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Abstract— Intravenous infusion (IV) functions to deliver medication or fluids directly into the patient’s body 
and requires an accurate drops-per-minute (TPM) calculation to ensure the correct dosage is administered. 
Manual calculation techniques, which are still widely used today, tend to be inefficient and carry a high risk of 
human error. Therefore, a more reliable and innovative automated approach is needed. In this study, we 
developed a prototype of an automatic infusion monitoring system based on the CNN-YOLOv5 architecture. 
The system records a one-minute IV drip video using a mobile device, then processes it through a server to 
automatically calculate the TPM, where YOLOv5 is used for drip detection, Deep SORT for object tracking, and 
a unique ID numbering scheme is applied to each droplet to ensure it is counted only once until it exits the 
frame. The calculation results are stored in a patient database that we designed. We also explored the effect of 
dataset background on accuracy. Testing was conducted on 48 videos (30 fps) with two background types—
white (LBP) and black (LBH)—and drip variations of 20, 30, 40, and 50 TPM with varying durations. The 
results showed higher accuracy on the black background, reaching 0.79 compared to 0.58 on the white 
background, both with a precision of 1.00. The system demonstrated excellent performance in detecting drips 
with high precision and good accuracy, particularly on LBP for TPM <40 fps and on LBH for TPM <50 fps.    

 
Keywords: convolutional neural network, drip infusion, intravenous infusion, YOLOv5 

 
Abstrak— Infus intravena (IV) berfungsi untuk mengantarkan obat atau cairan langsung ke dalam tubuh 
pasien, dan membutuhkan perhitungan tetesan per menit (TPM) yang akurat agar dosis yang diberikan tepat. 
Teknik perhitungan manual yang masih banyak digunakan saat ini cenderung tidak efisien dan berisiko tinggi 
terhadap kesalahan manusia. Oleh karena itu, dibutuhkan pendekatan otomatis yang lebih andal dan inovatif. 
Dalam studi ini, kami mengembangkan prototipe sistem pemantauan infus otomatis berbasis arsitektur CNN-
YOLOv5. Sistem merekam video tetesan IV selama satu menit menggunakan perangkat seluler, lalu 
memprosesnya melalui server untuk menghitung TPM secara otomatis dimana YOLOv5 bekerja untuk deteksi 
tetesan, Deep SORT untuk pelacakan objek, dan skema penomoran ID unik pada setiap tetesan agar tidak 
dihitung lebih dari sekali hingga keluar dari bingkai. Hasil penghitungan disimpan dalam basis data pasien 
yang kami rancang.  Kami juga mengeksplorasi efek latar belakang dataset terhadap akurasi. Pengujian 
dilakukan terhadap 48 video (30 fps) dengan dua jenis latar belakang—putih (LBP) dan hitam (LBH)—dan 
variasi tetesan 20, 30, 40, serta 50 TPM dengan durasi waktu yang dibedakan. Hasil menunjukkan akurasi 
lebih tinggi pada latar belakang hitam, mencapai 0.79 dibandingkan 0.58 pada latar belakang putih, 
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keduanya dengan presisi 1.00. Sistem ini menunjukkan performa sangat baik dalam mengenali tetesan dengan 
presisi tinggi, dan akurasi yang baik khususnya pada LBP untuk TPM <40 fps dan LBH untuk TPM <50 fps. 

 
Kata Kunci: : jaringan syaraf konvolusional, infus tetes, infus intravena, YOLOv5. 
 

INTRODUCTION 
 

An intravenous (IV) infusion is a medical 
device used to deliver fluids, medications, or 
nutrients directly into a patient’s bloodstream at 
regular intervals [1]. This therapy requires medical 
supervision, particularly to monitor the drip rate to 
ensure accurate dosage. The fluid flow rate is 
typically observed through the number of drops in 
the drip chamber, which is still manually adjusted 
and counted by medical personnel in most cases [2]. 
However, this rate may vary due to factors such as 
fluid volume, the height of the infusion, or blockages 
in the tubing, necessitating periodic adjustments. 
Manual counting is time-consuming and prone to 
errors. 

To address this, various studies have 
proposed automatic infusion monitoring solutions. 
A system using digital image processing was 
developed [3], while intravenous fluid delivery was 
described in [4]. An IoT-based system for 
continuous monitoring from the nurse's station was 
introduced [5], and a monitoring system for infused 
liquid volume via wireless was designed [6]. 
This research presents a web-based monitoring 
system for intravenous (IV) infusion therapy that 
combines YOLOv5 [9][10] object detection with 
Deep SORT [11] tracking to enable real-time drop 
counting. While previous computer vision 
approaches for infusion monitoring have 
demonstrated the viability of techniques like YOLO 
and Fast R-CNN [7][8], the current implementation 
specifically adapts YOLOv5's architecture for 
clinical web applications, prioritizing usability in 
inpatient care settings.  

The study's preliminary phase employs a 
controlled evaluation framework using datasets 
with black (LBH) and white (LBP) backgrounds to 
isolate the impact of environmental variables. By 
restricting the object class to only "drops," the 
investigation aims to establish baseline 
performance metrics for detection and counting 
accuracy before expanding to more complex clinical 
scenarios. This focused approach allows for 
systematic validation of the core algorithms while 
maintaining clinical relevance through web-based 
deployment and real-time processing capabilities 
that address limitations in existing solutions [7][8] 
regarding practical implementation in hospital 
environments. The video dataset was captured 
under ambient daytime lighting conditions in 

hospital inpatient rooms, without controlled or 
additional lighting setups. 
 

MATERIALS AND METHODS 

In previous studies, various efforts have been 
made to monitor intravenous fluids using artificial 
intelligence to address calculation errors. In this 
study, a system was developed by integrating an AI 
model and deploying it on an end-user device. A 
general illustration of how the system operates via 
a smartphone is shown in Figure 1, with this 
research focusing specifically on the elements 
enclosed in the dashed black box. 

 
Source: (Research Proposed, 2025) 

Figure 1. Diagram block of research area 

The illustration in Figure 1 shows how users can 
access the application after the operator starts it 
and connects to the local network. Connected users 
can run the application, record videos, and upload 
them for processing. This process involves object 
detection using the YOLOv5 algorithm integrated 
with the Deep SORT algorithm. The output includes 
information such as the number of drops, time, and 
frames per second (fps). 

Dataset 
The dataset used in this study was obtained 

through direct video recording. A total of 28,800 
images were generated by extracting frames from 
16 one-minute videos recorded at 30 fps. The data 
was split into two subsets: 70% for training and 
30% for testing. Furthermore, the dataset was 
divided into two groups based on background color, 
as shown in Figures 2(a,b) for the white background 
dataset (LBP) [12] and Figures 2(c,d) for the black 
background dataset (LBH) [13]. These two datasets 
were then further light qualitative intensity 
categorized into four subgroups: Figure 2(a) shows 
the Bright White Background (TBP), Figure 2(b) 
shows the Dark White Background (GBP), Figure 
2(c) shows the Bright Black Background (TBH), and 
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Figure 2(d) shows the Dark Black Background 
(GBH). The detailed distribution of each category in 
the dataset is presented in Table 1. 

Table 1. Dataset of video to image drop infusion 
capture with different sample category 

Category Video .fps to 
(images) 

Bright White Background (TBP) 7200 
Dark White Background (GBP) 7200 
Bright Black Background (TBH) 7200 
Dark Black Background (GBH) 7200 
Total 28800 

Source: (Research Proposed, 2025) 

 
Source: (Research Proposed, 2025) 

Figure 2. Dataset sampling for each category 

Labelling Dataset 
In the data labeling stage, the process was 

carried out manually using the Roboflow website 
[14]. Roboflow is a tool developed by the company 
Roboflow that facilitates collaborative image 
annotation and allows for flexible data 
management, augmentation, and export [15]. 

Utilizing a dataset from Roboflow can be done by 
generating an API after selecting the desired model 
format. Figure 3 shows the API source code for the 
dataset that can be used. 

 
Source: (Research Result, 2025) 

Figure 3. API Dataset Source Code link 

Figure 4 explanation the position of the counting 
baseline from dataset annotation labeling bounding 
box (BB) objects dimension with annotation tool. 
The dataset preparation for infusion drip detection 
begins by creating a new project in Roboflow, where 
researchers upload high-quality video recordings of 
IV drips under various clinical conditions. The 
system first extracts frames at a configurable FPS 
rate (typically 2-5 FPS) to capture critical droplet 

formation moments while avoiding redundant data. 
Each extracted frame undergoes meticulous manual 
annotation using Roboflow's bounding box tool, 
where annotators label three key objects: (1) the 
drip chamber body, (2) individual falling droplets, 
and (3) the fluid meniscus level. To ensure 
annotation consistency, the team follows strict 
guidelines: droplets are marked at their fullest 
visible diameter, chambers use rectangular boxes 
encompassing the entire visible column, and 
ambiguous frames containing bubbles or occlusions 
are flagged for review. Roboflow then automatically 
processes the annotated dataset by splitting it into 
balanced training (70%), validation (20%), and test 
(10%) sets while applying essential preprocessing 
(auto-orientation, resizing to 640×640 pixels). 

 
Source: (Research Proposed, 2025) 

Figure 4. Block diagram of the roboflow dataset 
preparations 

Pre-processing 
In the pre-processing stage, steps are taken to 

simplify the image format. Various types of pre-
processing can be applied, such as resizing images, 
converting them to grayscale, applying dynamic 
cropping, and more. In this study, to improve 
efficiency, input images were resized to a relatively 
small spatial resolution, from 1920x1080 to 
640x640, as implemented in this research. 
Afterwards, the annotated data was split using a 
70:30 ratio, with 70% used for training and 30% for 
testing the total dataset. The illustration in Figure 5 
shows the output of the resized image. 

Model Implementation 
The model training process was carried out 

using the PyTorch library. In this study, several 
hyperparameters were identified, such as batch 
size, learning rate, and others. The batch size used 
was 32, with variations in the number of epochs set 
at 25, 50, and 75. In the experiment with 25 epochs, 
an accuracy of 0.946 was achieved, with a training 
time of 25 minutes and 33 seconds. The selection of 
hyperparameters (batch size, learning rate) and 
epoch values was performed iteratively using 
trial-and-error to achieve optimal performance. 
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Source: (Research Proposed, 2025) 

Figure 5. Resized image dataset sampling 
 

When trained with 50 epochs, the accuracy 
increased to 0.972, with a training time of 50 
minutes and 34 seconds. Meanwhile, in the 
experiment with 75 epochs, the accuracy reached 
0.979, and the training time was 1 hour, 10 minutes, 
and 32 seconds. 

Figure 6 illustrates the stages of the model 
training process. The infusion drip detection model 
training process begins by selecting the BP (image) 
with white background) & BH (image with black 
background) image dataset from Roboflow, a 
specialized platform for computer vision datasets. 
Through Roboflow's sharing portal, users initiate 
the dataset export by clicking the "Download 
Dataset" button and selecting the YOLOv5-
compatible format, which structures the data with 
images in a dedicated folder and corresponding text 
annotations for bounding boxes.  

The platform generates a unique API endpoint 
containing dataset version information and 
preprocessing settings, which is then copied for 
integration into the training pipeline. Researchers 
connect this dataset to a YOLOv5 implementation 
within a Google Colab notebook, first cloning the 
official Ultralytics repository and installing 
necessary dependencies. Critical training 
parameters are configured, including a batch size of 
32 optimized for GPU memory usage, 50 training 
epochs for balanced convergence, and a 640x640 
pixel input resolution. The YOLOv5 architecture 
variant (typically selecting among nano, small, 
medium, or large models) is specified based on 
performance requirements.  

The Roboflow API is integrated into the 
training script using cURL commands for dataset 
downloading and extraction. When executed, the 
notebook sequentially processes data preparation, 
model initialization, the training loop with forward-
backward propagation, and validation against test 
sets. The final optimized model weights are saved as 
best.pt, containing not only the trained parameters 
but also architectural details, class names, and 
training metadata for future deployment in real-

time infusion monitoring systems. This end-to-end 
workflow ensures proper configuration of all 
components from data sourcing to model output 
while maintaining reproducibility through version-
controlled datasets and standardized YOLOv5 
implementations. 

 
Source: (Research Proposed, 2025) 

Figure 6. Block Diagram of Model Training 
 

The saved model is then integrated with the 
YOLOv5 algorithm, Deep SORT, and a custom-
developed counting algorithm. The entire model 
training process is outlined in the illustration in 
Figure 7, which includes the workflow of all the 
algorithms involved. The input video is first 
processed using the YOLOv5 algorithm for object 
detection, and the detection results are then passed 
to the tracking stage using the Deep SORT algorithm 
before the objects are counted. 

YOLOv5 Architecture 
You Only Look Once (YOLO) is a well-known 

object detection method recognized for its speed. 
This method uses a single convolutional network to 
predict objects within an image. Its efficiency is 
achieved by dividing the image into cells or grids, 
with each cell responsible for predicting a number 
of bounding boxes (BB), the confidence score for 
each box, and the class probabilities. 

During testing, YOLO multiplies the 
conditional class probabilities with the individual 
box confidence predictions, as shown in Equation 
(1). 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗
𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑜𝑈𝑃𝑟𝑒𝑑
𝑇𝑟𝑢𝑡ℎ

  (1) 

 
Source: (Research Proposed (from [11][19], 2025) 

Figure 7. YOLO and Deep SORT Cross-section 
Exposure 
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 Equation (1) consists of the conditional class 
probability (𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡)), the confidence 
score of the predicted box (𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ), 
and the class confidence score (𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗
𝐼𝑜𝑈𝑃𝑟𝑒𝑑

𝑇𝑟𝑢𝑡ℎ). The YOLOv5 algorithm adopts a CNN-
based object detection approach. Convolutional 
Neural Networks (CNNs) are a type of neural 
network architecture highly effective at recognizing 
patterns and features in image data. YOLOv5 
employs EfficientNet as the foundation of its model 
architecture [16]. EfficientNet is a powerful and 
efficient CNN architecture for image recognition. 
The YOLOv5 structure is divided into three main 
components: (1) a backbone using CSPDarknet, (2) 
a neck using PANet, and (3) a head that consists of 
the YOLO layer. 

The process begins with input data fed into 
CSPDarknet to extract features, which are then 
integrated using PANet to aggregate multi-scale 
features. Finally, the YOLO layer produces the 
detection results, which include class information, 
confidence scores, object location, and size. 

In the YOLOv5 architecture, the convolutional 
layers consist of the following components: the 
input image, a Convolution-Downsampling Block to 
extract features from the image, a Dense Connection 
Block to enhance information flow and feature 
representation, a Spatial Pyramid Pooling Block to 
merge multi-scale features, and an Object Detection 
Block to predict bounding boxes and class 
probabilities for objects in the image. The input 
image is divided into a grid of small cells, with each 
cell responsible for detecting potential objects 
within it. The CNN processes the entire image as a 
whole and outputs probability predictions for 
object classes along with bounding boxes 
surrounding the detected objects [17]. 

Deep SORT 
The video input successfully detected by 

YOLOv5 is then assigned a unique ID, allowing the 
same object to be consistently counted as a single 
entity using an object tracking algorithm [18]. 
Object tracking involves several key components 
when using Deep SORT [19], including the Kalman 
Filter (KF), Association Metrics (AM), and 
Hungarian Assignment (HA). 

The A Kalman Filter serves as a predictive 
algorithm in a tracking system. It works by 
estimating an object's position in the next video 
frame. Once the object is detected, the filter 
compares this prediction to the actual position, then 
updates its prediction for subsequent frames. This 
process ensures the tracking remains stable and 
accurate, even if the object moves quickly or is 
temporarily obstructed, because the filter 
continuously corrects its estimates. To identify the 

same object across different frames, Association 
Metrics like the Mahalanobis Distance (MD) and 
Deep Appearance Descriptor (DAD) are used. MD 
measures how close a new detection is to the 
predicted position, taking uncertainty into account. 
Meanwhile, DAD acts as the object's visual origin 
data, comparing the visual appearance of a new 
detection to that of a tracked object. By combining 
the positional prediction from the Kalman Filter 
with identity verification from the MD and DAD, 
Deep SORT can track objects precisely and reliably, 
even in complex situations [19]. 

Finally, the object detection-to-tracking 
association problem is resolved using the 
Hungarian Assignment algorithm, which maps 
detected objects to the most appropriate tracks. The 
Hungarian algorithm minimizes the total distance 
between detections and tracks, ensuring an optimal 
mapping needed to update the object tracking 
effectively. 

𝑑(𝐷𝑖 , 𝑃𝑖) = 1 −

 
√(𝑢𝐷𝑖

− 𝑢𝑃𝑖
)2+(𝑣𝐷𝑖

− 𝑣𝑃𝑖
)2

1

2
√ℎ2+𝑤2

                        (2) 

In the equation (2), (h, w) represents the height and 
width of the input image, 𝐷𝑖  is the bounding box 
from the detection set that contains positional 
components (𝑢𝐷𝑖

, 𝑣𝐷𝑖
), and 𝑃𝑖  is the bounding box 

from the prediction set that contains positional 
components (𝑢𝑃𝑖

, 𝑣𝑃𝑖
).  

Drip Detect-counting of Diagram Block 
The calculation of IV drip objects is performed 

by creating a dedicated function. The counting 
process begins when the center point of the object's 
bounding box (BB) crosses a predefined line [20]. 
The flow of this counting process is illustrated in the 
Flowchart shown in Figure 8. As a drop falls, the 
object is detected, and its bounding box is displayed. 
Counting occurs when the center of the object's BB 
crosses the designated line, ensuring that the same 
object is not counted more than once.  

Model Evaluation 
To evaluate the model's performance, 

standard metrics such as the confusion matrix, 
accuracy, precision, recall, and F1-score are used. 
These performance indicators are based on the 
methodology employed by Markoulidakis,.et.al[21]. 

 
Source: (Research Proposed, 2025) 

Figure 8. Diagram Blok Bounding Box for 
Increment Counted 
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System Design 
As part of the implementation phase, the 

author developed a web-based application. This 
web application was built using the Streamlit 
framework with Python on a personal laptop 
running Windows 11, equipped with an AMD Ryzen 
6600H processor, 16 GB of RAM, and an AMD 
Radeon graphics card. Testing was conducted 
throughout the development process. 

Once the YOLOv5 model was trained and 
tested to achieve the desired results, it was saved in 
the .pt format using the PyTorch library [22]. 
PyTorch is a machine learning framework based on 
the Torch library, developed by Meta AI for 
computer vision [23] and natural language 
processing [24] applications. 

 
Source: (Research Proposed, 2025) 

Figure 9. System Workflow Block Diagram 

The system workflow is illustrated in the block 
diagram shown in Figure 9. Users upload a video to 
be analyzed, then set the confidence threshold and 
define the line position for counting. After pressing 
the start button, the process begins with object 
prediction followed by object tracking. When the 
center coordinate of the object's bounding box (BB) 
crosses the predefined line, the object is counted. 

System Integration  

 
Source: (Research Proposed, 2025) 

Figure 10. Integration model to Web-based of 
Patient management system 

Figure 10 illustrates the sequence of steps involved 
in integrating the model into the web application. 
After acquiring the dataset, the labeling process is 
carried out, followed by preprocessing. The model 
is then developed based on the proposed initial 
design. It undergoes training, testing, and 
evaluation until it reaches satisfactory performance. 
To enable the model’s use on other devices, such as 
laptops, PyTorch provides a library to convert the 

trained model into a .pt format. This file is then 
imported into the web project directory. 
In the web application design process, the next step 
involves creating a prediction function that 
processes data using the imported model. The 
uploaded video data is passed through the 
prediction stage, where the model generates 
predictions. These predictions determine the final 
count of intravenous fluid drops. 

Software testing result 

After integrating the model into the designed 

system, software testing was conducted to evaluate 
its performance using a black-box testing approach. 
The evaluation involved a dataset of 48 videos with 
varying drip rates: 20 DPM, 30 DPM, 40 DPM, and 
50 DPM. Each drip rate was tested with three 
different durations: 10 seconds, 15 seconds, and 60 
seconds. The testing was divided into four 
categories, where the combination of TBP and GBP 
represents the LBP group, and TBH and GBH 
represent the LBH group. 

 
RESULTS AND DISCUSSION 

 
Testing was carried out using 48 videos 

recorded at 30 frames per second (FPS). In one 
scenario—using a drip rate of 20 drops per minute 
(DPM), a 10-second duration, and a confidence 
threshold of 0.75—each droplet was detected 
across a variable number of frames. For example, 
the first three droplets lasted 25, 22, and 24 frames, 
respectively, with intervals of approximately 60 to 
70 frames between them. These results indicate that 
the system can detect droplets with consistent 
frame durations, suggesting adequate temporal 
sensitivity of the model to visual changes. Further 
test results are detailed in Tables 4 and 5. 

Table 4. Test Results with LBP Dataset 

Fps Dataset 
Actual Predict 

Total images 
frame  

TBP GBP TBP GBP TBP GBP 

20 TPM (10s) 3 3 3 3 71 75 

20 TPM (15s) 4 4 4 4 100 102 

20 TPM (60s) 16 18 16 18 400 450 

30 TPM (10s) 3 4 3 4 66 88 

30 TPM (15s) 7 6 7 6 154 138 

30 TPM (60s) 26 25 24 23 528 508 

40 TPM (10s) 5 6 5 6 90 110 

40 TPM (15s) 8 8 6 8 108 146 

40 TPM (60s) 32 32 29 27 522 488 

50 TPM (10s) 7 6 6 6 86 88 

50 TPM (15s) 10 9 8 9 112 127 

50 TPM (60s) 41 42 35 23 490 324 

Source: (Research Result, 2025) 
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Based on the data in Tables 4 and 5, the 
prediction results appear to be fairly accurate for 
durations of 10 seconds and 15 seconds. However, 
for videos with durations longer than 30 seconds, 
the counted number of drops tends to deviate from 
the actual number. 

Table 5. Test Results Using the LBH Dataset 

Fps Dataset 
Actual Predict 

Total image 
Frame  

TBH GBH TBH GBH TBH GBH 

20 TPM (10s) 3 5 3 5 75 125 

20 TPM (15s) 5 6 5 6 125 150 

20 TPM (60s) 17 18 17 18 425 450 

30 TPM (10s) 5 5 5 5 110 110 

30 TPM (15s) 7 7 7 7 154 154 

30 TPM (60s) 26 26 25 26 550 572 

40 TPM (10s) 6 6 6 6 108 108 

40 TPM (15s) 8 9 8 9 144 162 

40 TPM (60s) 32 34 32 33 576 594 

50 TPM (10s) 7 7 7 7 98 98 

50 TPM (15s) 8 11 8 10 112 140 

50 TPM (60s) 39 42 38 37 532 518 

Source: (Research Result, 2025) 

This may be due to the very short interval 
between one droplet and the next, causing the 
system to interpret multiple droplets as a single 
object. Videos using the LBH dataset produced more 
accurate counting results because the droplets were 
more clearly visible, unlike in the LBP dataset, 
where the background color closely resembles the 
color of the droplets. With high precision and good 
accuracy, the system effectively detected drips. The 
test results showed the best performance on a white 
background (LBP) with a drip rate below 40 TPM, 
and on a black background (LBH) with a drip rate 
below 50 TPM. 

 
Source: (Research Result, 2025) 
Figure 11. Web-Based Application Interface Design 

Web-based Application Interface for Patient TPM 
Data Management 

This web application is a direct implementation 
of the previously trained model, enabling real-time 
counting of intravenous (IV) fluid drops. The main 
structure of the application is divided into two key 
sections: the drop count calculation page and the 
patient management page. Navigation between 
these pages is facilitated through the sidebar menu. 
The application interface is shown in Figure 11. As 
shown in figure 12, The page appears once the 
prediction process is complete. It will show the 
prediction results generated by the user. The page 
also includes additional information such as status, 
drip count, time, and .fps. 

 
Source: (Research Result, 2025) 
Figure 12. Web-Based Application Interface Design 

Confusion Matrix 
Based on the number of test data, a total of 48 

videos recorded at 30 FPS were divided into two 
groups: 24 for LBP and 24 LBH. The confusion 
matrix categorizes the data into four groups: data 
that is correctly predicted falls under True Positive 
(TP), data with a predicted count higher than the 
actual value is categorized as False Positive (FP), 
data with a predicted count lower than the actual 
value is classified as False Negative (FN), and data 
that is not detected in both the prediction and actual 
counts falls under True Negative (TN). The testing 
was conducted using a threshold of 0.75 for each 
data testing. The confusion matrix for each 
background type can be found in Table 6. 

Table 2. Confusion Matrix 
Parameter LBP LBH 
Accuracy 0.58 0.79 
Precision 1.00 1.00 

Recall 0.58 0.79 
F1-Score 0.74 0.88 

Source: (Research Result, 2025) 

Based on the data in Table 6, it can be concluded 
that the identification performance on test data 
with a LBH is superior to that with a LBP. The 
identification accuracy with LBH reaches 0.79, 
while with LBP it only reaches 0.58. However, in 
terms of precision, the drip objects were detected 
accurately with no errors out of a total of 24 test 
data points. The results were as follows: LBP with 
14 TP and 10 FN and LBH with 19 TP and 5 FN. 
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CONCLUSION 

The results of this study show that a real-
time, web-based drip infusion monitoring system 
using the YOLOv5 and DeepSORT algorithms has 
been developed and integrated with a patient 
database to serve as historical data. The system is 
capable of detecting and counting the number of 
falling IV droplets. Model training was conducted 
using a batch size of 32 with varying numbers of 
epochs: 25, 50, and 75. In the experiment with 25 
epochs, the model achieved an accuracy of 0.946 
with a training time of 25 minutes and 33 seconds. 
At 50 epochs, the accuracy increased to 0.972, with 
a training time of 50 minutes and 34 seconds. At 75 
epochs, the accuracy reached 0.979 with a training 
time of 1 hour, 10 minutes, and 32 seconds.  

Testing on the combined test dataset (LBP 
+ LBH), comprising 48 videos, showed an integrated 
performance accuracy of 0.58 for the LBP 
background and 0.79 for the LBH background. The 
prediction results were reasonably accurate for 
video durations of 10 and 15 seconds. However, for 
videos longer than 30 seconds, the number of 
counted droplets tended to deviate from the actual 
number. This may be due to very short intervals 
between droplets, causing the system to interpret 
multiple drops as a single object. The achievements 
of this study contribute to the development of real-
time medical monitoring technology in inpatient 
care settings, particularly regarding the use of 
suitable IV fluid containers—such as LBH—which 
support enhanced detection performance. Future 
research is expected to further improve the 
system’s ability to count infusion droplets more 
accurately.. 
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