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Abstract— Handwritten digit recognition presents persistent challenges in computer vision due to the high
variability in human handwriting styles, which necessitates robust generalization in classification models. This
study proposes an advanced data augmentation strategy using Cycle-Consistent Generative Adversarial
Networks (CycleGAN) to improve recognition accuracy on the MNIST dataset. Two architectures are evaluated:
a standard Convolutional Neural Network (CNN) and a hybrid model combining CNN for spatial feature
extraction and Bidirectional Long Short-Term Memory (BiLSTM) for sequential pattern modeling. The
CycleGAN-based augmentation generates realistic synthetic images that enrich the training data distribution.
Experimental results demonstrate that both models benefit from the augmentation, with the CNN-BiLSTM
model achieving the highest accuracy of 99.22%, outperforming the CNN model’s 99.01%. The study’s novelty
lies in the integration of CycleGAN-generated data with a CNN-BILSTM architecture, which has been rarely
explored in previous works. These findings contribute to the development of more generalized and accurate
deep learning models for handwritten digit classification and similar pattern recognition tasks.

Keywords: Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural Network (CNN),
CycleGAN, Data Augmentation, Handwritten Digit Recognition.

Intisari— Pengenalan digit tulisan tangan merupakan tantangan yang berkelanjutan dalam bidang
penglihatan komputer karena tingginya variasi gaya tulisan tangan manusia, yang menuntut kemampuan
generalisasi yang kuat pada model klasifikasi. Penelitian ini mengusulkan strategi augmentasi data lanjutan
menggunakan Cycle-Consistent Generative Adversarial Networks (CycleGAN) untuk meningkatkan akurasi
pengenalan digit pada dataset MNIST. Dua arsitektur model dievaluasi: model Convolutional Neural Network
(CNN) standar, dan model hibrida yang menggabungkan CNN untuk ekstraksi fitur spasial dengan
Bidirectional Long Short-Term Memory (BiLSTM) untuk pemodelan pola sekuensial. Proses augmentasi
berbasis CycleGAN menghasilkan citra sintetis realistis yang memperkaya distribusi data pelatihan. Hasil
eksperimen menunjukkan bahwa kedua model mengalami peningkatan performa setelah augmentasi, dengan
model CNN-BILSTM mencapai akurasi tertinggi sebesar 99,22%, melampaui model CNN yang mencapai
99,01%. Kebaruan penelitian ini terletak pada integrasi data sintetis dari CycleGAN dengan arsitektur CNN-
BiLSTM, yang masih jarang dieksplorasi dalam studi sebelumnya. Temuan ini memberikan kontribusi
terhadap pengembangan model deep learning yang lebih general dan akurat untuk klasifikasi digit tulisan
tangan maupun tugas pengenalan pola sejenis lainnya.

Kata Kunci: Bidirectional Long Short-Term Memory (BiLSTM), Jaringan Syaraf Tiruan Konvolusional (CNN),
CycleGAN, Data Augmentation, Pengenalan Digit Tulisan Tangan.
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INTRODUCTION

Handwritten digit recognition is a classic
challenge in the field of computer vision and
machine learning that remains relevant today.
Human handwriting varies greatly in shape, style,
pressure, and size, making it difficult for automated
systems to recognize it accurately. Applications of
handwriting recognition systems are widespread,
ranging from administrative document automation,
form validation, digital text input systems, to
human-computer interaction [1]. The Modified
National Institute of Standards and Technology
(MNIST) dataset has become the standard
benchmark for the development and evaluation of
handwriting recognition models because it provides
a standardized and easily accessible dataset of
handwritten digits [2]. Various deep learning-based
approaches have been successfully applied to this
task. One of the most widely used models is the
Convolutional Neural Network (CNN), known for its
effectiveness in extracting spatial features from
images [3]. Meanwhile, Bidirectional Long Short-
Term Memory (BiLSTM), although initially designed
for sequential data, has also proven capable of
modeling spatial relationships in images
sequentially, especially when combined with CNN
[4]. The CNN-BiLSTM combination is considered to
harness the spatial representation power of CNN
and the sequential pattern understanding of
BiLSTM, thereby improving digit recognition
performance [5].

The accuracy of handwriting recognition
models is strongly influenced by the diversity and
quantity of training data. Limited or homogeneous
data often leads to overfitting, reducing
generalization. While conventional augmentation
techniques (e.g, rotation, flipping) are commonly
applied, they are often insufficient to capture the
natural variability in handwriting. Recent studies
have highlighted the effectiveness of GAN-based
approaches for generating more realistic and
diverse data. Neto et al. (2024) emphasized the
growing use of GANs in handwriting synthesis,
while Wang et al. (2023) and Gonwirat & Surinta
(2022) demonstrated that CycleGAN can enhance
visual quality and style diversity in handwritten
images. These findings suggest that CycleGAN-
based augmentation offers a promising solution for
improving recognition performance in
handwriting-related tasks.[6], [7], [8] .

A recent systematic review by Neto et al.
(2024) identified the growing application of GAN-
based data augmentation in handwriting
recognition. However, few studies have empirically
evaluated the effectiveness of advanced GAN
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variants like CycleGAN on digit-level datasets such
as MNIST, especially in combination with hybrid
deep learning models like CNN-BiLSTM. This
presents a research gap in understanding how
CycleGAN-generated synthetic data can impact
spatial and sequential feature learning for
handwritten digit recognition. Therefore, this study
addresses the problem of limited handwriting data
and overfitting by proposing a CycleGAN-based
augmentation approach. The impact of this
approach is evaluated on two models—CNN and
CNN-BiLSTM—using the MNIST dataset. The goal is
to assess whether combining synthetic data with
hybrid architectures can significantly improve
model accuracy and generalization.

As a more adaptive solution, Generative

Adversarial Networks (GANs) have increasingly
been used to generate more realistic synthetic data.
One prominent variant is the Cycle-Consistent GAN
(CycleGAN), which can perform image
transformations between domains  without
requiring paired data [9]. In the context of
handwriting, CycleGAN can be used to generate
synthetic samples that expand handwriting style
variations, thereby enriching the training data
distribution more representatively [10].
This study proposes a data augmentation strategy
using CycleGAN to enhance the accuracy of
handwritten digit recognition models on the MNIST
dataset. Compared to traditional augmentation
methods or training without augmentation, the
integration of synthetic data generated by CycleGAN
is evaluated on two models: CNN and CNN-BiLSTM..
Accuracy comparisons are conducted across
various scenarios to demonstrate the effectiveness
of this approach[11]

MATERIALS AND METHODS

h J

Problem

A Data Collection »
Identification

Preprocessing data

v

Augmentation data
with CycleGAN

Training Model CNN
and CNN-BIiLSTM

Split data: Training
and Testing

v
Evaluation Model
(Accuracy, Loss, and
F1-score)

Visualisation and
*  Analyst Result

-4.

Source: (Research Results, 2025)
Figure 1. Flowchart of the proposed method
involving data preparation, model training,
evaluation, and result analysis.
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1.

Problem Identification

This stage identifies the core issue in image
classification using deep learning: the limited
quantity and variation of training data, which
may cause overfitting. Recent research
recommends data augmentation as an effective
solution to improve model generalization[12].

Data Collection

The MNIST dataset is used in this study due
to its popularity and reliability in
benchmarking image classification models.
MNIST comprises 70,000 grayscale images
(28x28 pixels) of handwritten digits. Bukhari
etal.(2021) provide a thorough overview of its
structure and applications in deep learning.

Preprocessing data

Preprocessing includes according to research

(Yang yang, 2024)[13]:

a. Pixel normalization to [0, 1]

b. Reshaping into 28x28x1 tensors

c. One-hot encoding of labels
These steps are essential for stable CNN
and BiLSTM training.

Augmentation data with CycleGAN

CycleGAN generates synthetic, domain-
translated images without paired data. It
effectively enhances dataset diversity and
balances class representation[14].

Split data: Training and Testing

After data augmentation, the dataset is split
into training and testing subsets (commonly
80:20 or 70:30). This ensures that the model is
evaluated on unseen data, allowing for a fair
assessment of generalization ability. This
process is standard in most deep learning
workflows[15].

Training Model CNN and CNN-BiLSTM

The augmented dataset is used to train
two models: CNN for extracting spatial
features from images, and a hybrid CNN-
BiLSTM model that combines spatial feature
learning with temporal sequence modeling.
While CNN handles local image patterns
effectively, BiLSTM captures contextual
relationships between features by processing
them in both directions. This combination
improves classification performance,
especially on structured or sequential image
data[16][17].

Evaluation Model (Accuracy, Loss, and F1-
Score)

After training, the performance of the
models is evaluated using three key metrics:
accuracy, loss, and F1-score.
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a. Accuracy measures the overall correctness
of the model’s predictions by comparing
the number of correct outputs to the total
number of predictions[18].

b. Loss reflects how far the model’s predicted
values are from the actual labels; lower loss
generally indicates better learning[19].

c. Fl-score is a balanced metric that
considers both precision (how many
predicted positives are correct) and recall
(how many actual positives are identified
correctly)[20].

F1-score becomes especially important in
cases of class imbalance, where the number of
samples per class is not evenly distributed.
Unlike accuracy, which can be misleading in
imbalanced datasets, F1-score provides a more
reliable indicator of true model performance
across all classes. This evaluation helps
determine how well the CNN and CNN-BiLSTM
models generalize to unseen data and whether
the data augmentation approach using
CycleGAN contributes to meaningful
performance improvement[21].

8. Visualisation and Analyst Result

Once the model evaluation metrics are
obtained, the results are visualized to aid in
interpretation and analysis. This step includes
generating accuracy and loss curves, which
illustrate how the model performs across
training epochs. These visualizations help in
detecting issues such as overfitting or
underfitting, where the model may perform well
on training data but poorly on testing data.

In addition, the confusion matrix is used to
show how well the model classifies each class by
comparing predicted and actual labels. This
matrix is especially useful for identifying specific
classes where the model tends to make mistakes,
allowing researchers to focus improvements on
those areas[22].

RESULTS AND DISCUSSION

In this section, we present the results obtained
from the experiments conducted in this study and
discuss their implications. The purpose of this
discussion is to analyze the performance of the
proposed method, compare it with existing
approaches, and interpret the findings in relation to
the research objectives. The results are organized
systematically, starting with the description of the
data used, followed by the analysis procedures, and
finally the evaluation of outcomes.
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1. Data Collection and Preparation

The MNIST dataset consists of 60,000 training
images and 10,000 testing images. Below is a
sample from MNIST:

sloll/la]al ]3] ]y
Source: (Research Results, 2025)
Figure 2. Sample data

The figure 2 sample data shows original
examples from the MNIST dataset before the
augmentation process. Each image represents a
single handwritten digit (0 through 9) in grayscale
format with a resolution of 28x28 pixels. These
images serve as the initial input for the
Convolutional Neural Network (CNN) model before
going through preprocessing steps such as
reshaping, normalization, or data augmentation. By
displaying the data visually like this, we can observe
the variation in handwriting styles for each digit,
which presents both a challenge and a strength of
the MNIST dataset as a standard for training image
classification models.

2. Data Augmentation Using CycleGAN
CycleGAN is used to generate synthetic data that
resembles the original data, enriching the dataset
and helping to address class imbalance. The steps
include:
a. CycleGAN Model Definition:
Constructing the generator and discriminator
architectures to transform images between
two domains without paired data.
b. CycleGAN Model Training:
Training the model to learn transformations
between original and target domain images.
c¢. Augmented Image Generation:
Using the trained generator to create new
images resembling the original data.
d. Data Integration:
Merging original data with augmented data to
form a larger and more diverse training
dataset.

HERGAGENENEH

Source: (Research Results, 2025)
Figure 3. data augmentation

The figure 3. data augmentation shows
examples of augmented MNIST data generated
using CycleGAN. Each image represents a single
handwritten digit (0 through 9) in grayscale format
witha resolution of 28x28 pixels. Unlike the original
data, these images are the result of the CycleGAN-
based augmentation process, which aims to enrich
dataset variation before serving as input to both the

@ o
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CNN model and the hybrid CNN-BiLSTM model. By
displaying the augmented images visually, we can
observe how CycleGAN generates diverse
handwriting styles for each digit. This highlights
how data augmentation techniques can enhance
dataset diversity—critical for training more robust
image classification models against various
handwriting styles and input conditions, whether
using a pure CNN or a combined CNN-BiLSTM
architecture.

3. Definition of Classification Models: CNN & CNN-

BiLSTM

a. CNN (Convolutional Neural Network):Used
to extract spatial features from images. A
typical architecture includes convolutional
layers, pooling layers, and fully connected
layers.

b. CNN-BiLSTM (Convolutional Neural
Network - Bidirectional Long Short-Term
Memory):Combines CNN for feature
extraction with BiLSTM to capture
temporal or sequential dependencies in the
data, enhancing classification accuracy for
tasks such as handwriting recognition.At
this stage, the performance of a pure CNN-
based model is compared to a CNN-BiLSTM
model for handwritten digit recognition,
where CNN identifies local spatial features
in the image, and BiLSTM handles
sequential patterns (if the image is treated
as a sequence, such as rows of pixels or
patches, although this is not commonly
done for standalone MNIST images).

3, 3), activations='relu
(2, 2)),
3), activations='

', input_shape=(28, 28, 1)),

relu')

ion="relu’, input_shape=(28, 28, 1)),

n_sequences=True)),

n

urn model

Source: (Research Results, 2025)
Figure 4. CNN dan CNNBiLSTM

The figure 4. illustrates the implementation of
two image classification models using TensorFlow
and Keras: CNN and CNN-BiLSTM. The CNN model
consists of three convolutional layers with
increasing filters (32 and 64), followed by pooling
layers to reduce feature dimensions, and two dense
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layers for classifying the 10 MNIST digit classes. In
contrast, the CNN-BiLSTM model shares the same
initial structure for feature extraction but includes a
reshape layer and two Bidirectional LSTM layers to
capture sequential spatial patterns more effectively.
Both models are used to compare handwritten digit
recognition performance, both before and after data
augmentation using CycleGAN.

4. Model Compilation and Evaluation
MetricsModels are compiled and evaluated
using metrics such as accuracy to assess
performance during and after training.Based on
training results, both CNN and CNN-BiLSTM models
showed excellent classification performance.
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Source: (Research Results, 2025)
Figure 5. CNN accuracy and Loss

The Figure 5. CNN accuracy and loss model’s
training accuracy consistently increased, reaching
approximately 99.7% by epoch 10. Validation
accuracy was also high, around 99.2%, though it
showed slight fluctuations after epoch 6. The
decreasing training loss indicates that the model
learned well, while the fluctuating validation loss
suggests mild overfitting.
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Source: (Research Results, 2025)
Figure 6. CNN-BiLSTM Accuracy and Loss

The figure 6. CNN-BiLSTM accuracy and Loss
model demonstrated more stable performance.
Training and validation accuracy both increased
and remained stable throughout training, reaching
approximately 99.6% and 99.2%), respectively. The
loss on both training and validation data decreased
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consistently  without significant fluctuation,
indicating that this model was better able to
generalize without overfitting.

CNN performs better (F1-score: 8.9914) than CNN-BiLSTM (F1-score: 8.9895)

Source: (Research Results, 2025)
Figure 7. Accuracy CNN vs CNN-BILSTM

The figure 7. Accuracy CNN vs CNN-BILSTM The
comparison result indicates that the CNN model
outperforms the CNN-BiLSTM model, based on the
weighted average F1-score. CNN achieved an F1-
score of 0.9914, slightly higher than CNN-BiLSTM’s
score of 0.9895. This suggests that CNN was more
consistent in balancing precision and recall across
all digit classes. Although both models performed
exceptionally well, the higher F1-score from CNN
implies it has a slight edge in classification accuracy
and generalization on the test data.

5. Evaluation and Result Visualization

After training, models are evaluated on test data
to assess their performance. Visualizations such as
confusion matrices, loss and accuracy curves during
training, and prediction samples can be used to
analyze and understand model behavior.

CNN Confusion Matrix
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Source: (Research Results, 2025)
Figure 8. Confusion matrix CNN

The figure 8. confusion matrix CNN shows that
the model classifies most digits correctly, with
perfect accuracy on class 1 (1135/1135) and very
high accuracy on classes like 7 (1018/1021) and 0
(979/980). Misclassifications are relatively few and
tend to occur between visually similar digits for
example, some 2s are mistaken for 3, 6, or 8, and a
handful of 5s and 6s are confused with each other.
Overall, the dense diagonal of high counts indicates
strong general performance, while the off-diagonal
errors highlight specific digit pairs (e.g., 5 vs. 6, 4 vs.
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9) that might benefit from further data

augmentation or architecture tuning.

CNN-BILSTM Confusion Matrix

(o] ] 1 1l o o
- 1000

- 600

True

o- 0 3 o 3 4 3 (4]
0 1 2 3 4 5 6
Predicted

Source: (Research Results, 2025)
Figure 9. Confusion matrix CNN-BiLSTM

The figure 9. CNN-BIiLSTM confusion matrix
demonstrates strong classification performance
across all digit classes. Most predictions lie along the
diagonal, indicating accurate classifications. For
example, class 1 was correctly classified 1126 times
out of 1135, and class 7 achieved 1011 correct
predictions with very few misclassifications. While
a small number of errors occurred, they were
minimal and typically involved confusion between
visually similar digits. For instance, the model
occasionally misclassified 5 as 3 (9 instances) and 6
as 0 or 4. However, these errors are limited and do
not significantly affect overall performance. The
matrix confirms that the CNN-BiLSTM model

maintains a high level of accuracy and
generalization across all classes.
CNN Classification Report:
precision recall fil-score support
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Source: (Research Results, 2025)
Figure 10. CNN classification report
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The figure 10. CNN classification report shows
consistently outstanding performance across all
digit classes, with an overall accuracy of 99.14% and
nearly identical macro and weighted averages for
precision, recall, and F1-score (all around 0.991).
Each class achieves a high F1-score, ranging from
0.9876 to 0.9964, indicating balanced precision and
recall. Notably, class 1 achieves perfect recall
(1.000) and an F1-score of 0.9961, while other
classes such as 0, 8, and 2 also show near-perfect
metrics.The absence of significant performance
drops on specific classes or overinflated scores
limited to the training data confirms that the model
generalizes well. If the model were overfitting, we
would expect to see high performance on training
data but a sharp decline on test data especially in
recall or Fl-score but that is not the case here.
Instead, the uniformly high results on the test set,
combined with minimal variance across all classes,
strongly suggest the model is not overfitting. This
indicates that the CNN has learned meaningful
patterns in the data rather than memorizing
training examples.

il CNN-BiLSTM Classification Report:

precision recall fil-score support
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macro avg ©.9897 ©.9895 ©.9896 leeee
weighted avg 8.9895 @.9895 ©.9895 1loeee

Source: (Research Results, 2025)
Figure 11. CNN- BiLSTM Classification Report

The CNN-BiLSTM classification report
demonstrates excellent model performance,
achieving an overall accuracy of 98.95% and a
consistent macro and weighted average F1-score of
0.9896 and 0.9895, respectively. The F1-scores for
all digit classes range from 0.9851 (for digit 1) to
0.9924 (for digit 0), showing that the model
performs well across all categories with minimal
variance. Particularly high performance is seen in
digits like 2, 4, 6, and 8, all exceeding an F1-score of
0.99, indicating that the model is both precise and
sensitive in its predictions.

These balanced and high metrics across all
classes indicate that the model generalizes
effectively. There is no indication of overfitting, as
there is no sharp drop in recall or F1-score, which
would typically suggest the model is memorizing
training data instead of learning meaningful
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patterns. Furthermore, the consistency between the
macro and weighted averages implies that
performance remains strong even for classes with
fewer samples. The CNN-BiLSTM model's ability to
retain high accuracy and class balance on the
unseen test data confirms that it learns general
features and does not overfit the training set.

CONCLUSION

This study shows that applying CycleGAN
for data augmentation significantly improves the
accuracy and generalization of handwritten digit
recognition models on the MNIST dataset. By
generating synthetic data that mimics the variation
of real digits, CycleGAN successfully enriches the
diversity of the training dataset beyond what
traditional augmentation techniques can offer.
Experimental results show that both CNN and CNN-
BiLSTM models generate realistic and diverse
synthetic images, and CycleGAN helps expand the
distribution of training data and reduces the risk of
overfitting. The CNN-BiLSTM model performs best
with an accuracy of 99.22%, slightly higher than
CNN which reaches 99.01%. The integration of CNN
for spatial feature extraction and BiLSTM for
sequential pattern recognition is proven to be
effective in capturing the complex characteristics of
handwritten digits. These results confirm that GAN-
based augmentation, especially CycleGAN, is an
effective strategy to improve model generalization
in image classification, especially in handwriting
recognition tasks.

Overall, integrating CycleGAN into the
training pipeline is proven to be a promising
strategy to improve deep learning models in
handwriting recognition tasks. This approach can
be extended to other domains where data
variability and scarcity are major challenges. For
future research, it is recommended to compare the
effectiveness of CycleGAN-based augmentation with
other GAN variants such as StyleGAN, DCGAN, or
Conditional GANs. This comparison could provide
deeper insights into which generative model
produces the most diverse and beneficial synthetic
data for improving handwritten digit recognition
accuracy. Exploring the strengths and limitations of
each GAN type may also contribute to optimizing
data augmentation strategies across various image
classification tasks, particularly in scenarios with
limited training data.
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