
 

VOL. 11. NO. 2 NOVEMBER 2025 
. 

DOI: 10.33480 /jitk.v11i2.6982 
 

 

 

334 

IMPROVING HANDWRITTEN DIGIT RECOGNITION USING CYCLEGAN-
AUGMENTED DATA WITH CNN–BILSTM HYBRID MODEL 

 
Muhtyas Yugi1*; Fandy Setyo Utomo1; Azhari Shouni Barkah1 

 
Master of Computer Science, Faculty of Computer Science1 

Universitas Amikom Purwokerto, Indonesia1 
https://amikompurwokerto.ac.id/1 

23MA41D032@students.amikompurwokerto.ac.id*, fandy_setyo_utomo@amikompurwokerto.ac.id, 
azhari@amikompurwokerto.ac.id 

 
(*) Corresponding Author  

(Responsible for the Quality of Paper Content) 
 

 
 

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License. 

 
Abstract— Handwritten digit recognition presents persistent challenges in computer vision due to the high 
variability in human handwriting styles, which necessitates robust generalization in classification models. This 
study proposes an advanced data augmentation strategy using Cycle-Consistent Generative Adversarial 
Networks (CycleGAN) to improve recognition accuracy on the MNIST dataset. Two architectures are evaluated: 
a standard Convolutional Neural Network (CNN) and a hybrid model combining CNN for spatial feature 
extraction and Bidirectional Long Short-Term Memory (BiLSTM) for sequential pattern modeling. The 
CycleGAN-based augmentation generates realistic synthetic images that enrich the training data distribution. 
Experimental results demonstrate that both models benefit from the augmentation, with the CNN-BiLSTM 
model achieving the highest accuracy of 99.22%, outperforming the CNN model’s 99.01%. The study’s novelty 
lies in the integration of CycleGAN-generated data with a CNN–BiLSTM architecture, which has been rarely 
explored in previous works. These findings contribute to the development of more generalized and accurate 
deep learning models for handwritten digit classification and similar pattern recognition tasks. 
 
Keywords: Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural Network (CNN), 
CycleGAN, Data Augmentation, Handwritten Digit Recognition. 
 
Intisari— Pengenalan digit tulisan tangan merupakan tantangan yang berkelanjutan dalam bidang 
penglihatan komputer karena tingginya variasi gaya tulisan tangan manusia, yang menuntut kemampuan 
generalisasi yang kuat pada model klasifikasi. Penelitian ini mengusulkan strategi augmentasi data lanjutan 
menggunakan Cycle-Consistent Generative Adversarial Networks (CycleGAN) untuk meningkatkan akurasi 
pengenalan digit pada dataset MNIST. Dua arsitektur model dievaluasi: model Convolutional Neural Network 
(CNN) standar, dan model hibrida yang menggabungkan CNN untuk ekstraksi fitur spasial dengan 
Bidirectional Long Short-Term Memory (BiLSTM) untuk pemodelan pola sekuensial. Proses augmentasi 
berbasis CycleGAN menghasilkan citra sintetis realistis yang memperkaya distribusi data pelatihan. Hasil 
eksperimen menunjukkan bahwa kedua model mengalami peningkatan performa setelah augmentasi, dengan 
model CNN–BiLSTM mencapai akurasi tertinggi sebesar 99,22%, melampaui model CNN yang mencapai 
99,01%. Kebaruan penelitian ini terletak pada integrasi data sintetis dari CycleGAN dengan arsitektur CNN–
BiLSTM, yang masih jarang dieksplorasi dalam studi sebelumnya. Temuan ini memberikan kontribusi 
terhadap pengembangan model deep learning yang lebih general dan akurat untuk klasifikasi digit tulisan 
tangan maupun tugas pengenalan pola sejenis lainnya. 
 
Kata Kunci: Bidirectional Long Short-Term Memory (BiLSTM), Jaringan Syaraf Tiruan Konvolusional (CNN), 
CycleGAN, Data Augmentation, Pengenalan Digit Tulisan Tangan. 
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INTRODUCTION 
 

Handwritten digit recognition is a classic 
challenge in the field of computer vision and 
machine learning that remains relevant today. 
Human handwriting varies greatly in shape, style, 
pressure, and size, making it difficult for automated 
systems to recognize it accurately. Applications of 
handwriting recognition systems are widespread, 
ranging from administrative document automation, 
form validation, digital text input systems, to 
human-computer interaction [1]. The Modified 
National Institute of Standards and Technology 
(MNIST) dataset has become the standard 
benchmark for the development and evaluation of 
handwriting recognition models because it provides 
a standardized and easily accessible dataset of 
handwritten digits [2]. Various deep learning-based 
approaches have been successfully applied to this 
task. One of the most widely used models is the 
Convolutional Neural Network (CNN), known for its 
effectiveness in extracting spatial features from 
images [3]. Meanwhile, Bidirectional Long Short-
Term Memory (BiLSTM), although initially designed 
for sequential data, has also proven capable of 
modeling spatial relationships in images 
sequentially, especially when combined with CNN 
[4]. The CNN-BiLSTM combination is considered to 
harness the spatial representation power of CNN 
and the sequential pattern understanding of 
BiLSTM, thereby improving digit recognition 
performance [5]. 

The accuracy of handwriting recognition 
models is strongly influenced by the diversity and 
quantity of training data. Limited or homogeneous 
data often leads to overfitting, reducing 
generalization. While conventional augmentation 
techniques (e.g., rotation, flipping) are commonly 
applied, they are often insufficient to capture the 
natural variability in handwriting. Recent studies 
have highlighted the effectiveness of GAN-based 
approaches for generating more realistic and 
diverse data. Neto et al. (2024) emphasized the 
growing use of GANs in handwriting synthesis, 
while Wang et al. (2023) and Gonwirat & Surinta 
(2022) demonstrated that CycleGAN can enhance 
visual quality and style diversity in handwritten 
images. These findings suggest that CycleGAN-
based augmentation offers a promising solution for 
improving recognition performance in 
handwriting-related tasks.[6], [7], [8] .  

A recent systematic review by Neto et al. 
(2024) identified the growing application of GAN-
based data augmentation in handwriting 
recognition. However, few studies have empirically 
evaluated the effectiveness of advanced GAN 

variants like CycleGAN on digit-level datasets such 
as MNIST, especially in combination with hybrid 
deep learning models like CNN–BiLSTM. This 
presents a research gap in understanding how 
CycleGAN-generated synthetic data can impact 
spatial and sequential feature learning for 
handwritten digit recognition. Therefore, this study 
addresses the problem of limited handwriting data 
and overfitting by proposing a CycleGAN-based 
augmentation approach. The impact of this 
approach is evaluated on two models—CNN and 
CNN–BiLSTM—using the MNIST dataset. The goal is 
to assess whether combining synthetic data with 
hybrid architectures can significantly improve 
model accuracy and generalization. 

As a more adaptive solution, Generative 
Adversarial Networks (GANs) have increasingly 
been used to generate more realistic synthetic data. 
One prominent variant is the Cycle-Consistent GAN 
(CycleGAN), which can perform image 
transformations between domains without 
requiring paired data [9]. In the context of 
handwriting, CycleGAN can be used to generate 
synthetic samples that expand handwriting style 
variations, thereby enriching the training data 
distribution more representatively [10]. 
This study proposes a data augmentation strategy 
using CycleGAN to enhance the accuracy of 
handwritten digit recognition models on the MNIST 
dataset. Compared to traditional augmentation 
methods or training without augmentation, the 
integration of synthetic data generated by CycleGAN 
is evaluated on two models: CNN and CNN-BiLSTM.. 
Accuracy comparisons are conducted across 
various scenarios to demonstrate the effectiveness 
of this approach[11] 
 

MATERIALS AND METHODS 
 

 
Source: (Research Results, 2025) 

Figure 1. Flowchart of the proposed method 
involving data preparation, model training, 

evaluation, and result analysis. 
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1. Problem Identification 
This stage identifies the core issue in image 

classification using deep learning: the limited 
quantity and variation of training data, which 
may cause overfitting. Recent research 
recommends data augmentation as an effective 
solution to improve model generalization[12]. 

2. Data Collection 
The MNIST dataset is used in this study due 

to its popularity and reliability in 
benchmarking image classification models. 
MNIST comprises 70,000 grayscale images 
(28×28 pixels) of handwritten digits. Bukhari 
et al. (2021) provide a thorough overview of its 
structure and applications in deep learning. 

3. Preprocessing data 
Preprocessing includes according to research 
(Yang yang, 2024)[13]: 
a. Pixel normalization to [0, 1] 
b. Reshaping into 28×28×1 tensors 
c. One-hot encoding of labels 

These steps are essential for stable CNN 
and BiLSTM training. 

4. Augmentation data with CycleGAN 
CycleGAN generates synthetic, domain-

translated images without paired data. It 
effectively enhances dataset diversity and 
balances class representation[14]. 

5. Split data: Training and Testing 
After data augmentation, the dataset is split 

into training and testing subsets (commonly 
80:20 or 70:30). This ensures that the model is 
evaluated on unseen data, allowing for a fair 
assessment of generalization ability. This 
process is standard in most deep learning 
workflows[15]. 

6. Training Model CNN and CNN-BiLSTM 
The augmented dataset is used to train 

two models: CNN for extracting spatial 
features from images, and a hybrid CNN–
BiLSTM model that combines spatial feature 
learning with temporal sequence modeling. 
While CNN handles local image patterns 
effectively, BiLSTM captures contextual 
relationships between features by processing 
them in both directions. This combination 
improves classification performance, 
especially on structured or sequential image 
data[16][17]. 

7. Evaluation Model (Accuracy, Loss, and F1-
Score) 

After training, the performance of the 
models is evaluated using three key metrics: 
accuracy, loss, and F1-score. 

a. Accuracy measures the overall correctness 
of the model’s predictions by comparing 
the number of correct outputs to the total 
number of predictions[18]. 

b. Loss reflects how far the model’s predicted 
values are from the actual labels; lower loss 
generally indicates better learning[19]. 

c. F1-score is a balanced metric that 
considers both precision (how many 
predicted positives are correct) and recall 
(how many actual positives are identified 
correctly)[20]. 
F1-score becomes especially important in 

cases of class imbalance, where the number of 
samples per class is not evenly distributed. 
Unlike accuracy, which can be misleading in 
imbalanced datasets, F1-score provides a more 
reliable indicator of true model performance 
across all classes. This evaluation helps 
determine how well the CNN and CNN–BiLSTM 
models generalize to unseen data and whether 
the data augmentation approach using 
CycleGAN contributes to meaningful 
performance improvement[21]. 

8. Visualisation and Analyst Result 
Once the model evaluation metrics are 

obtained, the results are visualized to aid in 
interpretation and analysis. This step includes 
generating accuracy and loss curves, which 
illustrate how the model performs across 
training epochs. These visualizations help in 
detecting issues such as overfitting or 
underfitting, where the model may perform well 
on training data but poorly on testing data.  

In addition, the confusion matrix is used to 
show how well the model classifies each class by 
comparing predicted and actual labels. This 
matrix is especially useful for identifying specific 
classes where the model tends to make mistakes, 
allowing researchers to focus improvements on 
those areas[22]. 

 
RESULTS AND DISCUSSION 

 
In this section, we present the results obtained 

from the experiments conducted in this study and 
discuss their implications. The purpose of this 
discussion is to analyze the performance of the 
proposed method, compare it with existing 
approaches, and interpret the findings in relation to 
the research objectives. The results are organized 
systematically, starting with the description of the 
data used, followed by the analysis procedures, and 
finally the evaluation of outcomes. 
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1. Data Collection and Preparation 
The MNIST dataset consists of 60,000 training 

images and 10,000 testing images. Below is a 
sample from MNIST: 

 
Source: (Research Results, 2025) 

Figure 2. Sample data 
 
The figure 2 sample data shows original 

examples from the MNIST dataset before the 
augmentation process. Each image represents a 
single handwritten digit (0 through 9) in grayscale 
format with a resolution of 28x28 pixels. These 
images serve as the initial input for the 
Convolutional Neural Network (CNN) model before 
going through preprocessing steps such as 
reshaping, normalization, or data augmentation. By 
displaying the data visually like this, we can observe 
the variation in handwriting styles for each digit, 
which presents both a challenge and a strength of 
the MNIST dataset as a standard for training image 
classification models. 

 
2. Data Augmentation Using CycleGAN 

CycleGAN is used to generate synthetic data that 
resembles the original data, enriching the dataset 
and helping to address class imbalance. The steps 
include: 
a. CycleGAN Model Definition: 

Constructing the generator and discriminator 
architectures to transform images between 
two domains without paired data. 

b. CycleGAN Model Training: 
Training the model to learn transformations 
between original and target domain images. 

c. Augmented Image Generation: 
Using the trained generator to create new 
images resembling the original data. 

d. Data Integration: 
Merging original data with augmented data to 
form a larger and more diverse training 
dataset. 

 
Source: (Research Results, 2025) 

Figure 3. data augmentation 
 
The figure 3. data augmentation shows 

examples of augmented MNIST data generated 
using CycleGAN. Each image represents a single 
handwritten digit (0 through 9) in grayscale format 
with a resolution of 28x28 pixels. Unlike the original 
data, these images are the result of the CycleGAN-
based augmentation process, which aims to enrich 
dataset variation before serving as input to both the 

CNN model and the hybrid CNN-BiLSTM model. By 
displaying the augmented images visually, we can 
observe how CycleGAN generates diverse 
handwriting styles for each digit. This highlights 
how data augmentation techniques can enhance 
dataset diversity—critical for training more robust 
image classification models against various 
handwriting styles and input conditions, whether 
using a pure CNN or a combined CNN-BiLSTM 
architecture. 

 
3. Definition of Classification Models: CNN & CNN-

BiLSTM 
a. CNN (Convolutional Neural Network):Used 

to extract spatial features from images. A 
typical architecture includes convolutional 
layers, pooling layers, and fully connected 
layers. 

b. CNN-BiLSTM (Convolutional Neural 
Network - Bidirectional Long Short-Term 
Memory):Combines CNN for feature 
extraction with BiLSTM to capture 
temporal or sequential dependencies in the 
data, enhancing  classification accuracy for 
tasks such as handwriting recognition.At 
this stage, the performance of a pure CNN-
based model is compared to a CNN-BiLSTM 
model for handwritten digit recognition, 
where CNN identifies local spatial features 
in the image, and BiLSTM handles 
sequential patterns (if the image is treated 
as a sequence, such as rows of pixels or 
patches, although this is not commonly 
done for standalone MNIST images). 

c.  

 
Source: (Research Results, 2025) 

Figure 4. CNN dan CNNBiLSTM 
 
The figure 4. illustrates the implementation of 

two image classification models using TensorFlow 
and Keras: CNN and CNN-BiLSTM. The CNN model 
consists of three convolutional layers with 
increasing filters (32 and 64), followed by pooling 
layers to reduce feature dimensions, and two dense 



 

VOL. 11. NO. 2 NOVEMBER 2025 
. 

DOI: 10.33480 /jitk.v11i2.6982 
 

 

 

338 

layers for classifying the 10 MNIST digit classes. In 
contrast, the CNN-BiLSTM model shares the same 
initial structure for feature extraction but includes a 
reshape layer and two Bidirectional LSTM layers to 
capture sequential spatial patterns more effectively. 
Both models are used to compare handwritten digit 
recognition performance, both before and after data 
augmentation using CycleGAN. 

 
4. Model Compilation and Evaluation 

MetricsModels are compiled and evaluated 
using metrics such as accuracy to assess 
performance during and after training.Based on 
training results, both CNN and CNN-BiLSTM models 
showed excellent classification performance.  

 

 
Source: (Research Results, 2025) 

Figure 5. CNN accuracy and Loss 

The Figure 5. CNN accuracy and loss model’s 
training accuracy consistently increased, reaching 
approximately 99.7% by epoch 10. Validation 
accuracy was also high, around 99.2%, though it 
showed slight fluctuations after epoch 6. The 
decreasing training loss indicates that the model 
learned well, while the fluctuating validation loss 
suggests mild overfitting. 

 

 
Source: (Research Results, 2025) 

Figure 6. CNN-BiLSTM Accuracy and Loss 

The figure 6. CNN-BiLSTM accuracy and Loss 
model demonstrated more stable performance. 
Training and validation accuracy both increased 
and remained stable throughout training, reaching 
approximately 99.6% and 99.2%, respectively. The 
loss on both training and validation data decreased 

consistently without significant fluctuation, 
indicating that this model was better able to 
generalize without overfitting. 

 
Source: (Research Results, 2025) 

Figure 7. Accuracy CNN vs CNN-BILSTM 
 
The figure 7. Accuracy CNN vs CNN-BILSTM The 

comparison result indicates that the CNN model 
outperforms the CNN–BiLSTM model, based on the 
weighted average F1-score. CNN achieved an F1-
score of 0.9914, slightly higher than CNN–BiLSTM’s 
score of 0.9895. This suggests that CNN was more 
consistent in balancing precision and recall across 
all digit classes. Although both models performed 
exceptionally well, the higher F1-score from CNN 
implies it has a slight edge in classification accuracy 
and generalization on the test data. 

 
5. Evaluation and Result Visualization 

After training, models are evaluated on test data 
to assess their performance. Visualizations such as 
confusion matrices, loss and accuracy curves during 
training, and prediction samples can be used to 
analyze and understand model behavior.  

 

 
Source: (Research Results, 2025) 

Figure 8. Confusion matrix CNN 

The figure 8. confusion matrix CNN shows that 
the model classifies most digits correctly, with 
perfect accuracy on class 1 (1135/1135) and very 
high accuracy on classes like 7 (1018/1021) and 0 
(979/980). Misclassifications are relatively few and 
tend to occur between visually similar digits for 
example, some 2s are mistaken for 3, 6, or 8, and a 
handful of 5s and 6s are confused with each other. 
Overall, the dense diagonal of high counts indicates 
strong general performance, while the off-diagonal 
errors highlight specific digit pairs (e.g., 5 vs. 6, 4 vs. 
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9) that might benefit from further data 
augmentation or architecture tuning. 

 
Source: (Research Results, 2025) 

Figure 9. Confusion matrix CNN-BiLSTM 

The figure 9. CNN–BiLSTM confusion matrix 
demonstrates strong classification performance 
across all digit classes. Most predictions lie along the 
diagonal, indicating accurate classifications. For 
example, class 1 was correctly classified 1126 times 
out of 1135, and class 7 achieved 1011 correct 
predictions with very few misclassifications. While 
a small number of errors occurred, they were 
minimal and typically involved confusion between 
visually similar digits. For instance, the model 
occasionally misclassified 5 as 3 (9 instances) and 6 
as 0 or 4. However, these errors are limited and do 
not significantly affect overall performance. The 
matrix confirms that the CNN–BiLSTM model 
maintains a high level of accuracy and 
generalization across all classes. 

 

 

 
Source: (Research Results, 2025) 

Figure 10. CNN classification report 

The figure 10. CNN classification report shows 
consistently outstanding performance across all 
digit classes, with an overall accuracy of 99.14% and 
nearly identical macro and weighted averages for 
precision, recall, and F1-score (all around 0.991). 
Each class achieves a high F1-score, ranging from 
0.9876 to 0.9964, indicating balanced precision and 
recall. Notably, class 1 achieves perfect recall 
(1.000) and an F1-score of 0.9961, while other 
classes such as 0, 8, and 2 also show near-perfect 
metrics.The absence of significant performance 
drops on specific classes or overinflated scores 
limited to the training data confirms that the model 
generalizes well. If the model were overfitting, we 
would expect to see high performance on training 
data but a sharp decline on test data especially in 
recall or F1-score but that is not the case here. 
Instead, the uniformly high results on the test set, 
combined with minimal variance across all classes, 
strongly suggest the model is not overfitting. This 
indicates that the CNN has learned meaningful 
patterns in the data rather than memorizing 
training examples. 

 
Source: (Research Results, 2025) 

Figure 11. CNN- BiLSTM Classification Report 
 

The CNN–BiLSTM classification report 
demonstrates excellent model performance, 
achieving an overall accuracy of 98.95% and a 
consistent macro and weighted average F1-score of 
0.9896 and 0.9895, respectively. The F1-scores for 
all digit classes range from 0.9851 (for digit 1) to 
0.9924 (for digit 0), showing that the model 
performs well across all categories with minimal 
variance. Particularly high performance is seen in 
digits like 2, 4, 6, and 8, all exceeding an F1-score of 
0.99, indicating that the model is both precise and 
sensitive in its predictions. 

These balanced and high metrics across all 
classes indicate that the model generalizes 
effectively. There is no indication of overfitting, as 
there is no sharp drop in recall or F1-score, which 
would typically suggest the model is memorizing 
training data instead of learning meaningful 
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patterns. Furthermore, the consistency between the 
macro and weighted averages implies that 
performance remains strong even for classes with 
fewer samples. The CNN–BiLSTM model's ability to 
retain high accuracy and class balance on the 
unseen test data confirms that it learns general 
features and does not overfit the training set. 

 
CONCLUSION 

 
This study shows that applying CycleGAN 

for data augmentation significantly improves the 
accuracy and generalization of handwritten digit 
recognition models on the MNIST dataset. By 
generating synthetic data that mimics the variation 
of real digits, CycleGAN successfully enriches the 
diversity of the training dataset beyond what 
traditional augmentation techniques can offer. 
Experimental results show that both CNN and CNN-
BiLSTM models generate realistic and diverse 
synthetic images, and CycleGAN helps expand the 
distribution of training data and reduces the risk of 
overfitting. The CNN-BiLSTM model performs best 
with an accuracy of 99.22%, slightly higher than 
CNN which reaches 99.01%. The integration of CNN 
for spatial feature extraction and BiLSTM for 
sequential pattern recognition is proven to be 
effective in capturing the complex characteristics of 
handwritten digits. These results confirm that GAN-
based augmentation, especially CycleGAN, is an 
effective strategy to improve model generalization 
in image classification, especially in handwriting 
recognition tasks. 

Overall, integrating CycleGAN into the 
training pipeline is proven to be a promising 
strategy to improve deep learning models in 
handwriting recognition tasks. This approach can 
be extended to other domains where data 
variability and scarcity are major challenges. For 
future research, it is recommended to compare the 
effectiveness of CycleGAN-based augmentation with 
other GAN variants such as StyleGAN, DCGAN, or 
Conditional GANs. This comparison could provide 
deeper insights into which generative model 
produces the most diverse and beneficial synthetic 
data for improving handwritten digit recognition 
accuracy. Exploring the strengths and limitations of 
each GAN type may also contribute to optimizing 
data augmentation strategies across various image 
classification tasks, particularly in scenarios with 
limited training data. 
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