.455 times more important 
than ICP. From this matrix, the priority vector (AHP 
weights) was calculated as follows: 
 

Table 5. Calculate Priority Vector 
  ICP MCP DCP 𝑤𝑖 𝐴.𝑤 𝝀 

ICP 1.000 0.289 0.473 1.000 0.457 3.000 
MCP 3.455 1.000 1.630 3.455 1.578 3.000 
DCP 2.116 0.613 1.000 2.116 0.966 3.000 

Source: (Research Results, 2025)  
 

Table 5 presents a detailed calculation 
process from the Analytic Hierarchy Process (AHP) 
methodology to derive the priority vector (weights) 
and assess the consistency of the pairwise 
comparison matrix. To validate the logical 
coherence of the pairwise comparisons, the AHP 
consistency ratio (𝐶𝑅) was computed. With a 
maximum eigenvalue (𝝀𝒎𝒂𝒙) of 3.000, a consistency 
index (𝐶𝐼) can be calculated: 
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𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 −1
=
3 − 3

3 − 1
=
0

2
= 0 

and a random index (𝑅𝐼) of 0.58, the resulting 𝐶𝑅 is: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
=

0.0

0.58
= 𝟎.𝟎 < 𝟎. 𝟏 

The calculated CR value of 0.0 confirms that 
the decision matrix is perfectly consistent. Such a 
result indicates strong coherence between 
empirical findings (from MLR) and expert reasoning 
embedded in AHP comparisons. In decision 
analysis, maintaining a CR below 0.1 is essential to 
avoid distortions in ranking outcomes. This study 
not only meets but surpasses that threshold, 
implying a high degree of methodological reliability. 

Nonetheless, it is crucial to recognize that 
perfect consistency is rare in practice. Future 
research could test the robustness of this matrix 
through sensitivity analysis, perturbing input 
judgments slightly to observe the stability of 
ranking results. Such analysis would ensure that the 
final weights remain valid even under varying 
decision contexts or stakeholder preferences. 

This indicates that the pairwise comparison 
matrix is consistent and the weights can be reliably 
used in subsequent MCDM stages and the 
judgments provided by decision makers were 
logically consistent and the derived weights are 
reliable. However, when a CR value approaches the 
threshold, it may signal minor inconsistencies 
arising from subjective perception differences 
among respondents. Such inconsistencies can 
potentially affect the stability of ranking results. 
Therefore, it is important to interpret CR values not 
only as numerical indicators of consistency but also 
as reflections of decision reliability. In practice, 
when CR values are close to 0.1, performing a 
sensitivity analysis is recommended to test whether 
small perturbations in judgments could alter the 
final priority rankings.  

Beyond methodological validation, the study 
provides an applied framework for integrating 
quantitative modeling into agricultural planning. 
The combined use of MLR and AHP offers 
policymakers a structured, transparent mechanism 
to prioritize interventions. Future research could 
extend this model by including socio-economic or 
climatic variables, such as rainfall, altitude, or labor 
productivity, to further enrich the decision-making 
process. Additionally, incorporating dynamic or 
time-series regression could capture evolving 
relationships between plantation characteristics 
and yield over multiple harvest periods, offering a 
more adaptive decision support system for 
sustainable coffee production. 

Overall, the findings demonstrate that a data-
driven MCDM approach enhances both the 
analytical depth and the decision quality in 
agricultural productivity studies. By integrating 
MLR and AHP, the study achieves a balance between 
statistical rigor and practical decision relevance. 
The developed framework not only validates the 
relative importance of plantation variables but also 
offers a reproducible pathway for policymakers to 
design targeted, evidence-based strategies to 
improve national coffee production efficiency. 

 
CONCLUSION 

 
This study effectively integrates Multiple 

Linear Regression (MLR) and the Analytic 
Hierarchy Process (AHP) to evaluate critical factors 
influencing coffee production. By utilizing MLR-
derived coefficients as initial weights and validating 
them through AHP pairwise comparisons, the 
model achieves both statistical objectivity and 
logical consistency. The findings highlight the area 
of Mature Coffee Production (MCP) as the most 
significant factor (0.8357), followed by the area of 
Damage Coffee Production (DCP, 0.5119) and the 
area of Immature Coffee Production (ICP, 0.2419). 
This study also demonstrates that integrating 
Multiple Linear Regression (MLR) with the Analytic 
Hierarchy Process (AHP) provides a robust, 
objective, and consistent approach for determining 
criteria weights in Multi-Criteria Decision-Making 
(MCDM), particularly in the context of coffee 
production in Indonesia. By using regression 
coefficients as data-driven inputs for the AHP 
matrix, the model effectively addresses subjectivity 
and multicollinearity issues inherent in traditional 
weighting methods. A consistency ratio (CR) of 0 
confirms the reliability of judgments, establishing 
the hybrid MLR-AHP model as a robust framework 
for prioritizing production determinants. 

Future research can extend this framework 
by incorporating additional criteria—such as 
environmental conditions, technological adoption, 
or policy support—within a multi-level AHP 
structure. Integration with other MCDM techniques 
like TOPSIS or VIKOR may enhance analytical 
robustness and facilitate comparative evaluations. 
Applying the model across diverse regional contexts 
and incorporating time-series analysis could 
capture evolving factor dynamics. Moreover, the 
development of a decision support system 
grounded in this hybrid model would offer valuable 
insights for practitioners and policymakers, with 
stakeholder engagement improving the model's 
relevance and applicability. 
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