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Abstract— Excessive fat accumulation that impairs personal health and raises the risk of chronic diseases is 
the hallmark of obesity, a global health issue. Decision Tree (DT) has been widely used for obesity classification, 
but it tends to suffer from overfitting and poor performance on imbalanced datasets. To overcome these 
limitations, this study proposes an optimization of the Support Vector Machine (SVM) algorithm using 
Synthetic Minority Over-sampling Technique (SMOTE) and Hyperparameter Tuning. SMOTE was applied to 
balance the class distribution, whereas Grid Search was utilized to determine the optimal combination of 
hyperparameters (C, gamma, and kernel). The dataset employed in this research comprises multiple features 
related to individual health and lifestyle, with obesity level as the target class. The experimental results 
demonstrate that the optimized SVM model demonstrated strong classification performance, attaining 97% in 
accuracy, precision, recall, and F1-score. This high performance is significant because it enables more accurate 
early detection of obesity risk, which can support timely medical intervention and personalized treatment 
planning, ultimately contributing to better public health outcomesThese findings suggest that incorporating 
SMOTE and Hyperparameter Tuning substantially improves SVM performance, establishing it as a robust 
approach for obesity classification and early risk detection. 

 
Keywords: classification, hyperparameter tuning, machine learning, obesity, SVM. 

 
Intisari— Obesitas merupakan masalah kesehatan global yang ditandai dengan akumulasi lemak berlebih 
dan berdampak buruk terhadap kesehatan serta meningkatkan risiko penyakit kronis. Meskipun algoritma 
Decision Tree (DT) telah banyak digunakan untuk klasifikasi obesitas, namun DT memiliki keterbatasan 
seperti overfitting dan performa yang rendah pada data tidak seimbang. Penelitian ini bertujuan 
mengoptimalkan algoritma Support Vector Machine (SVM) dengan menerapkan teknik Synthetic Minority 
Over-sampling Technique (SMOTE) dan Hyperparameter Tuning untuk mengatasi masalah tersebut. SMOTE 
digunakan untuk menyeimbangkan distribusi kelas, sedangkan Grid Search digunakan untuk menentukan 
kombinasi parameter terbaik (C, gamma, dan kernel). Dataset yang digunakan berisi fitur-fitur terkait 
kesehatan dan gaya hidup individu dengan kelas target tingkat obesitas. Hasil eksperimen menunjukkan 
bahwa model SVM yang telah dioptimasi berhasil mencapai akurasi, precision, recall, dan f1-score sebesar 
97%. Pencapaian ini memiliki makna penting karena memungkinkan deteksi dini risiko obesitas secara lebih 
akurat, sehingga dapat mendukung intervensi medis yang tepat waktu dan perencanaan perawatan yang 
dipersonalisasi, serta berkontribusi pada peningkatan kualitas layanan kesehatan masyarakat. Temuan ini 
menunjukkan bahwa integrasi SMOTE dan Hyperparameter Tuning secara signifikan meningkatkan performa 
SVM, menjadikannya pendekatan yang kuat untuk klasifikasi obesitas dan deteksi risiko sejak dini. 
 
Kata Kunci: klasifikasi, machine learning, obesitas, SVM, tuning parameter. 
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INTRODUCTION 
 

Obesity is a significant health disorder 
marked by the abnormal accumulation of excessive 
body fat. [1], which negatively impacts overall 
health [2]. As defined by the WHO, obesity is 
described as a condition where an individual 
possesses a Body Mass Index (BMI) of 30 or above, 
calculated by dividing a person’s body weight in 
kilograms by the square of their height measured in 
meters [3]. Obesity has become a significant global 
health concern, with its prevalence steadily rising 
across both developed and developing nations. [4], 
posing significant physical, social, and economic 
consequences [5]. As the number of individuals 
affected by obesity continues to rise, the demand for 
accurate detection and classification methods 
becomes increasingly urgent [6]. 

Various studies have been developed to build 
obesity prediction models based on machine 
learning. Among them is a study that proposed the 
use of CatBoost for obesity classification and 
achieved high accuracy [7], [8]. Another study 
compared several algorithms, such as K-Nearest 
Neighbors, Naïve Bayes, SVM, and Decision Tree, to 
evaluate the effectiveness of each approach [9]. 
Additionally, a study developed a data-driven 
classification approach to support healthcare 
practitioners in precisely determining the degree of 
obesity [10][11]. Another research integrated 
electronic health record data with machine learning 
techniques and emphasized the crucial role of 
artificial intelligence in detecting obesity and its 
variants [12], [13], [14]. 

Meanwhile, another study utilized the 
Decision Tree (DT) algorithm for predicting obesity 
levels and achieved an accuracy of 90%, comparable 
to that of neural networks, while highlighting the 
significant contribution of genetic factors in obesity 
classification [15]. Although DT demonstrates good 
performance, this model has limitations in handling 
imbalanced data [16], which often leads to bias 
toward the majority class and reduced sensitivity to 
minority classes [17]. Moreover, improper 
parameter selection in DT can result in overfitting 
or underfitting [18], as well as model instability due 
to small changes in the input data [19]. As an 
alternative, Support Vector Machine (SVM) 
provides advantages in minimizing overfitting and 
managing model complexity [20]. Support Vector 
Machine (SVM) functions by optimizing the 
separation margin between classes and 
demonstrates strong performance in managing 
high-dimensional datasets [21]. Nevertheless, SVM 
also struggles with imbalanced data, often 
prioritizing the majority class [22]. Its performance 

heavily relies on selecting the right 
hyperparameters such as C, gamma, and the kernel 
type [8], [23]. 

To enhance SVM performance, two 
complementary strategies can be adopted: 
Synthetic Minority Oversampling Technique 
(SMOTE) and Hyperparameter Tuning. The SMOTE 
technique produces additional synthetic data points 
for underrepresented classes, thereby improving 
class distribution and fostering fairness in the 
model [24], while Hyperparameter Tuning 
facilitates the search for the optimal parameter 
combination using methods such as Grid Search 
[25], [26]. Together, these techniques help the SVM 
model generalize better, reduce overfitting risks, 
and enhance classification accuracy, particularly for 
minority classes [27], [28]. 

Based on the aforementioned background, 
this study seeks to optimize the SVM algorithm for 
obesity classification by integrating SMOTE and 
Hyperparameter Tuning techniques. This method is 
anticipated to yield a more precise, balanced, and 
computationally efficient model, supporting early 
detection and informed decision-making in health-
oriented machine learning applications. 

The novelty of this study lies in the integrated 
use of SMOTE to handle class imbalance and Grid 
Search-based hyperparameter tuning to enhance 
model performance—both applied specifically to 
the SVM algorithm for obesity classification. In 
contrast to earlier research that predominantly 
emphasized a single aspect, this research combines 
both techniques in a unified framework to achieve a 
more robust and generalizable model for healthcare 
analytics. 

 
MATERIALS AND METHODS 

 
The approach employed in this research 

utilizes the SVM algorithm to classify obesity levels, 
enhanced through the application of the SMOTE and 
Hyperparameter Tuning. The research consists of 
five stages, namely: 

 
Data Collection 

The dataset used in this research was 
acquired through the Kaggle repository and 
comprises information pertaining to obesity levels. 
The dataset includes various input variables such as 
weight, height, gender, age, family history of 
overweight, frequency of physical activity, dietary 
habits, and other lifestyle-related attributes. The 
target variable, labeled "NObeyesdad", consists of 
seven classes: Overweight_Level_I, 
Overweight_Level_II, Insufficient_Weight, 
Obesity_Type_I, Obesity_Type_II, Obesity_Type_III 
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and Normal_Weight. The data consists of 2111 
records, with a balanced distribution across several 
classes but notable imbalance in others. 
Accordingly, the dataset was subjected to 
preprocessing procedures aimed at cleaning and 
transforming its features, followed by a balancing 
stage using SMOTE to ensure equal representation 
of all classes before training and evaluating the 
classification model. 

The dataset is openly accessible on Kaggle 
and contains no personally identifiable information. 
Its utilization in this study adheres to the usage 
terms and licensing conditions specified by the 
dataset provider. 

 
Data Processing 

The dataset employed in this research 
comprises more than 2,000 individual records with 
a total of 17 variables, including both input features 
and one target variable. The data was obtained from 
the Kaggle platform and is specifically designed for 
the categorization of obesity levels according to 
demographic, lifestyle, and behavioral attributes. 
The dependent variable in this study is 
NObeyesdad, which denotes the obesity level 
classification for each individual. 

The outcome variable examined in this study 
are height, gender, weight, and age, along with other 
behavioral and lifestyle-related variables, such as 
food consumption habits, smoking behavior, 
physical activity, alcohol intake, and use of 
technology devices. A comprehensive list of the 
variables along with their descriptions is provided 
in Table 1. 
 

Table 1. Variables and Descriptions 
No Variable Type Description 
1 Gender Object Individual’s gender 
2 Age Float64 Individual’s age 

3 Height Float64 
The individual’s height 
expressed in meters 

4 Weight Float64 
The individual’s weight 
expressed in kilograms 

5 
Family history 
with 
overweight 

Object 
A family history of obesity is 
present. 

6 FAVC Object 
Frequency of high-calorie food 
intake 

7 FCVC Float64 
Frequency of vegetable 
consumption 

8 NCP Float64 
The number of main meals 
consumed per day 

9 CAEC Object 
Snacking frequency between 
meals 

10 SMOKE Object Does the person smoke? 
11 CH2O Float64 Daily water intake 
12 SCC Object Monitoring of caloric intake 

13 FAF Float64 
The number of times physical 
activity is performed per week 

14 TUE Float64 
Time using technology devices 
in hours 

No Variable Type Description 
15 CALC Object Consumption of alcohol 
16 MTRANS Object Transportation used 
17 NObeyesdad Object Obesity Level 

Source : (Research Results, 2025) 
 

Table 1  presents data sourced from Kaggle 
(https://www.kaggle.com/datasets/aravindpcoder
/obesity-or-cvd-risk-classifyregressorcluster), 
where the data has already been categorized by 
type. Prior to modeling, the dataset underwent 
several preprocessing steps. First, missing or 
inconsistent data entries were checked and cleaned. 
Next, categorical variables, including MTRANS, 
SMOKE, Family history of overweight, SCC, CAEC, 
CALC, and Gender, were encoded into numerical 
format using label encoding where appropriate. 
Numerical attributes such as Age, Height, and 
Weight were subjected to standard scaling for 
normalization to ensure uniform value distribution 
and prevent bias during model training, as 
StandardScaler transforms features to have zero 
mean and unit variance, which helps improve SVM 
performance since it is sensitive to feature scales 
[29]. 

The list of datasets for each variable can be 
seen in table 2 below. 

 
Table 2. Dataset 

Variable 
Sample 

Data 
1 2 3 … 2111 

Gender Fem Fem Male … Fem 
Age 21 21 23 … 23.6 
Height 1.62 1.52 1.8 … 1.7 
Weight 64 56 77 … 133.4 
family_history_wit
h_overweight 

Yes Yes Yes … Yes 

FAVC No No No … Yes 
FCVC 2 3 2 … 3 
NCP 3 3 3 … 3 

CAEC 
Sometim

es 
Sometim

es 
Sometim

es 
… 

Sometim
es 

SMOKE no yes no … No 
CH2O 2 3 2 … 2.8 
SCC no yes No … No 
FAF 0 3 2 … 1.02 
TUE 1 0 1 … 0.7 

CALC no 
Sometim

es 
Frequen

tly 
… 

Sometim
es 

MTRANS Public Public Public … Public 

NObeyesdad 
Normal_
Weight 

Normal_
Weight 

Normal_
Weight 

… 
Obesity_
TypeIII 

Source : (Research Results, 2025) 
 

This data processing stage aims to ensure 
that the dataset used in the study is clean, balanced, 
and ready to be used in the classification process 
using the SVM algorithm. 

 
  

https://www.kaggle.com/datasets/aravindpcoder/obesity-or-cvd-risk-classifyregressorcluster
https://www.kaggle.com/datasets/aravindpcoder/obesity-or-cvd-risk-classifyregressorcluster
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Research Stages  
This research was undertaken by following a 

structured series of methodological stages aimed at 
achieving the main objective, namely the 
development and optimization of an obesity 
classification model based on Support Vector 
Machine (SVM). Each stage was carefully designed 
to ensure an efficient workflow, starting from 
problem identification to model performance 
evaluation. Figure 1 illustrates the flowchart of the 
research stages implemented in this study. 
 

 
Source : (Research Results, 2025) 

Figure 1. Research Framework 
 

1. Problem Identification 
The process begins with identifying the core 
issues surrounding obesity classification, 
particularly its importance in disease prevention 
and data-driven decision-making. 

2. Research Objectives 
Based on the identified problems, the main 
research objective is formulated: to build an 
accurate and optimized multiclass obesity 
classification model. 

3. Literature Review 
A thorough literature review is conducted to 
understand relevant methods, including 
classification techniques, handling imbalanced 
data, and performance evaluation metrics. 
References are drawn from journals, books, and 
other reputable sources. 

4. Data Collection 
The dataset applied in this study was retrieved 
from an open-source repository and 
encompasses attributes associated with 
individuals’ lifestyle, dietary patterns, and 
physical conditions. 

5. Pre-processing 
This stage encompasses encoding categorical 
features, standardizing the data, and segregating 
the dataset into distinct training and testing 
subsets. Such preprocessing steps guarantee 
that the dataset is properly structured for the 
training phase of the model. 

6. Baseline Model Implementation 
A baseline SVM model is implemented as a 
benchmark before applying optimization 
techniques. The model is developed using the 

preprocessed dataset and assessed through 
performance metrics, including ROC curve, 
classification report, and the confusion matrix. 

7. Proposed Method Implementation 
At this stage, the baseline model is enhanced by 
incorporating SMOTE for balancing the dataset 
and GridSearchCV for hyperparameter tuning. 
The optimized model is expected to perform 
better than the baseline. 

8. Performance Analysis 
The optimized model is evaluated using the 
same performance metrics to observe 
improvements in accuracy and generalization. 
Class-wise F1-scores, confusion matrix, and ROC 
curves are analyzed and compared to the 
baseline. 

9. Result Analysis 
To learn more about the model's advantages, 
disadvantages, and capacity to categorize 
different forms of obesity, the evaluation 
findings are further examined. The performance 
disparities between the baseline and optimized 
models are also emphasized. 
 

Support Vector Machine (SVM) Algorithm 
This research uses the SVM algorithm to 

classify obesity levels based on behavioral and 
physical attributes. SVM effectively handles high-
dimensional data by creating decision boundaries 
that maximize class separation [30], [31]. To 
enhance its performance, this research utilizes the 
SMOTE to mitigate class imbalance and implements 
Hyperparameter Tuning to identify the optimal 
model parameters. The integration of these 
strategies are designed to improve the accuracy and 
generalization capability of SVM in classifying 
different obesity categories. 

 
Source : (Research Results, 2025) 

Figure 2. Support Vector Machine (SVM) Baseline 
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Proposed Method 
To assess the effectiveness of the proposed 

approach in this study, a comparison was carried 
out between the baseline model and the optimized 
model. The baseline model employs a SVM classifier 
with default parameters, without addressing data 
imbalance or performing any parameter tuning. In 
contrast, the proposed model integrates two key 
optimization techniques: SMOTE to address class 
imbalance, and Hyperparameter Tuning using 
GridSearchCV to determine the best combination of 
hyperparameters (C and γ).  

GridSearchCV was selected in this study due 
to its exhaustive and systematic nature in exploring 
the parameter space [32]. Although methods such 
as RandomSearchCV and Bayesian Optimization are 
known for their efficiency in larger and more 
complex hyperparameter spaces, GridSearchCV 
provides a more deterministic approach, ensuring 
all parameter combinations within the defined grid 
are tested [33]. Given the relatively small size of the 
hyperparameter space used in this study (C and γ), 
GridSearchCV was considered adequate and 
effective for achieving reliable optimization results 
without significantly increasing computational cost. 

The parameter grid explored in this study 
includes the following values: C = [0.1, 1, 10], 
gamma = [‘scale’, 0.01, 0.001], and kernel = [‘rbf’, 
‘linear’]. These combinations were evaluated using 
5-fold cross-validation within GridSearchCV to 
determine the optimal SVM configuration. 

The flowchart comparing the SVM Baseline 
with the Proposed Method is shown in Figure 3. 
 

 
Source : (Research Results, 2025) 

Figure 3. Comparison of SVM Baseline with 
Proposed Method 

 

Figure 3 illustrates the step-by-step 
comparison of both approaches. On the left side, the 
baseline workflow begins with data preprocessing, 
which includes category encoding and standard 
scaling, followed by an 80:20 stratified train-test 
split. Subsequently, the model is trained with the 
default SVM configuration and evaluated using 
performance indicators, including confusion matrix, 
accuracy, and class-wise F1-score. On the right side, 
the proposed method workflow also starts with 
preprocessing, but continues with the application of 
SMOTE to balance the class distribution. After that, 
the data is split with the same stratified ratio 
(80:20), and hyperparameter tuning is carried out 
to find the optimal values for C and γ using 
GridSearchCV. The optimized SVM is then trained 
with the best parameters and evaluated with a more 
comprehensive set of metrics, including accuracy, 
confusion matrix, F1-score per class, ROC curve, and 
PCA/t-SNE visualization to observe the class 
separation visually. 

This comparison clearly demonstrates the 
impact of applying SMOTE and hyperparameter 
optimization on the performance of obesity 
classification models, showing improvements in 
accuracy and class-level sensitivity. 
 

RESULTS AND DISCUSSION 
 
This section reports the outcomes of the 

classification experiments and elaborates on the 
performance comparison between the baseline SVM 
model and the optimized version enhanced with 
SMOTE and hyperparameter tuning. The evaluation 
emphasizes key metrics such as precision, accuracy, 
F1-score, recall, and the confusion matrix to 
comprehensively assess classification performance 
across all obesity categories. Additional 
visualizations such as ROC curves and 
dimensionality reduction plots (PCA/t-SNE) are 
also provided to support the interpretation of the 
model’s behavior. The discussion further highlights 
the improvements gained through the application of 
oversampling and parameter optimization, and 
their impact on handling class imbalance and 
enhancing model generalization. 

 
Data Pre-Processing Results 

Prior to training the classification model, the 
dataset was subjected to a series of preprocessing 
steps to guarantee that all features were 
appropriately formatted for machine learning. This 
involved transforming categorical variables into 
numerical values and standardizing numerical 
features to ensure consistency in scale and prevent 
bias during model training. The results of these 
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preprocessing steps are presented in Table 3 and 
Table 4. 

Table 3 shows the transformation of several 
categorical variables into numerical format using 
label encoding, where each category is assigned a 
unique numeric code. This step was necessary for 
algorithms such as SVM that require numeric input. 

 
Table 3. Encoded Categorical Variables 

Variable Sample 
Data 

1 2 3 … 2111 
Gender 0 0 1 … 0 
family_history_with_overweight 0 0 0 … 0 
FAVC 0 0 0 … 1 
CAEC 0 0 0 … 0 
SMOKE 0 1 0 … 0 
SCC 0 1 0 … 0 
CALC 2 1 0 … 0 
MTRANS 0 0 0 … 0 
NObeyesdad 0 0 0 … 1 

Source : (Research Results, 2025) 
 

Table 4 presents the results of applying 
standard scaling to the numerical features in the 
dataset, including variables such as age, height, 
weight, and physical activity. StandardScaler 
transforms feature values such that they attain a 
mean of 0 and a standard deviation of 1, which helps 
stabilize the training process and improves the 
convergence of the SVM algorithm. 

 
Table 4. Standard Scaled Numerical Variables  

Variable 
Sample 

Data 
1 2 3 … 2111 

Age -0.980293 -0.980293 0.700914 … 1.259671 
Height -0.460357 -1.386461 1.206630 … 0.640188 
Weight -0.614415 -0.878422 -0.185404 … 1.678241 
FCVC -1.0 1.0 -1.0 … 1.0 
NCP 0.0 0.0 0.0 … 0.0 
CH2O -0.994678 1.140382 -0.994678 … 0.848974 
FAF -1.351063 1.339203 0.442447 … -0.430587 
TUE 0.786431 -1.659960 0.786431 … 0.087098 

Source : (Research Results, 2025) 
 

The robustness and generalization of the 
SVM model are enhanced by these preprocessing 
outcomes, which guarantee that all data utilized for 
training and testing is in a consistent, numerical 
format and suitably scaled. 

 
SMOTE and Pre-Processing 

SMOTE was implemented to overcome the 
problem of class imbalance within the dataset. Prior 
to the implementation of SMOTE, The training data 
displayed a considerable imbalance between the 
majority and minority classes. Therefore, this 
subsection presents a comparison of the class 
distribution before and after applying SMOTE to 
demonstrate the effectiveness of this technique in 
balancing the number of instances across all classes. 

Class distribution before using the SMOTE 
technique is shown in Table 5. 
 

Table 5. Amount of Data in Each Classes 
No Class Amount 
1 Insufficient_Weight 272 
2 Normal_Weight 287 
3 Overweight_Level_I 290 
4 Overweight_Level_II 290 
5 Obesity_Type_I 351 
6 Obesity_Type_II 297 
7 Obesity_Type_III 324 

Source : (Research Results, 2025) 
 

Table 5 presents the distribution of data in 
each class before the application of SMOTE. It can be 
observed that the dataset was imbalanced, with the 
number of samples varying significantly across 
classes. For example, Obesity_Type_I had the highest 
number of instances (351), while 
Insufficient_Weight had the fewest (272). This 
imbalance may adversely impact the performance 
of classification models, particularly in predicting 
minority classes. 

 
Table 6. Amount of Data in Each Classes with 

SMOTE 
No Class Amount 
1 Insufficient_Weight 281 
2 Normal_Weight 281 
3 Overweight_Level_I 281 
4 Overweight_Level_II 281 
5 Obesity_Type_I 281 
6 Obesity_Type_II 281 
7 Obesity_Type_III 281 

Source : (Research Results, 2025) 
 

To resolve this problem, the SMOTE 
technique was implemented, with the resulting 
class distribution presented in Table 6. After the 
application of SMOTE, all classes were resampled to 
have an equal number of instances, specifically 281 
samples per class. The goal of this balancing 
procedure is to improve the model's generalization 
across all categories by preventing the classifier 
from becoming biased toward the majority classes. 

 
Data Classification Results 

At this stage, a classification process was 
conducted to categorize individuals into one of the 
seven obesity levels based on various physical, 
demographic, and behavioral attributes. The 
classification was performed using two different 
approaches: the baseline SVM model with default 
settings and no data balancing, and the proposed 
SVM model optimized using the SMOTE technique 
for class balancing and Hyperparameter Tuning via 
GridSearchCV. 
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Confusion Matrix 
To further assess the performance of the 

classification models, confusion matrices were 
utilized to illustrate the accuracy in classifying the 
seven obesity level categories. Figure 4 presents the 
confusion matrix of the baseline SVM model, while 
Figure 5 illustrates the confusion matrix of the 
optimized SVM model enhanced with SMOTE and 
Hyperparameter Tuning. 

 
Source : (Research Results, 2025) 

Figure 4. Confusion Matrix SVM Baseline 
 

In the Figure 4 baseline SVM model, 
misclassifications occurred in several classes, 
especially in Overweight_Level_I, 
Overweight_Level_II, and Normal_Weight. For 
example, Overweight_Level_I was misclassified into 
Normal_Weight in 9 instances and into 
Overweight_Level_II in 5 instances. Similarly, 
Normal_Weight showed misclassification into 
Insufficient_Weight and Overweight_Level_I. These 
errors highlight the model’s limited sensitivity to 
minority classes due to the imbalanced distribution 
of training data. 

 

 
Source : (Research Results, 2025) 

Figure 5. Confusion Matrix SVM Proposed 
In contrast, in Figure 5 the proposed SVM 

model with SMOTE and Hyperparameter Tuning 
shows significant performance improvement across 

all categories. The confusion matrix shows more 
accurate classification, with fewer 
misclassifications. Most categories, such as 
Insufficient_Weight, Obesity_Type_I, 
Obesity_Type_II, and Obesity_Type_III achieve near-
perfect or perfect predictions. The SMOTE 
implementation successfully addresses the class 
imbalance problem, while GridSearchCV improves 
the model generalization by finding optimal C and γ 
values. 

The confusion matrix clearly indicates that, 
following the application of SMOTE and 
hyperparameter tuning, the number of misclassified 
instances in minority classes (such as 
Normal_Weight and Overweight_Level_I) was 
significantly reduced. This indicates that the 
optimized model exhibits improved capability in 
identifying previously underrepresented 
categories. 

Overall, the proposed method proved 
effective in improving classification accuracy and 
reducing class prediction bias, particularly for the 
minority categories. This improvement is reflected 
in the significant increase in evaluation metrics such 
as precision, recall, and F1-score in the next sub-
section. 

 
Classification Report 

This section provides a comparative 
evaluation of classification performance between 
the baseline SVM model and the proposed approach, 
which combines SVM with SMOTE for class 
balancing and hyperparameter tuning for 
optimization. 

 

 
Source : (Research Results, 2025) 

Figure 6. Classification Report SVM Baseline 
 

As illustrated in Figure 6, the baseline SVM 
model attained an overall accuracy of 87%, with 
both the macro and weighted average F1-scores 
reaching 0.87. The model demonstrated strong 
performance on classes like Obesity_Type_II and 
Obesity_Type_III, achieving F1-scores of 0.95 and 
0.99, respectively. However, the model’s 
performance declined notably for 
Overweight_Level_I and Normal_Weight, with F1-
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scores of 0.72 and 0.77, highlighting its challenges 
in differentiating among intermediate obesity 
levels. 

 

 
Source : (Research Results, 2025) 

Figure 7. Classification Report SVM Proposed 
 

In contrast, the proposed method, as 
illustrated in Figure 7, showed a significant 
improvement across all evaluation metrics. The 
optimized model reached an accuracy of 97%, with 
both macro and weighted average F1-scores rising 
to 0.97. Most notably, all classes achieved F1-scores 
above 0.93, with several classes such as 
Obesity_Type_I, Insufficient_Weight, and 
Obesity_Type_III reaching near-perfect precision 
and recall values. 

These results demonstrate that the 
application of SMOTE and hyperparameter tuning 
not only addresses the class imbalance issue but 
also enhances the model's generalization ability, 
resulting in a more robust and accurate 
classification performance across all obesity 
categories. 

 
F1-Score per Class Visualization 

To strengthen the performance analysis of 
the model in classifying each obesity class, F1-score 
values per class were visualized for two scenarios: 
the baseline model and the proposed model (using 
SMOTE and Hyperparameter Tuning). This 
visualization helps evaluate how well the model 
handles data imbalance and accurately classifies 
each obesity category. 

 

 
Source : (Research Results, 2025) 

Figure 8. F1-Score per Class SVM Baseline 
 

Figure 8 shows the F1-score values of the 
baseline SVM model without any optimization. It is 
observed that the model tends to perform better on 
classes with larger amounts of data, such as 
Obesity_Type_III (0.99) and Obesity_Type_II (0.95). 
On the other hand, relatively low performance is 
found in Normal_Weight (0.72) and 
Overweight_Level_I (0.77), indicating that the 
baseline model struggles to identify minority 
classes or more complex patterns. 

 

 
Source : (Research Results, 2025) 

Figure 9. F1-Score per Class SVM Proposed 
 
Figure 9 presents the F1-scores of the SVM 

model after optimization using the SMOTE method 
and Hyperparameter Tuning. Overall, there is a 
significant improvement across all classes. The 
Normal_Weight class, which previously scored only 
0.72, increased to 0.97, and Overweight_Level_I 
improved from 0.77 to 0.93. This improvement 
shows that the proposed method successfully 
increased the model's sensitivity to minority classes 
and resulted in more balanced predictions across 
classes. 

Furthermore, the F1-score visualization 
clearly shows an upward trend across all classes, 
especially for Obesity_Type_I and 
Insufficient_Weight, where the scores improved by 
more than 10%. This improvement indicates that 
the decision boundaries learned by the model have 
become more effective in separating overlapping 
feature spaces due to optimal values of the kernel 
parameters. Overall, the visual evidence supports 
the conclusion that the proposed approach leads to 
a more balanced and generalizable classifier. 

Based on these findings, it can be concluded 
that applying SMOTE to tackle class imbalance, 
combined with hyperparameter tuning, 
significantly improves classification performance, 
especially in terms of F1-score per class. 
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The initially lower performance in classes 
such as Normal_Weight and Overweight_Level_I can 
be attributed to two main factors. First, these 
classes had relatively fewer instances compared to 
others, making them underrepresented during 
training. Second, these categories share overlapping 
feature distributions, particularly in variables such 
as BMI, calorie intake, and physical activity 
frequency, which can confuse the SVM classifier. 
After applying SMOTE, the data imbalance was 
mitigated, allowing the model to receive more 
training samples for those minority classes. 
Additionally, hyperparameter tuning via 
GridSearchCV helped identify optimal values of C 
and γ, enhancing the decision boundaries and 
enhances the model’s capability to differentiate 
between closely related classes. These two 
optimization steps contributed significantly to the 
improved classification performance observed 
across all classes. 
 
Learning Curve Analysis 

In this study, learning curves are utilized to 
compare the performance of the SVM model before 
and after the optimization process, which involves 
balancing the dataset using SMOTE and tuning 
hyperparameters using GridSearchCV. 

 

 
Source : (Research Results, 2025) 

Figure 10. Learning Curve (SVM) 
 

Figure 10 illustrates the learning curve of the 
baseline SVM model prior to optimization. The 
training accuracy shows a steady increase and 
stabilizes around 0.90, whereas the validation 
accuracy remains notably lower. Beginning at 
approximately 0.25, the validation accuracy 
gradually improves and reaches about 0.86 at the 
maximum training size. The substantial gap 
between the training and validation curves signifies 
overfitting, indicating that the model closely fits the 
training data but has difficulty generalizing to 
unseen data. 

  
Source : (Research Results, 2025) 

Figure 11. Learning Curve (SVM + SMOTE + 
Tuning) 

 
In contrast, Figure 11 shows the learning 

curve of the SVM model after the optimization 
process. The training accuracy remains consistently 
high, ranging between 0.97 and 0.99. More 
importantly, the validation accuracy increases 
rapidly and closely approaches the training curve, 
reaching over 0.96. The narrow gap between the 
two curves demonstrates that the optimized model 
is able to generalize well, significantly reducing 
overfitting. This indicates that the combination of 
SMOTE and hyperparameter tuning has effectively 
enhanced the classification performance of the SVM 
model for multi-class obesity detection. 

 
Additional Visualization and Analysis on 
Baseline Model 

In addition to evaluation metrics such as 
confusion matrix and classification report, this 
study also presents a series of additional 
visualizations to further assess and understand the 
model’s performance from different perspectives. 
These visualizations include the ROC Curve 
(Multiclass SVM), PCA-based 2D projection, t-SNE-
based 2D projection, Learning Curve (SVM), and 
Validation Curve all of which are generated based 
on the baseline SVM model. 

 
Source : (Research Results, 2025) 

Figure 12. ROC Curve (Multiclass SVM) 
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Figure 12 illustrates the ROC Curve for 
multiclass classification, displaying the Area Under 
the Curve (AUC) values for each class. The results 
demonstrate that the SVM model attained 
outstanding AUC scores for the majority of classes, 
with Obesity_Type_II, Obesity_Type_III and 
Insufficient_Weight achieving an AUC of 1.00. 
Normal_Weight recorded the lowest AUC of 0.92, 
indicating relatively lower separability compared to 
the other classes. 

 

 
Source : (Research Results, 2025) 

Figure 13. PCA-based 2D projection 
 

Figure 13 displays the Principal Component 
Analysis (PCA) 2D visualization, which projects the 
original 17-dimensional dataset into two principal 
components. This visualization helps to observe the 
clustering tendencies of each obesity class. While 
some classes show clear grouping, others overlap 
due to similarities in feature values. 

 

 
Source : (Research Results, 2025) 

Figure 14. t-SNE-based 2D projection 
 

Figure 14 presents the 2D projection using 
the t-distributed Stochastic Neighbor Embedding (t-
SNE) technique. Unlike PCA, t-SNE better captures 

local structures and non-linear separability among 
classes. From this plot, the separation between 
classes appears more distinct, especially for 
Obesity_Type_III and Obesity_Type_II, which form 
clearly separated clusters, indicating that the 
features used were informative for distinguishing 
those classes. 
 

 
Source : (Research Results, 2025) 
Figure 15. Validation Curve for SVM (parameter C) 

 
Figure 15 displays the validation curve based 

on the regularization parameter C in SVM. The 
training and validation scores improve significantly 
as C increases from 0.001 to 1.0, reaching a near-
optimal value at around C = 10. After this point, the 
training score remains perfect, but the validation 
score plateaus, indicating potential overfitting if C is 
too large. This analysis guided the hyperparameter 
tuning stage in the proposed method. 
 
Model Performance Evaluation 

The model’s evaluation results, based on 
precision, accuracy, F1-score, and recall are 
summarized in Table 5. This table compares the 
performance of the baseline SVM model with the 
proposed SVM method, which integrates SMOTE 
and hyperparameter tuning technique. 

The baseline SVM model achieved precision, 
accuracy, recall, and F1-score of 87%. Conversely, 
the proposed SVM approach showed significant 
enhancement, attaining 97% in precision, accuracy, 
recall, and F1-score. These findings indicate that the 
proposed method is more effective and robust in 
classifying obesity levels compared to the baseline 
model. 

 
Table 7. Model Testing Result 

Method Accuracy Precision Recall F1-Score 
SVM Baseline 0,87 0,87 0,87 0,87 
SVM proposed method 0,97 0,97 0,97 0,97 

Source : (Research Results, 2025) 
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As presented in Table 7, the proposed 
method surpasses the baseline model in all 
evaluation metrics. The improvement from 87% to 
97% in accuracy suggests a notable enhancement of 
10%, this outcome highlights the effectiveness of 
SMOTE in managing class imbalance and the 
advantages of hyperparameter tuning in optimizing 
model performance. The uniform improvement 
across all metrics also demonstrates a well-
maintained balance between precision and recall, 
leading to greater reliability in classification tasks. 
 

 
Source : (Research Results, 2025) 

Figure 16. Confidence Intervals 
 
Figure 16 illustrates the comparison between 

the baseline and proposed SVM models across four 
main performance metrics: Accuracy, Precision, 
Recall, and F1-Score. Each bar represents the score 
of a model for a specific metric, while the error bars 
indicate the 95% confidence intervals. 

As illustrated in the figure, the proposed 
approach consistently surpasses the baseline model 
across all evaluation metrics. Furthermore, the 
proposed model exhibits narrower confidence 
intervals, which indicates higher consistency and 
lower variance in performance across different 
testing folds. This emphasizes the robustness and 
generalizability of the proposed approach. 

The improvement in performance, along with 
the reduced uncertainty in predictions (as reflected 
by the confidence intervals), supports the 
conclusion that the combination of SMOTE and 
hyperparameter tuning significantly enhances the 
classification capability of the SVM model in 
detecting and categorizing obesity levels. 

 
CONCLUSION 

 
This research sought to enhance the 

classification performance of obesity levels by 
optimizing the Support Vector Machine (SVM) 
algorithm through the application of SMOTE for 
data balancing and hyperparameter tuning for 
model optimizationclearly demonstrate that the 

proposed method significantly outperforms the 
baseline SVM model in terms of precision, accuracy, 
recall, and F1-score. 

Although the baseline SVM model attained 
87% accuracy, 87% precision, 87% recall, and an 
F1-score of 87%, the proposed method attained 
better performance across all evaluation metrics, 
reaching 97% for precision, accuracy, recall, and F1-
score. These enhancements demonstrate that the 
integration of SMOTE and hyperparameter tuning 
has strengthened the model’s generalization 
capability and improved its effectiveness in 
addressing class imbalance. 

This research confirms that the proposed 
SVM approach is a more reliable and effective 
method for multi-class obesity classification. The 
promising results suggest that this approach can be 
practically applied in healthcare systems, such as 
early detection tools for obesity risk levels in 
routine medical check-ups or as part of digital 
health monitoring platforms. 

To further evaluate the practicality of the 
model in real-world applications, future work 
should evaluate its performance on unseen data 
from diverse populations or different 
environmental settings. This step is crucial to 
ensure the model's robustness and generalization 
across various demographic or geographic contexts. 
Additionally, future studies may explore integrating 
wearable sensor data, dietary or activity logs, and 
evaluating the model’s deployment in clinical or 
remote healthcare settings to enhance its 
practicality and robustness. Furthermore, feature 
importance analysis using model-agnostic 
interpretability methods, such as SHAP or 
permutation importance, will be incorporated to 
better understand the contribution of individual 
features to the model's predictive performance. 
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