

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6818.

171

DRIP INFUSION MONITORING AND DATA LOGGING SYSTEM BASED ON
YOLOv5

Giri Wahyu Wiriasto1*; Andika Rizaldy1; Putu Aditya Wiguna1,2; Indira Puteri Kinasih3

Electrical Engineering Department1

Medical and Health Science Department2

University of Mataram, Mataram City, Indonesia1,2
https://unram.ac.id/en/1,2

giriwahyuwiriasto@unram.ac.id*; andika9105@gmail.com; aditya.ku2004@gmail.com

Faculty of Science3

Universiti Brunei Darussalam, Bandar Sri Begawan City, Brunei Darussalam3
https://ubd.edu.bn/3

indiraputeri@ubd.ac.bn

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

The creation is distributed under the Creative Commons Attribution-Non Commercial 4.0 International License.

Abstract— Intravenous infusion (IV) functions to deliver medication or fluids directly into the patient’s body
and requires an accurate drops-per-minute (TPM) calculation to ensure the correct dosage is administered.
Manual calculation techniques, which are still widely used today, tend to be inefficient and carry a high risk of
human error. Therefore, a more reliable and innovative automated approach is needed. In this study, we
developed a prototype of an automatic infusion monitoring system based on the CNN-YOLOv5 architecture.
The system records a one-minute IV drip video using a mobile device, then processes it through a server to
automatically calculate the TPM, where YOLOv5 is used for drip detection, Deep SORT for object tracking, and
a unique ID numbering scheme is applied to each droplet to ensure it is counted only once until it exits the
frame. The calculation results are stored in a patient database that we designed. We also explored the effect of
dataset background on accuracy. Testing was conducted on 48 videos (30 fps) with two background types—
white (LBP) and black (LBH)—and drip variations of 20, 30, 40, and 50 TPM with varying durations. The
results showed higher accuracy on the black background, reaching 0.79 compared to 0.58 on the white
background, both with a precision of 1.00. The system demonstrated excellent performance in detecting drips
with high precision and good accuracy, particularly on LBP for TPM <40 fps and on LBH for TPM <50 fps.

Keywords: convolutional neural network, drip infusion, intravenous infusion, YOLOv5

Abstrak— Infus intravena (IV) berfungsi untuk mengantarkan obat atau cairan langsung ke dalam tubuh
pasien, dan membutuhkan perhitungan tetesan per menit (TPM) yang akurat agar dosis yang diberikan tepat.
Teknik perhitungan manual yang masih banyak digunakan saat ini cenderung tidak efisien dan berisiko tinggi
terhadap kesalahan manusia. Oleh karena itu, dibutuhkan pendekatan otomatis yang lebih andal dan inovatif.
Dalam studi ini, kami mengembangkan prototipe sistem pemantauan infus otomatis berbasis arsitektur CNN-
YOLOv5. Sistem merekam video tetesan IV selama satu menit menggunakan perangkat seluler, lalu
memprosesnya melalui server untuk menghitung TPM secara otomatis dimana YOLOv5 bekerja untuk deteksi
tetesan, Deep SORT untuk pelacakan objek, dan skema penomoran ID unik pada setiap tetesan agar tidak
dihitung lebih dari sekali hingga keluar dari bingkai. Hasil penghitungan disimpan dalam basis data pasien
yang kami rancang. Kami juga mengeksplorasi efek latar belakang dataset terhadap akurasi. Pengujian
dilakukan terhadap 48 video (30 fps) dengan dua jenis latar belakang—putih (LBP) dan hitam (LBH)—dan
variasi tetesan 20, 30, 40, serta 50 TPM dengan durasi waktu yang dibedakan. Hasil menunjukkan akurasi
lebih tinggi pada latar belakang hitam, mencapai 0.79 dibandingkan 0.58 pada latar belakang putih,

mailto:andika9105@gmail.com

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6818

172

keduanya dengan presisi 1.00. Sistem ini menunjukkan performa sangat baik dalam mengenali tetesan dengan
presisi tinggi, dan akurasi yang baik khususnya pada LBP untuk TPM <40 fps dan LBH untuk TPM <50 fps.

Kata Kunci: : jaringan syaraf konvolusional, infus tetes, infus intravena, YOLOv5.

INTRODUCTION

An intravenous (IV) infusion is a medical
device used to deliver fluids, medications, or
nutrients directly into a patient’s bloodstream at
regular intervals [1]. This therapy requires medical
supervision, particularly to monitor the drip rate to
ensure accurate dosage. The fluid flow rate is
typically observed through the number of drops in
the drip chamber, which is still manually adjusted
and counted by medical personnel in most cases [2].
However, this rate may vary due to factors such as
fluid volume, the height of the infusion, or blockages
in the tubing, necessitating periodic adjustments.
Manual counting is time-consuming and prone to
errors.

To address this, various studies have
proposed automatic infusion monitoring solutions.
A system using digital image processing was
developed [3], while intravenous fluid delivery was
described in [4]. An IoT-based system for
continuous monitoring from the nurse's station was
introduced [5], and a monitoring system for infused
liquid volume via wireless was designed [6].
This research presents a web-based monitoring
system for intravenous (IV) infusion therapy that
combines YOLOv5 [9][10] object detection with
Deep SORT [11] tracking to enable real-time drop
counting. While previous computer vision
approaches for infusion monitoring have
demonstrated the viability of techniques like YOLO
and Fast R-CNN [7][8], the current implementation
specifically adapts YOLOv5's architecture for
clinical web applications, prioritizing usability in
inpatient care settings.

The study's preliminary phase employs a
controlled evaluation framework using datasets
with black (LBH) and white (LBP) backgrounds to
isolate the impact of environmental variables. By
restricting the object class to only "drops," the
investigation aims to establish baseline
performance metrics for detection and counting
accuracy before expanding to more complex clinical
scenarios. This focused approach allows for
systematic validation of the core algorithms while
maintaining clinical relevance through web-based
deployment and real-time processing capabilities
that address limitations in existing solutions [7][8]
regarding practical implementation in hospital
environments. The video dataset was captured
under ambient daytime lighting conditions in

hospital inpatient rooms, without controlled or
additional lighting setups.

MATERIALS AND METHODS

In previous studies, various efforts have been
made to monitor intravenous fluids using artificial
intelligence to address calculation errors. In this
study, a system was developed by integrating an AI
model and deploying it on an end-user device. A
general illustration of how the system operates via
a smartphone is shown in Figure 1, with this
research focusing specifically on the elements
enclosed in the dashed black box.

Source: (Research Proposed, 2025)

Figure 1. Diagram block of research area

The illustration in Figure 1 shows how users can
access the application after the operator starts it
and connects to the local network. Connected users
can run the application, record videos, and upload
them for processing. This process involves object
detection using the YOLOv5 algorithm integrated
with the Deep SORT algorithm. The output includes
information such as the number of drops, time, and
frames per second (fps).

Dataset
The dataset used in this study was obtained

through direct video recording. A total of 28,800
images were generated by extracting frames from
16 one-minute videos recorded at 30 fps. The data
was split into two subsets: 70% for training and
30% for testing. Furthermore, the dataset was
divided into two groups based on background color,
as shown in Figures 2(a,b) for the white background
dataset (LBP) [12] and Figures 2(c,d) for the black
background dataset (LBH) [13]. These two datasets
were then further light qualitative intensity
categorized into four subgroups: Figure 2(a) shows
the Bright White Background (TBP), Figure 2(b)
shows the Dark White Background (GBP), Figure
2(c) shows the Bright Black Background (TBH), and

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6818.

173

Figure 2(d) shows the Dark Black Background
(GBH). The detailed distribution of each category in
the dataset is presented in Table 1.

Table 1. Dataset of video to image drop infusion
capture with different sample category

Category Video .fps to
(images)

Bright White Background (TBP) 7200
Dark White Background (GBP) 7200
Bright Black Background (TBH) 7200
Dark Black Background (GBH) 7200
Total 28800

Source: (Research Proposed, 2025)

Source: (Research Proposed, 2025)

Figure 2. Dataset sampling for each category

Labelling Dataset
In the data labeling stage, the process was

carried out manually using the Roboflow website
[14]. Roboflow is a tool developed by the company
Roboflow that facilitates collaborative image
annotation and allows for flexible data
management, augmentation, and export [15].

Utilizing a dataset from Roboflow can be done by
generating an API after selecting the desired model
format. Figure 3 shows the API source code for the
dataset that can be used.

Source: (Research Result, 2025)

Figure 3. API Dataset Source Code link

Figure 4 explanation the position of the counting
baseline from dataset annotation labeling bounding
box (BB) objects dimension with annotation tool.
The dataset preparation for infusion drip detection
begins by creating a new project in Roboflow, where
researchers upload high-quality video recordings of
IV drips under various clinical conditions. The
system first extracts frames at a configurable FPS
rate (typically 2-5 FPS) to capture critical droplet

formation moments while avoiding redundant data.
Each extracted frame undergoes meticulous manual
annotation using Roboflow's bounding box tool,
where annotators label three key objects: (1) the
drip chamber body, (2) individual falling droplets,
and (3) the fluid meniscus level. To ensure
annotation consistency, the team follows strict
guidelines: droplets are marked at their fullest
visible diameter, chambers use rectangular boxes
encompassing the entire visible column, and
ambiguous frames containing bubbles or occlusions
are flagged for review. Roboflow then automatically
processes the annotated dataset by splitting it into
balanced training (70%), validation (20%), and test
(10%) sets while applying essential preprocessing
(auto-orientation, resizing to 640×640 pixels).

Source: (Research Proposed, 2025)

Figure 4. Block diagram of the roboflow dataset
preparations

Pre-processing
In the pre-processing stage, steps are taken to

simplify the image format. Various types of pre-
processing can be applied, such as resizing images,
converting them to grayscale, applying dynamic
cropping, and more. In this study, to improve
efficiency, input images were resized to a relatively
small spatial resolution, from 1920x1080 to
640x640, as implemented in this research.
Afterwards, the annotated data was split using a
70:30 ratio, with 70% used for training and 30% for
testing the total dataset. The illustration in Figure 5
shows the output of the resized image.

Model Implementation
The model training process was carried out

using the PyTorch library. In this study, several
hyperparameters were identified, such as batch
size, learning rate, and others. The batch size used
was 32, with variations in the number of epochs set
at 25, 50, and 75. In the experiment with 25 epochs,
an accuracy of 0.946 was achieved, with a training
time of 25 minutes and 33 seconds. The selection of
hyperparameters (batch size, learning rate) and
epoch values was performed iteratively using
trial-and-error to achieve optimal performance.

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6818

174

Source: (Research Proposed, 2025)

Figure 5. Resized image dataset sampling

When trained with 50 epochs, the accuracy
increased to 0.972, with a training time of 50
minutes and 34 seconds. Meanwhile, in the
experiment with 75 epochs, the accuracy reached
0.979, and the training time was 1 hour, 10 minutes,
and 32 seconds.

Figure 6 illustrates the stages of the model
training process. The infusion drip detection model
training process begins by selecting the BP (image)
with white background) & BH (image with black
background) image dataset from Roboflow, a
specialized platform for computer vision datasets.
Through Roboflow's sharing portal, users initiate
the dataset export by clicking the "Download
Dataset" button and selecting the YOLOv5-
compatible format, which structures the data with
images in a dedicated folder and corresponding text
annotations for bounding boxes.

The platform generates a unique API endpoint
containing dataset version information and
preprocessing settings, which is then copied for
integration into the training pipeline. Researchers
connect this dataset to a YOLOv5 implementation
within a Google Colab notebook, first cloning the
official Ultralytics repository and installing
necessary dependencies. Critical training
parameters are configured, including a batch size of
32 optimized for GPU memory usage, 50 training
epochs for balanced convergence, and a 640x640
pixel input resolution. The YOLOv5 architecture
variant (typically selecting among nano, small,
medium, or large models) is specified based on
performance requirements.

The Roboflow API is integrated into the
training script using cURL commands for dataset
downloading and extraction. When executed, the
notebook sequentially processes data preparation,
model initialization, the training loop with forward-
backward propagation, and validation against test
sets. The final optimized model weights are saved as
best.pt, containing not only the trained parameters
but also architectural details, class names, and
training metadata for future deployment in real-

time infusion monitoring systems. This end-to-end
workflow ensures proper configuration of all
components from data sourcing to model output
while maintaining reproducibility through version-
controlled datasets and standardized YOLOv5
implementations.

Source: (Research Proposed, 2025)

Figure 6. Block Diagram of Model Training

The saved model is then integrated with the
YOLOv5 algorithm, Deep SORT, and a custom-
developed counting algorithm. The entire model
training process is outlined in the illustration in
Figure 7, which includes the workflow of all the
algorithms involved. The input video is first
processed using the YOLOv5 algorithm for object
detection, and the detection results are then passed
to the tracking stage using the Deep SORT algorithm
before the objects are counted.

YOLOv5 Architecture
You Only Look Once (YOLO) is a well-known

object detection method recognized for its speed.
This method uses a single convolutional network to
predict objects within an image. Its efficiency is
achieved by dividing the image into cells or grids,
with each cell responsible for predicting a number
of bounding boxes (BB), the confidence score for
each box, and the class probabilities.

During testing, YOLO multiplies the
conditional class probabilities with the individual
box confidence predictions, as shown in Equation
(1).

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗
𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑃𝑟𝑒𝑑
𝑇𝑟𝑢𝑡ℎ

 (1)

Source: (Research Proposed (from [11][19], 2025)

Figure 7. YOLO and Deep SORT Cross-section
Exposure

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6818.

175

 Equation (1) consists of the conditional class
probability (𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡)), the confidence
score of the predicted box (𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ),
and the class confidence score (𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗
𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ). The YOLOv5 algorithm adopts a CNN-
based object detection approach. Convolutional
Neural Networks (CNNs) are a type of neural
network architecture highly effective at recognizing
patterns and features in image data. YOLOv5
employs EfficientNet as the foundation of its model
architecture [16]. EfficientNet is a powerful and
efficient CNN architecture for image recognition.
The YOLOv5 structure is divided into three main
components: (1) a backbone using CSPDarknet, (2)
a neck using PANet, and (3) a head that consists of
the YOLO layer.

The process begins with input data fed into
CSPDarknet to extract features, which are then
integrated using PANet to aggregate multi-scale
features. Finally, the YOLO layer produces the
detection results, which include class information,
confidence scores, object location, and size.

In the YOLOv5 architecture, the convolutional
layers consist of the following components: the
input image, a Convolution-Downsampling Block to
extract features from the image, a Dense Connection
Block to enhance information flow and feature
representation, a Spatial Pyramid Pooling Block to
merge multi-scale features, and an Object Detection
Block to predict bounding boxes and class
probabilities for objects in the image. The input
image is divided into a grid of small cells, with each
cell responsible for detecting potential objects
within it. The CNN processes the entire image as a
whole and outputs probability predictions for
object classes along with bounding boxes
surrounding the detected objects [17].

Deep SORT
The video input successfully detected by

YOLOv5 is then assigned a unique ID, allowing the
same object to be consistently counted as a single
entity using an object tracking algorithm [18].
Object tracking involves several key components
when using Deep SORT [19], including the Kalman
Filter (KF), Association Metrics (AM), and
Hungarian Assignment (HA).

The A Kalman Filter serves as a predictive
algorithm in a tracking system. It works by
estimating an object's position in the next video
frame. Once the object is detected, the filter
compares this prediction to the actual position, then
updates its prediction for subsequent frames. This
process ensures the tracking remains stable and
accurate, even if the object moves quickly or is
temporarily obstructed, because the filter
continuously corrects its estimates. To identify the

same object across different frames, Association
Metrics like the Mahalanobis Distance (MD) and
Deep Appearance Descriptor (DAD) are used. MD
measures how close a new detection is to the
predicted position, taking uncertainty into account.
Meanwhile, DAD acts as the object's visual origin
data, comparing the visual appearance of a new
detection to that of a tracked object. By combining
the positional prediction from the Kalman Filter
with identity verification from the MD and DAD,
Deep SORT can track objects precisely and reliably,
even in complex situations [19].

Finally, the object detection-to-tracking
association problem is resolved using the
Hungarian Assignment algorithm, which maps
detected objects to the most appropriate tracks. The
Hungarian algorithm minimizes the total distance
between detections and tracks, ensuring an optimal
mapping needed to update the object tracking
effectively.

𝑑(𝐷𝑖 , 𝑃𝑖) = 1 −

√(𝑢𝐷𝑖

− 𝑢𝑃𝑖
)2+(𝑣𝐷𝑖

− 𝑣𝑃𝑖
)2

1

2
√ℎ2+𝑤2

 (2)

In the equation (2), (h, w) represents the height and
width of the input image, 𝐷𝑖 is the bounding box
from the detection set that contains positional
components (𝑢𝐷𝑖

, 𝑣𝐷𝑖
), and 𝑃𝑖 is the bounding box

from the prediction set that contains positional
components (𝑢𝑃𝑖

, 𝑣𝑃𝑖
).

Drip Detect-counting of Diagram Block
The calculation of IV drip objects is performed

by creating a dedicated function. The counting
process begins when the center point of the object's
bounding box (BB) crosses a predefined line [20].
The flow of this counting process is illustrated in the
Flowchart shown in Figure 8. As a drop falls, the
object is detected, and its bounding box is displayed.
Counting occurs when the center of the object's BB
crosses the designated line, ensuring that the same
object is not counted more than once.

Model Evaluation
To evaluate the model's performance,

standard metrics such as the confusion matrix,
accuracy, precision, recall, and F1-score are used.
These performance indicators are based on the
methodology employed by Markoulidakis,.et.al[21].

Source: (Research Proposed, 2025)

Figure 8. Diagram Blok Bounding Box for
Increment Counted

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6818

176

System Design
As part of the implementation phase, the

author developed a web-based application. This
web application was built using the Streamlit
framework with Python on a personal laptop
running Windows 11, equipped with an AMD Ryzen
6600H processor, 16 GB of RAM, and an AMD
Radeon graphics card. Testing was conducted
throughout the development process.

Once the YOLOv5 model was trained and
tested to achieve the desired results, it was saved in
the .pt format using the PyTorch library [22].
PyTorch is a machine learning framework based on
the Torch library, developed by Meta AI for
computer vision [23] and natural language
processing [24] applications.

Source: (Research Proposed, 2025)

Figure 9. System Workflow Block Diagram

The system workflow is illustrated in the block
diagram shown in Figure 9. Users upload a video to
be analyzed, then set the confidence threshold and
define the line position for counting. After pressing
the start button, the process begins with object
prediction followed by object tracking. When the
center coordinate of the object's bounding box (BB)
crosses the predefined line, the object is counted.

System Integration

Source: (Research Proposed, 2025)

Figure 10. Integration model to Web-based of
Patient management system

Figure 10 illustrates the sequence of steps involved
in integrating the model into the web application.
After acquiring the dataset, the labeling process is
carried out, followed by preprocessing. The model
is then developed based on the proposed initial
design. It undergoes training, testing, and
evaluation until it reaches satisfactory performance.
To enable the model’s use on other devices, such as
laptops, PyTorch provides a library to convert the

trained model into a .pt format. This file is then
imported into the web project directory.
In the web application design process, the next step
involves creating a prediction function that
processes data using the imported model. The
uploaded video data is passed through the
prediction stage, where the model generates
predictions. These predictions determine the final
count of intravenous fluid drops.

Software testing result

After integrating the model into the designed

system, software testing was conducted to evaluate
its performance using a black-box testing approach.
The evaluation involved a dataset of 48 videos with
varying drip rates: 20 DPM, 30 DPM, 40 DPM, and
50 DPM. Each drip rate was tested with three
different durations: 10 seconds, 15 seconds, and 60
seconds. The testing was divided into four
categories, where the combination of TBP and GBP
represents the LBP group, and TBH and GBH
represent the LBH group.

RESULTS AND DISCUSSION

Testing was carried out using 48 videos

recorded at 30 frames per second (FPS). In one
scenario—using a drip rate of 20 drops per minute
(DPM), a 10-second duration, and a confidence
threshold of 0.75—each droplet was detected
across a variable number of frames. For example,
the first three droplets lasted 25, 22, and 24 frames,
respectively, with intervals of approximately 60 to
70 frames between them. These results indicate that
the system can detect droplets with consistent
frame durations, suggesting adequate temporal
sensitivity of the model to visual changes. Further
test results are detailed in Tables 4 and 5.

Table 4. Test Results with LBP Dataset

Fps Dataset
Actual Predict

Total images
frame

TBP GBP TBP GBP TBP GBP

20 TPM (10s) 3 3 3 3 71 75

20 TPM (15s) 4 4 4 4 100 102

20 TPM (60s) 16 18 16 18 400 450

30 TPM (10s) 3 4 3 4 66 88

30 TPM (15s) 7 6 7 6 154 138

30 TPM (60s) 26 25 24 23 528 508

40 TPM (10s) 5 6 5 6 90 110

40 TPM (15s) 8 8 6 8 108 146

40 TPM (60s) 32 32 29 27 522 488

50 TPM (10s) 7 6 6 6 86 88

50 TPM (15s) 10 9 8 9 112 127

50 TPM (60s) 41 42 35 23 490 324

Source: (Research Result, 2025)

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6818.

177

Based on the data in Tables 4 and 5, the
prediction results appear to be fairly accurate for
durations of 10 seconds and 15 seconds. However,
for videos with durations longer than 30 seconds,
the counted number of drops tends to deviate from
the actual number.

Table 5. Test Results Using the LBH Dataset

Fps Dataset
Actual Predict

Total image
Frame

TBH GBH TBH GBH TBH GBH

20 TPM (10s) 3 5 3 5 75 125

20 TPM (15s) 5 6 5 6 125 150

20 TPM (60s) 17 18 17 18 425 450

30 TPM (10s) 5 5 5 5 110 110

30 TPM (15s) 7 7 7 7 154 154

30 TPM (60s) 26 26 25 26 550 572

40 TPM (10s) 6 6 6 6 108 108

40 TPM (15s) 8 9 8 9 144 162

40 TPM (60s) 32 34 32 33 576 594

50 TPM (10s) 7 7 7 7 98 98

50 TPM (15s) 8 11 8 10 112 140

50 TPM (60s) 39 42 38 37 532 518

Source: (Research Result, 2025)

This may be due to the very short interval
between one droplet and the next, causing the
system to interpret multiple droplets as a single
object. Videos using the LBH dataset produced more
accurate counting results because the droplets were
more clearly visible, unlike in the LBP dataset,
where the background color closely resembles the
color of the droplets. With high precision and good
accuracy, the system effectively detected drips. The
test results showed the best performance on a white
background (LBP) with a drip rate below 40 TPM,
and on a black background (LBH) with a drip rate
below 50 TPM.

Source: (Research Result, 2025)
Figure 11. Web-Based Application Interface Design

Web-based Application Interface for Patient TPM
Data Management

This web application is a direct implementation
of the previously trained model, enabling real-time
counting of intravenous (IV) fluid drops. The main
structure of the application is divided into two key
sections: the drop count calculation page and the
patient management page. Navigation between
these pages is facilitated through the sidebar menu.
The application interface is shown in Figure 11. As
shown in figure 12, The page appears once the
prediction process is complete. It will show the
prediction results generated by the user. The page
also includes additional information such as status,
drip count, time, and .fps.

Source: (Research Result, 2025)
Figure 12. Web-Based Application Interface Design

Confusion Matrix
Based on the number of test data, a total of 48

videos recorded at 30 FPS were divided into two
groups: 24 for LBP and 24 LBH. The confusion
matrix categorizes the data into four groups: data
that is correctly predicted falls under True Positive
(TP), data with a predicted count higher than the
actual value is categorized as False Positive (FP),
data with a predicted count lower than the actual
value is classified as False Negative (FN), and data
that is not detected in both the prediction and actual
counts falls under True Negative (TN). The testing
was conducted using a threshold of 0.75 for each
data testing. The confusion matrix for each
background type can be found in Table 6.

Table 2. Confusion Matrix
Parameter LBP LBH
Accuracy 0.58 0.79
Precision 1.00 1.00

Recall 0.58 0.79
F1-Score 0.74 0.88

Source: (Research Result, 2025)

Based on the data in Table 6, it can be concluded
that the identification performance on test data
with a LBH is superior to that with a LBP. The
identification accuracy with LBH reaches 0.79,
while with LBP it only reaches 0.58. However, in
terms of precision, the drip objects were detected
accurately with no errors out of a total of 24 test
data points. The results were as follows: LBP with
14 TP and 10 FN and LBH with 19 TP and 5 FN.

VOL. 11. NO. 1 AUGUST 2025
.

DOI: 10.33480 /jitk.v11i1.6818

178

CONCLUSION

The results of this study show that a real-
time, web-based drip infusion monitoring system
using the YOLOv5 and DeepSORT algorithms has
been developed and integrated with a patient
database to serve as historical data. The system is
capable of detecting and counting the number of
falling IV droplets. Model training was conducted
using a batch size of 32 with varying numbers of
epochs: 25, 50, and 75. In the experiment with 25
epochs, the model achieved an accuracy of 0.946
with a training time of 25 minutes and 33 seconds.
At 50 epochs, the accuracy increased to 0.972, with
a training time of 50 minutes and 34 seconds. At 75
epochs, the accuracy reached 0.979 with a training
time of 1 hour, 10 minutes, and 32 seconds.

Testing on the combined test dataset (LBP
+ LBH), comprising 48 videos, showed an integrated
performance accuracy of 0.58 for the LBP
background and 0.79 for the LBH background. The
prediction results were reasonably accurate for
video durations of 10 and 15 seconds. However, for
videos longer than 30 seconds, the number of
counted droplets tended to deviate from the actual
number. This may be due to very short intervals
between droplets, causing the system to interpret
multiple drops as a single object. The achievements
of this study contribute to the development of real-
time medical monitoring technology in inpatient
care settings, particularly regarding the use of
suitable IV fluid containers—such as LBH—which
support enhanced detection performance. Future
research is expected to further improve the
system’s ability to count infusion droplets more
accurately..

REFERENCE

[1] Open Resources for Nursing (Open RN);
Ernstmeyer K, Christman E, editors. Nursing
Skills [Internet]. Eau Claire (WI): Chippewa
Valley Technical College; 2021. Chapter 23 IV
Therapy Management. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK59
3209/

[2] K. Venkatesh, S. S. Alagundagi, V. Garg, K.
Pasala, D. Karia, and M. Arora, "DripOMeter: An
open-source opto-electronic system for
intravenous (IV) infusion monitoring,"
HardwareX, vol. 12, p. e00345, 2022, doi:
10.1016/j.ohx.2022.e00345.

[3] S. Song, S. Yan, S. Zhang, and Y. Jiang, "Design of
an infusion monitoring system based on image
processing," J. Phys.: Conf. Ser., vol. 2037, no. 1,
p. 012109, Sep. 2021, doi: 10.1088/1742-
6596/2037/1/012109.

[4] Karen Kan, Wilton C. Levine,16 - Infusion
Pumps,Editor(s): Jan Ehrenwerth, James B.
Eisenkraft, James M. Berry, Anesthesia
Equipment (Third Edition), W.B. Saunders,
2021, Pages 351-367, ISBN 9780323672795,
https://doi.org/10.1016/B978-0-323-67279-
5.00016-9.

[5] S. A. Kadiran, E. Supriyanto, and M. Y. Maghribi,
“Sistem Monitoring dan Controlling Cairan
Infus Berbasis Website,” J. Riset Rekayasa
Elektro, vol. 5, no. 1, 2023, doi:
10.30595/jrre.v5i1.17743.

[6] M. Z. Samsono Hadi, H. Mahmudah and L.
Thania, "Design of Monitoring System for
Infused Liquid Volume Based Wireless
Communication," 2021 International
Conference on Computer Science and
Engineering (IC2SE), Padang, Indonesia, 2021,
pp. 1-6, doi:
10.1109/IC2SE52832.2021.9792048.

[7] N. Giaquinto, M. Scarpetta, M. A. Ragolia, and P.
Pappalardi, “Real-time drip infusion
monitoring through a computer vision
system,” in IEEE Med. Meas. Appl. (MeMeA),
2020, doi:
10.1109/MeMeA49120.2020.9137359.

[8] N. Giaquinto, M. Scarpetta, M. Spadavecchia,
and G. Andria, “Deep learning-based computer
vision for real-time intravenous drip infusion
monitoring,” IEEE Sens. J., vol. 21, no. 13, 2021,
doi: 10.1109/JSEN.2020.3039009.

[9] Ultralytics, "YOLOv5," GitHub. [Online].
Available:
https://github.com/ultralytics/yolov5
[Accessed: Jul. 17, 2025].

[10] U. Nepal and H. Eslamiat, “Comparing YOLOv3,
YOLOv4 and YOLOv5 for Autonomous Landing
Spot Detection in Faulty UAVs,” Sensors, vol. 22,
no. 2, 2022, doi: 10.3390/s22020464.

[11] B. Gao, “Research on Two-Way Detection of
YOLO V5s+Deep Sort Road Vehicles Based on
Attention Mechanism,” in J. Phys.: Conf. Ser.,
vol. 2303, 2022, doi: 10.1088/1742-
6596/2303/1/012057.

[12] A. Rizaldy, “Set Anak Background Putih,”
roboflow.com. Accessed: Jan. 16, 2024.
[Online]. Available:
https://universe.roboflow.com/andika-
rizaldy/set-anak-bp

[13] A. Rizaldy, “Set Anak Background Hitam,”
roboflow.com. Accessed: Jan. 16, 2024.
[Online]. Available:
https://universe.roboflow.com/andika-
rizaldy/set-anak-bh

[14] Q. Lin, G. Ye, J. Wang, and H. Liu, “RoboFlow:
a Data-centric Workflow Management

https://doi.org/10.1016/j.ohx.2022.e00345
https://universe.roboflow.com/andika-rizaldy/set-anak-bp
https://universe.roboflow.com/andika-rizaldy/set-anak-bp
https://universe.roboflow.com/andika-rizaldy/set-anak-bh
https://universe.roboflow.com/andika-rizaldy/set-anak-bh

VOL. 11. NO. 1 AUGUST 2025.
 .

DOI: 10.33480/jitk.v11i1.6818.

179

System for Developing AI-enhanced Robots,”
in Proc. Mach. Learn. Res., 2021.

[15] M. A. Barayan et al., “Effectiveness of Machine
Learning in Assessing the Diagnostic Quality
of Bitewing Radiographs,” Appl. Sci.
(Switzerland), vol. 12, no. 19, 2022, doi:
10.3390/app12199588.

[16] R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, “A forest
fire detection system based on ensemble
learning,” Forests, vol. 12, no. 2, 2021, doi:
10.3390/f12020217.

[17] D. Permana and J. Sutopo, “Aplikasi
Pengenalan Abjad Sistem Isyarat Bahasa
Indonesia (SIBI) Dengan Algoritma YOLOv5,”
J. Inform., vol. 11, no. 2, 2023.

[18] R. Pereira, G. Carvalho, L. Garrote, and U. J.
Nunes, “Sort and Deep-SORT Based Multi-
Object Tracking for Mobile Robotics:
Evaluation with New Data Association
Metrics,” Appl. Sci. (Switzerland), vol. 12, no.
3, 2022, doi: 10.3390/app12031319.

[19] Abed, Almustafa & Akrout, Belhassen &
Amous, Ikram. “Deep learning-based few-
shot person re-identification from top-view
RGB and depth images. Neural Computing
and Applications”. 36. 19365-19382. 2024,
doi:10.1007/s00521-024-10239-6.

[20] Thien, “Vehicle Detection and Counting
System on Streamlit.” GitHub, Mar. 25, 2023.
Accessed: Aug. 18, 2023. [Online]. Available:
https://github.com/npq-
thien/Vehicle_Detection_and_Counting_Syst
em/activity?activity_type=direct_push

[21] I. Markoulidakis, I. Rallis, I. Georgoulas, G.
Kopsiaftis, A. Doulamis, and N. Doulamis,
“Multiclass Confusion Matrix Reduction
Method and Its Application on Net Promoter
Score Classification Problem,” Technologies
(Basel), vol. 9, no. 4, 2021, doi:
10.3390/technologies9040081.

[22] O. C. Novac et al., “Analysis of the Application
Efficiency of TensorFlow and PyTorch in
Convolutional Neural Network,” Sensors, vol.
22, no. 22, 2022, doi: 10.3390/s22228872.

[23] A. A. Khan, A. A. Laghari, and S. A. Awan,
“Machine Learning in Computer Vision: A
Review,” EAI Endorsed Trans. Scalable Inf.
Syst., vol. 8, no. 32, 2021, doi: 10.4108/eai.21-
4-2021.169418.

[24] D. Khurana, A. Koli, K. Khatter, and S. Singh,
“Natural language processing: state of the art,
current trends and challenges,” Multimed
Tools Appl., vol. 82, no. 3, 2023 , doi:
10.1007/s11042-022-13428-4.

https://github.com/npq-thien/Vehicle_Detection_and_Counting_System/activity?activity_type=direct_push
https://github.com/npq-thien/Vehicle_Detection_and_Counting_System/activity?activity_type=direct_push
https://github.com/npq-thien/Vehicle_Detection_and_Counting_System/activity?activity_type=direct_push

