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Abstract—Tomato is one of the widely available horticultural products and holds significant economic value 
in Indonesia. However, its productivity is often disrupted by various leaf diseases. This study aims to compare 
the performance of three CNN architectures—DenseNet121, Xception, and MobileNetV2—in classifying 
tomato leaf diseases. The dataset used consists of 10,000 balanced images across ten classes: Bacterial Spot, 
Septoria Leaf Spot, Early Blight, Late Blight, Mosaic Virus, Yellow Leaf Curl Virus, Leaf Mold, Target Spot, Spider 
Mites Two-Spotted Spider Mite, and Healthy. All images were resized to 224x224 pixels and divided into 80% 
training data and 20% test data. Augmentation techniques were applied to balance the data across classes. 
Experimental results show that the Xception architecture outperforms the other models, achieving an accuracy 
of 98.79%, with a precision of 98.80%, recall of 98.79%, and an F1-Score of 98.78%. These findings indicate 
that the Xception model is highly effective for plant disease classification and is suitable for implementation in 
environments with limited resources. 
 
Keywords: CNN, DenseNet121, MobileNetV2, Tomato Leaf Disease, Xception 
 
Intisari—Tomat merupakan salah satu produk hortikultura yang banyak tersedia dan memiliki nilai ekonomi 
yang signifikan di Indonesia. Namun, produktivitasnya seringkali terganggu oleh berbagai penyakit daun. 
Penelitian ini bertujuan untuk membandingkan kinerja tiga arsitektur CNN—DenseNet121, Xception, dan 
MobileNetV2—dalam mengklasifikasikan penyakit daun tomat. Dataset yang digunakan terdiri dari 10.000 
citra seimbang yang terbagi dalam sepuluh kelas: Bercak Bakteri, Bercak Daun Septoria, Hawar Daun Dini, 
Hawar Daun Akhir, Virus Mosaik, Virus Keriting Daun Kuning, Jamur Daun, Bercak Target, Tungau Laba-laba 
Berbintik Dua, dan Sehat. Semua citra diubah ukurannya menjadi 224x224 piksel dan dibagi menjadi 80% 
data latih dan 20% data uji. Teknik augmentasi diterapkan untuk menyeimbangkan data di seluruh kelas. 
Hasil eksperimen menunjukkan bahwa arsitektur Xception mengungguli model-model lain, dengan akurasi 
98,79%, presisi 98,80%, recall 98,79%, dan F1-Score 98,78%. Temuan ini menunjukkan bahwa model Xception 
sangat efektif untuk klasifikasi penyakit tanaman dan cocok untuk diimplementasikan di lingkungan dengan 
sumber daya terbatas. 
 
Kata Kunci: CNN, DenseNet121, MobileNetV2, Penyakit Daun Tomat, Xception. 
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INTRODUCTION 
 

The agricultural sector has an influence on 
economic growth in the ASEAN region, including 
Indonesia [1]. One of the important agricultural 
commodities is tomatoes, which have significant 
economic value for farmers [2]. The agricultural 
sector is very challenged by the presence of plant 
pests and diseases [3]. However, tomato production 
is often hampered by various diseases that attack 
the leaves, causing economic losses for farmers [4]. 
Additionally, diseases can be categorized according 
to the crop portion that is impacted. The disease's 
symptoms may manifest on the leaf, panicle, stem, 
or sheath [5]. 

Early detection of tomato leaf disease is 
crucial to protect crops and increase crop yields [6]. 
Like other plants, tomato plants are susceptible to 
microorganism attacks that can cause disease [7]. 
Plant diseases that impact different plant sections, 
such as leaves, stems, and roots, are frequently 
caused by bacteria and fungi [8]. 

Therefore, to lessen the financial losses 
brought on by this illness, an effective control 
system must be developed [9]. Using information 
technology to deliver timely and pertinent 
agricultural information is one approach to solving 
this issue and assisting farmers in making decisions 
[10]. The identification of plant diseases was 
proposed by [11] using the method of identifying 
diseases of rice disease based on the Convolutional 
Neural Network (CNN) technique. The use of digital 
image processing can help in the early detection of 
leaf diseases in plants, such as in mango plants [12]. 
Smart techniques are slowly replacing crop 
monitoring because they are more reliable, 
accurate, fast, and economical [13]. CNNs have 
proven effective in automating disease detection in 
crops like tomatoes, allowing for quicker responses 
to potentially devastating pest outbreaks [14].  

Observing the afflicted areas of the plant, 
particularly the leaves, which exhibit symptoms 
including color changes and the emergence of spots, 
can help identify tomato diseases early [6]. Creating 
precise picture classifications for plant disease 
detection necessitates a dataset containing 
validated photos of both healthy and afflicted plants 
[15]. 

In the realm of agricultural diagnostics, 
particularly concerning tomato leaf diseases, deep 
learning methodologies have proven highly 
effective. Several approaches based on 
convolutional neural networks (CNNs) and hybrid 
models have been employed to enhance the 
accuracy and efficiency of classifying tomato leaf 
diseases [16]. When compared to other algorithms, 
CNN has the advantage of producing superior 

categorization results. Compared to other Deep 
Learning models, CNN is preferred for image 
identification because of its high accuracy [17]. The 
CNN architecture comprises a convolutional layer, a 
pooling layer, and a fully connected layer, with the 
convolutional layer serving as the core component 
of its computations [18]. 

An effective approach for detecting and 
classifying tomato leaf diseases uses a CNN with two 
convolutional and pooling layers. This method 
outperformed pre-trained models such as 
InceptionV3, ResNet152, and VGG19, reaching 98% 
training accuracy and 88.17% testing accuracy [19]. 
A study on tomato plant disease classification using 
CNN architectures, namely AlexNet and VGG16, 
utilized 13,262 images from the PlantVillage 
dataset. The results showed that VGG16 achieved an 
accuracy of 97.29%, while AlexNet performed 
slightly better with 97.49% [20]. 

Compared to other algorithms, CNN offers 
better classification performance. It is often the top 
choice for image recognition among deep learning 
models due to its high accuracy [21]. The CNN 
architecture consists of three main parts: a 
convolutional layer, a pooling layer, and a fully 
connected layer. At its core, the convolutional layer 
is the key element that drives CNN’s computations 
[22]. 

Research [23]classified tomato leaf diseases 
using a CNN model with DenseNet architecture. 
12,332 photos with a resolution of 250 by 250 pixels 
that were split up into four illness classifications 
made up the dataset that was used. 90% of the data 
was used for training, and 10% was used for 
validation. After preprocessing—which included 
augmenting the training data—the model was 
trained using the DenseNet architecture, optimized 
to reach 98.06% accuracy with an average training 
time of 3 minutes per epoch.  Another Research [24] 
used data from 15,408 photos in 4 classes to 
propose pre-trained models of DenseNet and 
EfficientNetB0. Eighty percent of the dataset was 
allocated for training, and the remaining twenty 
percent was reserved for testing. The accuracy 
values of the suggested DenseNet and 
EfficientNetB0 models were 96.26% and 97.91%, 
respectively. The goal of the study [25] was to use a 
transfer learning technique to identify tomato leaf 
mold using DenseNet121.  Transfer learning applies 
a pre-trained model to a new task, avoiding training 
from scratch [26]. With 2,283 photos from three 
categories (leaf mold, healthy, and others), the 
model's accuracy, precision, and recall were 92.6%, 
93.3%, and 93%, respectively. Although the model 
hasn't been tested on actual field photos yet, 
transfer learning worked well with expedited 
training and minimal data. 



 

 

VOL. 11. NO. 1 AUGUST 2025. 
 . 

DOI: 10.33480/jitk.v11i1.7014. 
 

  

127 

MobileNetV2, a lightweight deep learning 
model, is widely used in agriculture for efficient 
tomato disease detection due to its low 
computational demands and high accuracy. It has 
achieved up to 99.11% accuracy in classifying 
tomato leaf diseases, demonstrating its 
effectiveness for real-time applications [27]. 
MobileNetV2 is considered suitable for resource-
constrained devices, although the study did not 
account for variations in lighting and background 
conditions. For instance, the MobileNetV2, a model 
similar in efficiency to Xception, has been used to 
optimize the detection of tomato leaf diseases, 
classifying seven disease categories with a notable 
accuracy of 98% [28].  

Hybrid models combining CNNs with 
transformers are particularly effective, achieving 
high accuracy rates, such as 99.45% on the 
PlantVillage dataset, by harnessing both local 
feature extraction and global dependency capturing 
capabilities [29] 

Using preprocessing, SMOTE, and CNN, this 
study created a system that can automatically find 
apple leaf diseases. The proposed model was more 
accurate than DenseNet121 (95%), InceptionV3 
(92%), and InceptionResNetV2 (91%) [30]. 
Research [31] proposes a transfer learning-based 
CNN model (InceptionV3, VGG16, ResNet, etc.) for 
detecting biotic diseases in rice leaves. Through 
preprocessing, semantic segmentation, and DNN 
classification, this model achieves 96.4% accuracy 
and outperforms other models. 

Many studies have used CNN architectures to 
classify plant diseases; however, there haven't been 
many comparisons using balanced and 
preprocessed multi-class tomato leaf disease 
datasets. Also, lightweight architectures like 
MobileNetV2 haven't been compared very much in 
limited resources.  This study fills these gaps by 
testing DenseNet121, Xception, and MobileNetV2 
on a standardized dataset to find the best 
architectures for quickly and accurately classifying 
tomato leaf diseases. The DenseneNet121, 
MobileNetV2, and Xception architecture models 
developed in this study will help tomato growers 
identify diseased tomato plants. This study uses the 
same dataset and preprocessing procedure to 
examine how well the three models perform in 
classifying tomato plant illnesses. This study makes 
two contributions. First, especially when used with 
picture datasets, the created model may be a 
solution for identifying tomato plant illnesses. 
Second, the findings of this study's model 
performance comparison can serve as a guide for 
future research into creating a model for classifying 
plant diseases based on images. 

 

MATERIALS AND METHODS 
 
Dataset 
This study used the PlantVillage dataset from 
GitHub, containing over 54,000 images in 38 classes, 
widely used for training CNNs and hybrid models in 
plant disease classification [14]. We processed it 
using Google Colab and the Python programming 
language. This dataset contains 18,160 images 
across ten disease classes, sourced directly from the 
PlantVillage repository. While widely used in plant 
disease studies, the labels are based on the original 
dataset and have not been further verified by 
domain experts in this study, expert validation by 
agricultural specialists is planned for future phases. 
Table 1 summarizes the image distribution per 
class. 
 

Table 1. Dataset of tomato plant leaves 

No Class 
amount of 

images 
images 

1 
Bacterial 
spot 

2127 

 

2 
Early 
blight 

1000 

 

3 Healthy 1591 

 

4 Late Blight 1909 

 

5 Leaf mold 952 

 

6 
Septoria 
leaf spot 

1771 

 

7 

Spider 
Mites Two 
Spotted 
spider 
mite 

1676 

 



 

VOL. 11. NO. 1 AUGUST 2025 
. 

DOI: 10.33480 /jitk.v11i1.7014 
 

 

 

128 

No Class 
amount of 

images 
images 

8 
Target 
Spot 

1404 

 

9 
Mosaic 
Virus 

373 

 

10 
Yellow leaf 
Curl Virus 

5357 

 

Source: (Research Results, 2025) 

 
Research Flow 
The research began with the collection of a dataset 
consisting of images of plant leaves in various 
conditions, including healthy leaves and those 
infected by different diseases. The data selection 
process was carried out to choose a subset of images 
so that each class had an equal number of images. 
For the classes, Bacterial Spot, Early Blight, Mosaic 
Virus, Septoria Leaf Spot, Late Blight,  Leaf Mold, 
Spider Mites (Two-Spotted Spider Mite), Yellow 
Leaf Curl Virus, Target Spot, and Healthy, 1,000 
images from each category were selected for the 
next stage of the process. The research workflow is 
illustrated in the following flowchart. 

 
Source: (Research Results, 2025) 

Figure 1. Research flowchart  

Preprocessing 
The dataset underwent preprocessing, which 
involved three main steps: data selection to ensure 
only relevant and high-quality images were used for 
training; data augmentation [32], where techniques 
such as rotation, flipping, zooming, and shifting 
were applied to enrich data variation and improve 
model generalization [33]; and data resizing [34], 
where all images were resized to match the input 
dimensions required by the chosen CNN 
architectures. Image resizing was performed to 
ensure uniform resolution across all images. 
Variations in image size can affect the performance 
of the trained model [35]. The image resolution was 
standardized to 224 × 224 pixels for all classes used 
in the training process [36].  
 
Data Splitting 
After preprocessing, the dataset was divided into 
training and test subsets. The training data is 
distributed as 80% and the testing data as 20% of 
the total available data [37], ensuring that the 
model's evaluation was performed on unseen data.  
 
Classification Model 
Three pretrained CNN architectures—
DenseNet121, Xception, and MobileNetV2—were 
utilized for classification tasks. Each model was 
trained on the training set and evaluated on the test 
set. 
 
Evaluation 
Evaluation metrics included accuracy, precision, 
recall, and F1-score to assess performance 
comprehensively. A comparative analysis was then 
carried out to identify the best-performing 
architecture for leaf disease classification, with the 
model scoring highest across the evaluation metrics 
deemed the most optimal for the task. 
 

Table 1. Characteristics of the system used for 

experimentation. 
Hardware/Software Characteristics 

Number of CPU’s 4 

GPU’s Feature NVIDIA T4 

GPU RAM 15 Gb 

System RAM 51Gb 

Disk 235,7 Gb 

Number of cuda cores  2560 

Number of tensor cores  320 

 Source: (Research Results, 2025) 

 

DenseNet121 
DenseNet121 is one of the CNN architectures 
commonly used for image classification. 
DenseNet121 is known for its densely connected 
layers, which improve the flow of information and 
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gradients throughout the network, addressing the 
vanishing gradient problem [38] According to a 
study, DenseNet121 demonstrated competitive 
performance when compared to other architectures 
such as visual transformers in disease classification 
tasks. Although visual transformers slightly surpass 
it in AUC for certain tasks, it remains highly efficient 
in handling sample data and demonstrates strong 
resilience to hidden stratification [39]. This 
architecture also excels in scenarios requiring 
feature reuse, which enhances classification rates 
under various conditions while maintaining low 
computational costs, as evidenced in underwater 
target recognition tasks [40]. 
 

Table 2. Configuration of the DenseNet121 

Architecture 

Layer 
Type 

Filters / 
Units 

Kernel 
Size 

Stride Activation 

Conv 64 7×7 2 ReLU 

Max 
Pooling 

- 3×3 2 - 

Dense 
Block 1 

6 × (32 
filters) 

1×1 & 
3×3 

1 ReLU 

Transition 
Layer 

128 
1×1, 
2×2 
pool 

1, 2 ReLU 

Dense 
Block 2 

12 × (32 
filters) 

1×1 & 
3×3 

1 ReLU 

Transition 
Layer 

256 
1×1, 
2×2 
pool 

1, 2 ReLU 

Dense 
Block 3 

24 × (32 
filters) 

1×1 & 
3×3 

1 ReLU 

Transition 
Layer 

512 
1×1, 
2×2 
pool 

1, 2 ReLU 

Dense 
Block 4 

16 × (32 
filters) 

1×1 & 
3×3 

1 ReLU 

Global Avg 
Pool 

- - - - 

Fully 
Connected 

1000 
(ImageNet) 

- - Softmax 

Source: (S. Anwar, 2023 [41]) 

 

Xception 

Xception or Extreme Inception is an architecture 

developed by Francois Chollet, a radical evolution of 

the Inception architecture that adopts a thorough 

depthwise separable convolution approach, with 

modular structures and residual connections to 

improve feature processing efficiency [42]. 

 

Table 3. Configuration of the Xception Architecture 

Layer Type 
Filters 
/ Units 

Kernel 
Size 

Stride 
Activati

on 

Entry Flow 
Conv 

32 3×3 2 ReLU 

Layer Type 
Filters 
/ Units 

Kernel 
Size 

Stride 
Activati

on 

Entry Flow 
Conv 

64 3×3 1 ReLU 

Entry Flow 
Block 1 

128 
Separabl
e 3×3 

2 ReLU 

Entry Flow 
Block 2 

256 
Separabl
e 3×3 

2 ReLU 

Entry Flow 
Block 3 

728 
Separabl
e 3×3 

2 ReLU 

Middle Flow 
(8×) 

728 
Separabl
e 3×3 

1 ReLU 

Exit Flow 
Block 1 

1024 
Separabl
e 3×3 

2 ReLU 

Exit Flow 
Conv 

1536 
Separabl
e 3×3 

1 ReLU 

Exit Flow 
Conv 

2048 
Separabl
e 3×3 

1 ReLU 

Global Avg 
Pool 

- - - - 

Fully 
Connected 

1000 
(Image
Net) 

- - Softmax 

Source: (H. Ulutaş and V. Aslantaş, 2023 [43]) 

 
MobileNetV2 
 MobileNetV2 is designed for mobile and 
resource-constrained environments, emphasizing 
efficiency and speed. It uses depthwise separable 
convolutions, greatly reducing computational costs 
and model size without sacrificing accuracy. While 
not explicitly mentioned in the provided studies, 
MobileNetV2’s architecture is generally praised for 
its quick inference and adaptability in scenarios 
requiring efficient computations, such as running 
on low-power devices like Raspberry Pi [44]. 

 

Table 4. Configuration of the MobileNetV2 

Architecture 

Layer 
Type 

Output 
Channels 

Kern
el 

Size 

Strid
e 

Expansi
on 

Factor 
(t) 

Activati
on 

Conv2D 32 3×3 2 - ReLU6 
Bottlene
ck (1) 

16 3×3 1 1 Linear 

Bottlene
ck (2–3) 

24 3×3 
1-

Feb 
6 ReLU6 

Bottlene
ck (4–6) 

32 3×3 
1-

Feb 
6 ReLU6 

Bottlene
ck (7–
10) 

64 3×3 
1-

Feb 
6 ReLU6 

Bottlene
ck (11–
13) 

96 3×3 1 6 ReLU6 

Bottlene
ck (14–
16) 

160 3×3 
1-

Feb 
6 ReLU6 

Bottlene
ck (17) 

320 3×3 1 6 ReLU6 

Conv2D 1280 1×1 1 - ReLU6 
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Layer 
Type 

Output 
Channels 

Kern
el 

Size 

Strid
e 

Expansi
on 

Factor 
(t) 

Activati
on 

Global 
Avg Pool 

- - - - - 

Fully 
Connect
ed 

1000 
(ImageN

et) 
- - - 

Softma
x 

Source: (G. Mukherjee, A. Chatterjee, and B. Tudu, 

2022 [28]) 

 
Despite having distinct traits and 

advantages, all three architectures have 
demonstrated efficacy in a variety of image 
recognition applications. To determine the most 
suitable architecture for image classification, such 
as identifying plant leaf diseases, it is essential to 
compare the performance of models like 
MobileNetV2, Xception, and DenseNet121. 

This study assesses the classification 
model’s performance using a confusion matrix [45]. 
The anticipated value and the actual value, 
displayed as a table, are described by the confusion 
matrix. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 
RESULTS AND DISCUSSION 

 
The first stage of this study is data selection 

from the original dataset. The same number of 
images is chosen for each class to achieve a balanced 
distribution across all classes. The final image count 
after this process is presented in the table below.  

 
Table 5. Data Selection Results 

Code Class 
amount 

of 
images 

C1 Bacterial spot 2127 
C2 Early blight 1000 
C3 Healthy 1591 
C4 Late Blight 1909 
C5 Leaf mold 952 
C6 Septoria leaf spot 1771 
C7 Spider Mites Two Spotted spider mite 1676 
C8 Target Spot 1404 
C9 Mosaic Virus 373 

C10 Yellow leaf Curl Virus 5357 

Source: (Research Results, 2025) 

Furthermore, data augmentation was 
applied specifically to the Mosaic Virus and Leaf 
Mold classes, which initially contained 373 and 952 
images, respectively. The augmentation process 
involved rotating the images within a range of -25 
to 25 degrees and applying horizontal flipping with 
a probability of 0.5. As a result, 627 additional 
images were generated for the Mosaic Virus class, 
bringing its total to 1,000 images. Similarly, 48 new 
images were added to the Leaf Mold class, also 
increasing its total to 1,000 images. Table 6 presents 
the number of images per class after the 
augmentation process. 

 
Table 6. Data Augmentation Results 

Code Class 
A mount 

of 
images 

C1 Bacterial spot 1000 
C2 Early blight 1000 
C3 Healthy 1000 
C4 Late Blight 1000 
C5 Leaf mold 1000 
C6 Septoria leaf spot 1000 

C7 
Spider Mites Two Spotted spider 
mite 

1000 

C8 Target Spot 1000 
C9 Mosaic Virus 1000 

C10 Yellow leaf Curl Virus 1000 

Source: (Research Results, 2025) 

 

After data augmentation is done on the 
Mosaic Virus class, and the Leaf Mold class each has 
1000 images. Once the ten classes are balanced in 
data quantity, image resizing is performed to 
standardize all image dimensions. This uniform size 
facilitates the convolution and pooling operations 
during training. In this study, all images were 
consistently resized to 224 x 224 pixels. 

The next step is splitting the dataset into 
training and test sets. This study used 80% of the 
data to train the CNN model, while the remaining 
20% was reserved for testing. The distribution of 
training and testing data is shown in the table 
below. 

Each class, Bacterial Spot, Early Blight, 
Healthy, Late Blight, Leaf Mold, Septoria Leaf Spot, 
Spider Mites (Two-Spotted Spider Mite), Target 
Spot, Mosaic Virus, and Yellow Leaf Curl Virus, 
contains 800 images for training and 200 images for 
testing. 
 
DenseNet121 

The first model in this study applies the 
DenseNet121 architecture for dataset classification. 
Its evaluation results are presented in the figure and 
confusion matrix below. 
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Source: (Research Results, 2025) 

Figure 2. Grafic Accuracy and Loss of DenseNet121 

 

 
Source: (Research Results, 2025) 

Figure 3. Confusion Matrix DenseNet121 

 

The confusion between Early Blight and 
Septoria Leaf Spot, and between Spider Mites and 
Healthy leaves, may be attributed to similar visual 
features such as chlorotic patterns and small 
speckled lesions. These visual similarities likely 
challenge the feature extraction process of the 
model. Implementing feature enhancement 
techniques or class-specific augmentation could 
help reduce these misclassifications. 

The DenseNet121 model exhibits exceptional 
learning capabilities, starting with a remarkable 
119% validation accuracy surge from epoch 1 
(89.10%) to epoch 7 (98.51%), while training 
accuracy simultaneously grew 132% (40.67% → 
94.41%). After this rapid convergence phase, the 
model maintained outstanding stability with 
validation accuracy consistently above 97.41% for 
the remaining epochs, peaking at 98.79% (epoch 
13) with a minimal validation loss of 0.0470. 
Although training accuracy continued climbing to 
97.42% by epoch 15, slight validation fluctuations 
occurred post-peak (98.79% → 98.18%), possibly 
indicating minor overfitting despite an overall 96% 
reduction in training loss (2.1158 → 0.0834). The 
highly efficient training process maintained 

consistent ∼205ms/step speeds after the initial 
epoch, demonstrating robust hardware utilization 
throughout the 15-epoch cycle. 
 
Xception 
The second model uses the Xception architecture. 
The results of the evaluation are shown in the 
following garfic and confusion matrix: 
 

 
Source: (Research Results, 2025) 

Figure 4. Graphic Accuracy and Loss of Xception 
 

 
Source: (Research Results, 2025) 

Figure 5. Confusion Matrix Xception 
 

The confusion matrix shows certain 
misclassification patterns, especially between Early 
Blight and Septoria Leaf Spot and between Spider 
Mites and healthy leaves. These mistakes are 
probably caused by similar visual elements, 
including chlorotic patches, necrotic areas, or 
textural patterns that make it hard for the model to 
tell them apart. There are also fewer mistakes when 
describing the difference between Late Blight and 
Early Blight, as well as Target Spot and Septoria Leaf 
Spot. This could be because the lesions look or are 
the same. These results show that it may be hard to 
classify diseases accurately because they have 
comparable features. In the future, improvements 
could include targeted augmentation, feature 
engineering specific to a domain, or better 
combining attention-based processes to tell apart 
classes that look comparable.  
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The Xception model demonstrates rapid 
initial convergence with validation accuracy surging 
from 84.69% to 97.25% within just five epochs, 
while training accuracy simultaneously increased 
139% (37.79% → 90.29%) and training loss 
decreased 85% (2.2043 → 0.3265). During 
subsequent epochs, the model exhibited exceptional 
stability with validation accuracy consistently 
above 97.25% and gradually climbing to its peak of 
98.18% at epoch 14 (loss 0.0541), supported by 
steady training accuracy improvements reaching 
97.10% by epoch 14. Though slight fluctuations 
occurred in the final epoch (validation accuracy 
98.07%), the model maintained remarkably 
consistent processing speeds averaging 
225ms/step after epoch 1, ultimately achieving a 
157% cumulative training accuracy gain (37.79% → 
96.96%) and 95.5% training loss reduction (2.2043 
→ 0.0987) across the 15-epoch cycle with minimal 
validation volatility (±0.6% after epoch 5). 
 
MobileNet 

The third model applies the MobileNetV2 
architecture, with its evaluation results presented 
in the following graph and confusion matrix. 

 

 
Source: (Research Results, 2025) 

Figure 6. Grafic Accuracy and Loss of mobileNet 
 

The model demonstrates rapid and stable 
convergence over 15 epochs, with training accuracy 
surging from 36.60% to 94.61% and validation 
accuracy leaping from 83.81% to 98.18%. Most 
significant improvements occurred in the first 7 
epochs where training accuracy increased by 142% 
(36.6% → 89.5%) and validation loss dropped 74% 
(0.4913 → 0.1288). After epoch 7, the model entered 
a refinement phase with slower but consistent 
gains, ultimately achieving peak validation 
performance at epoch 15 (98.18% accuracy, 0.0685 
loss) while maintaining minimal training-validation 
gaps (3.57% accuracy difference). The dramatic 
time-per-step reduction from 13s to ≈200ms after 
epoch 1 indicates efficient hardware utilization, and 
steadily decreasing losses without rebound 
patterns confirm effective learning without 
overfitting throughout the training cycle. 

 

 
Source: (Research Results, 2025) 

Figure 7. Confusion Matrix MobileNet 
 

The confusion matrix reveals that the 
classifications are mostly correct, but some are 
wrong in Early Blight, which is commonly confused 
with Late Blight, Leaf Mold, or Target Spot because 
they look similar. Sometimes, spider mites are 
called "healthy," which may be due to how the 
leaves look. Bacterial Spot's small mistakes also 
point to feature overlap. Adding attention 
mechanisms or improving class-specific features 
may help clear up these misunderstandings.  

Despite the models' high training and 
validation accuracy, minor variations in validation 
accuracy, especially in DenseNet121, point to a 
possible overfitting risk. Dropout regularization, 
data augmentation expansion, early halting, and k-
fold cross-validation are possible enhancements 
that could increase generalization. 

The MobileNet confusion matrix reveals 
strong overall performance with distinct error 
patterns: Mosaic_virus achieved perfect 
classification (41/41 correct), while 
Septoria_leaf_spot (175/177) and Yellow Leaf Curl 
Virus (572/576) demonstrated near-flawless 
recognition despite the latter's large sample size. 
However, Early blight showed significant 
misclassification challenges with only 82/96 
correct predictions—8 confused with Septoria leaf 
spot and 4 with Late blight. Bacterial spot 
(195/201) exhibited minor confusion with Septoria 
leaf spot (2 cases) and Target Spot (2 cases), 
whereas Spider mites experienced notable 
misidentification as healthy leaves (6/144 errors). 
Leaf Mold (98/101) primarily confused Target Spot 
cases (2 errors), and Target Spot itself showed 
inconsistencies requiring verification between 
predicted (138) and expected (142) samples. The 
matrix highlights particular difficulty distinguishing 
visually similar diseases like Early blight/Septoria 
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and Spider mites/healthy foliage, suggesting feature 
extraction enhancements for these classes. 
 
Model Performance Comparison 

 We compared the results of each tested 
categorization model to see how well they worked.   
The table below compares the three CNN 
architectures regarding accuracy, precision, recall, 
and F1-score. 

 
Table 10. Model Evaluation Comparison 

Model 
Accurac

y 
Precisio

n 
Recall 

F1-
Score 

MobileNet 0.9747 0.9753 
0.974

7 
0.9745 

DenseNet12
1 

0.9813 0.9817 
0.981

3 
0.9813 

Xception 0.9879 0.988 
0.987

9 
0.9878 

Source: (Research Results, 2025) 

 

The Xception model recorded the highest 
performance, achieving 98.79% accuracy, 98.80% 
precision, 98.79% recall, and a 98.78% F1-score. 
These results indicate that the model is highly 
consistent in recognizing and classifying various 
types of tomato leaf diseases with a very low error 
rate. The high F1-Score also demonstrates a balance 
between precision and recall, meaning the model is 
not only accurate but also reliable in detecting all 
disease classes. Meanwhile, DenseNet121 ranked 
second with an accuracy of 98.13%, precision of 
98.17%, recall of 98.13%, and F1-Score of 98.13%. 
This model shows very competitive performance 
and is close to that of Xception, although slightly 
lower in terms of precision and generalization. The 
MobileNet model, while more lightweight and 
computationally efficient, performed well with an 
accuracy of 97.47%, precision of 97.53%, recall of 
97.47%, and F1-Score of 97.45%. Although slightly 
trailing the other two models in performance, 
MobileNet remains a strong choice for deployment 
on resource-limited devices thanks to its low 
architectural complexity. 
 

CONCLUSION 
 

Using DenseNet121, Xception, and MobileNet 
architectures to detect tomato leaf diseases can 
produce strong results. Their performance can be 
further improved by increasing both the input 
image size and the amount of training data. Xception 
generally delivers the best performance on the 
given dataset, thanks to its more complex layer 
structure than DenseNet121 and MobileNet. The 
Xception model achieved the highest accuracy of 
98.79%, with a precision of 98.80%, recall of 
98.79%, and an F1-Score of 98.78%.  These values 

are better than those of DenseNet121 and 
MobileNet. A limitation of this study is that only 
10,000 images were used, and only three 
architectures were employed—DenseNet121, 
MobileNet, and Xception. Future research could 
compare the performance of other CNN 
architectures—such as VGGNet, DenseNet, ResNet, 
and EfficientNet—using similar datasets but with 
larger images. This study had some good findings, 
but only tested three CNN architectures on a dataset 
of images that were all the same size. Also, they 
didn't talk about how things can change in the actual 
world, such as how the sunlight changes or how 
leaves block the view. Future work should look at 
bigger datasets, get validation from domain experts, 
and look into deploying on edge devices. 
Lightweight models like MobileNetV2 are good for 
mobile or embedded systems used in farming since 
they are easy to operate.  
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