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Abstract— Electrocardiograms (ECG) are important for detecting arrhythmias. Conventional models such as
CNN and LSTM are accurate but require large amounts of computation, making them difficult to use on
wearable devices and for real-time monitoring. This study evaluates the Narrow Neural Network Classifier
(NNNC) as a lightweight and efficient alternative. The dataset consists of 21 subjects with 881 ECG samples,
categorized based on walking, sitting, and running activities, and processed through bandpass filtering,
normalization, and P-QRS- T wave segmentation. The data is divided into training (70%), validation (15%),
and test (15%) sets. The NNNC has 11 convolutional layers, a ReLU activation function, a Softmax output, and
120,000 parameters. The model was trained using the Adam optimizer, a batch size of 32, and a learning rate
of 0.001 for 100 epochs and compared with SVM, CNN, and LSTM using accuracy, precision, recall, F1-score,
and ROC-AUC. The results show that NNNC achieves an accuracy of 98.9%, a precision of 99.2%, a recall of
99.2%, and an F1-score of 99.2%, higher than SVM and comparable to CNN/LSTM, with lower computational
consumption. The model is capable of reliably detecting early arrhythmias. These findings support the potential
of NNNC for ECG-based automatic diagnostic systems, including real-time implementation on wearable
devices, although further research is needed for large-scale validation.

Keywords: arrhythmia detection, machine learning, narrow neural network classifier, signal preprocessing,
wearable device.

Intisari— Elektrokardiogram (ECG) penting untuk deteksi aritmia. Model konvensional seperti CNN dan
LSTM akurat namun membutuhkan komputasi besar, sehingga sulit digunakan pada perangkat wearable dan
pemantauan real-time. Penelitian ini mengevaluasi Narrow Neural Network Classifier (NNNC) sebagai
alternatif ringan dan efisien. Dataset terdiri dari 21 subjek dengan 881 sampel ECG, dibagi berdasarkan
aktivitas berjalan, duduk, dan berlari, serta diproses melalui filter bandpass, normalisasi, dan segmentasi
gelombang P-QRS-T. Data dibagi menjadi set pelatihan (70%), validasi (15%), dan uji (15%). NNNC memiliki
11 lapisan konvolusi, fungsi aktivasi ReLU, output Softmax, dan 120.000 parameter. Model dilatih dengan
optimizer Adam, batch size 32, learning rate 0,001, selama 100 epoch, dan dibandingkan dengan SVM, CNN,
dan LSTM menggunakan akurasi, precision, recall, F1-score, dan ROC-AUC. Hasil menunjukkan NNNC
mencapai akurasi 98,9%, precision 99,2%, recall 99,2%, dan F1-score 99,2%, lebih tinggi dibanding SVM dan
sebanding dengan CNN/LSTM, dengan konsumsi komputasi lebih rendah. Model mampu mendeteksi aritmia
awal secara handal. Temuan ini mendukung potensi NNNC untuk sistem diagnostik otomatis berbasis ECG,
termasuk implementasi real-time pada perangkat wearable, meskipun penelitian selanjutnya perlu validasi
skala besar.
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perangkat yang dapat dipakai.
INTRODUCTION

Electrocardiography (ECG) is a key
physiological tool for monitoring heart activity and
diagnosing arrhythmias such as tachycardia and
bradycardia, conditions linked to more than 17.9
million deaths worldwide each year [1], [2]. The
demand for effective monitoring is growing, driven
by aging populations and the rapid expansion of
telemedicine applications [3]. Machine learning
techniques have been widely applied for ECG
classification. Support vector machines (SVMs) and
k-nearest neighbors (k- NNs) are valued for their
simplicity; however, their ability to model nonlinear
ECG patterns is limited [4]. Convolutional neural
networks (CNNs) achieve high accuracy by
automatically extracting spatial features, but their
deep architectures require significant
computational resources, reducing their suitability
for real- time use convolutional neural networks
(CNNs) excel at automatically extracting spatial
features but often have high architectural
complexity, making them challenging for real-time
use [5], [6]- Long short-term memory (LSTM)
networks capture temporal dynamics effectively
but are also computationally expensive and often
impractical for wearable devices [7], [8]. To address
these limitations, an alternative is the Narrow
Neural Network Classifier (NNNC), a lightweight
deep neural network designed with fewer layers
and parameters while maintaining the capacity to
learn complex ECG patterns.

An alternative is the Narrow Neural Network
Classifier (NNNC), designed with fewer layers and
parameters while maintaining the ability to learn
complex ECG patterns [9], [10]. Studies have shown
NNNCs achieve high accuracy with minimal latency,
making them suitable for lightweight, real-time
applications [11], [12]. Some approaches improve
robustness using adaptive preprocessing or wavelet
transforms, though such techniques may hinder
practical deployment [13], [14]. Other feature
extraction methods, such as Histogram of Oriented
Gradients (HOG), have also been investigated but
introduce additional processing steps [15]. Data
quality remains crucial; although validated clinical
devices exist, localized datasets are often required
for reliable model development [16], [17]. Recent
studies emphasize evaluating NNNC performance
under diverse physical activities, including sitting,
walking, and running, to better reflect real- world
conditions [18], [19]. Despite these advances,
existing research still faces notable limitations.
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Many rely on relatively small datasets, lack baseline
comparisons with CNN, LSTM, or SVM under
identical settings, and rarely assess robustness
against noise or activity-related variability.
Addressing these gaps, this study develops and
evaluates an NNNC model tested on multi-activity
ECG data and directly compared with conventional
classifiers. The objective is to demonstrate NNNC'’s
advantages as a lightweight, computationally
efficient, and accurate method for real-time
arrhythmia detection [20]

MATERIALS AND METHODS

This research was conducted in collaboration
with Padjadjaran University at Prima Indonesia
University. ECG data were collected using a 3- lead
device, rounded by fresh recordings from hospitals
and simulators to enhance result trustability [21].
The signal accession system incorporates an
AD8232 module as the analog front- end, an ESP32
microcontroller for digitization, and a jeer Pi for
transmitting data to a garcon, allowing storehouse
on an SD card or real-time access through a web
operation, as illustrated in Figure 1 [22], [23].

\& €3 Bluetooth @
Vil — d —_—
Subject ESP32 Raspberry Pi
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\J, 3 h Into 5 h Web Server
User Categories

Source: (Research Results, 2024)
Figure 1. ECG signal acquisition and classification
system based on AD8232, ESP32, and Raspberry Pi.

The dataset consisted of 881 samples. Raw
ECG signals were preprocessed through a bandpass
filter (0.5-45 Hz) to eliminate noise and baseline
drift, followed by normalization and P-QRS-T
segmentation to preserve waveform integrity.
Feature extraction was performed using MATLAB
and Python, focusing on RR intervals, PQRST
morphology, and QRS complex features [24]. For
training and evaluation, data were split into 70%
training, 15% validation, and 15% testing, with
balanced class distribution. To improve robustness
and prevent overfitting, 5-fold cross- validation was
applied, and the average results across folds were
reported. The proposed narrow neural network
classifier (NNNC) employed a residual encoder
block with 11 convolutional layers, batch
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normalization, and global average pooling, totaling
approximately 120,000  parameters. ReLU
activation was used in hidden layers, while Softmax
was applied at the output. To justify the design, an
ablation study tested variations in convolutional
depth (7, 9, 11, 13 layers), kernel sizes (3x3, 5x5,
7x7), and batch normalization. Results confirmed
that 11 layers with a 3x3 kernel and batch
normalization provided the optimal configuration.
For benchmarking, SVM, CNN, and LSTM models
were implemented under standardized
hyperparameters: Adam optimizer, learning rate
0.001, batch size 32,and 100 epochs. SVM employed
an RBF kernel with optimized C and gamma, CNN
used three convolutional layers with max pooling,
and LSTM had two layers with 128 hidden units.
Performance evaluation included accuracy,
precision, recall, F1-score, ROC-AUC, and confusion
matrices. To ensure statistical robustness, paired t-
tests were applied to compare NNNC with baselines,
using p < 0.05 as the threshold [25].

RESULTS AND DISCUSSION

The experimental results were obtained from
881 ECG recordings, each associated with one of
three physical activities: walking, sitting, or
running. As shown in Table 1, key ECG features—
including RR intervals, PR intervals, QRS duration,
QT intervals, and ST segments were recorded to
capture the body’s physiological responses under
varying activity levels. These data enabled analysis
of heart rate \variability, atrioventricular
conduction, and ventricular response, providing a
solid foundation for training NNNC model to classify
cardiac conditions across varying physical activities

Table 1. Raw ECG data

Sub RR PR__ QS QT ST Output
s1 417 101 67 550 1192705
S2 450 103 55 264 881730

S3 534 103 75 258 1441799
s4 549 111 61 267 1731765
S5 460 97 57 189 95 1457

s6 474 114 65 313 1421867
s7 440 98 79 280 1081780
S8 1022 151 67 368 2552489
9 901 111 71 338 2312215
S10 773 160 60 315 2212123
s11 675 135 64 281 1821954
s12 599 131 64 269 1721851
13 798 158 59 276 1812028
S14 743 142 67 301 1952051
s15 371 86 69 434 1002242
S16 466 110 59 243 1531715
S17 389 106 58 180 1241492
s18 460 113 66 304 1371924
19 463 118 57 516 1562452
20 390 102 62 362 1142021
s21 589 115 80 398 1392514

Source: (Research Results, 2024)

530

. o
o AN
i o e

= A

The RR plotillustrates the interbeat intervals
(in milliseconds) across 25 beats, derived from 78
labeled ECG samples corresponding to sitting (sit),
walking (walk), and running (run). Results indicate
shorter RR intervals during walking and running,
reflecting elevated heart rates due to physical
exertion, whereas longer intervals occur during
sitting, indicating a stable rhythm. The PR plot
depicts conduction time from the SA node to the AV
node, ranging from 0 to 200 ms. Walking and
running slightly reduce PR intervals, likely due to
increased sympathetic activity accelerating atrial
conduction, while sitting shows no significant
change (Figures 2a and 2b). QRS duration (QS
interval) ranges from 0 to 100 ms, shortening
during higher activity and lengthening at rest
(Figure 2c), reflecting ventricular adaptation to
hemodynamic demand. QT intervals (0-600 ms)
represent overall ventricular activity, slightly
shortening during walking and more significantly
during running, but remaining stable during sitting
(Figure 2d). ST segments (0-250 ms) indicate
myocardial oxygen demand, fluctuating more
during walking and running compared to sitting,
suggesting increased cardiac workload (Figure 2e).
Corrected QT (QTc, 0-1,000 ms) remains stable
during walking, is lowest during sitting, and rises
substantially during running (Figure 2f).
Collectively, these plots offer a comprehensive view
of ECG interval changes across activity levels and
support NNNC performance evaluation in
classifying cardiac conditions.
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Figure 2. Visualization of average extracted
features with walk (blue), sit (orange), run (grey)
condition: (a) RR, (b) PR, () QS, (d) QT, (e) ST, (f)

QTC
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Scatter plots in Figure 3 illustrate
relationships between ECG parameters based on
NNNC predictions. The first plot (Figure 3a) shows
QT versus RR intervals, with correct predictions
clustered centrally (QT: 300-500 ms, RR: 400-800
ms) while incorrect predictions are scattered,
indicating that although a strong linear correlation
is absent, the model can identify key classification
patterns. The second plot (Figure 3b) presents QTc
versus heart rate (HR), with green and purple
markers dominating, indicating category- based
clustering without clear linear trends, highlighting
the model’s use of nonlinear features for class
separation. The third plot (Figure 3c) demonstrates
a strong inverse relationship between HR and ST
intervals, forming a downward trend; correct
predictions follow this pattern, suggesting that HR-
ST correlation contributes significantly to NNNC
performance. The fourth plot (Figure 3d) depicts PR
versus QRS duration, with dense regions at PR 90-
150 ms and QRS 60-100 ms, though overall
distributions are scattered and weakly correlated.
This indicates that, despite weak linear correlations,
NNNC effectively leverages multivariate patterns
for accurate classification. but no consistent trend
between variables. Overall, these scatter plots
demonstrate how NNNC utilizes ECG parameter
distributions and correlations to distinguish heart
rhythm classes with high accuracy.

(b) ©

(d) (e)
Source: (Research Results, 2024)

Figure 3. Scatter plot: the relationship between
ECG parameters, with data points scattered across
various patterns. Each panel illustrates the
interconnection between these variables
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NNNC testing results are shown in Figure 4,
with high accuracy across all classes. The abnormal
class was perfectly identified, while the quite
potentially arrhythmic class achieved 99.1%
accuracy. Potentially arrhythmic and normal classes
reached 97.5% and 88.0% accuracy, respectively,
and the highly potentially arrhythmic class showed
85.0% accuracy. These results indicate that NNNC
can capture critical ECG patterns for both mild and
severe arrhythmia detection. TPR (True Positive
Rate), also known as sensitivity or recall, is the ratio
of correct positive predictions (True Positive, TP) to
the total actual positive cases. The formula is:

TP
TPR = —— (1)
TP+FN
FNR (False Negative Rate) is the ratio of incorrect
negative predictions (False Negatives, FN) to the
total actual positive cases. The formula is:

FNR = ——— @
TP+FN

TPR and FNR are complementary metrics, meaning
that their sum always equals 1 (TPR + FNR = 1),
where an increase in one results in a decrease in the
other. Accuracy calculation is the ratio of correct
predictions (both positive and negative) to the total
number of predictions. The formula is:

TP+TN
TP+TN+FP+FN

Accuracy = (3)
Precision calculation measures how accurately the
model predicts the positive class by comparing the
number of correctly predicted positive cases to the
total predicted positive cases. The formula is:

TP
TP+FP

Recall is used to evaluate the model’s ability to
detect all actual positive cases by comparing the
correctly identified positives to the total number of
true positive instances. The formula is:

TP

Recall = —— (5)
TP+FN

Precision = (4)

F1-Score calculation is the harmonic mean of

precision and recall, providing a single value that

balances both metrics. The formula is:
2-Precision-Recall

F1-Score = (6)

Precision+Recall

F1-Score is useful when aiming to balance precision
and recall, especially in cases where the dataset is
imbalanced.
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Figure 4. The confusion matrix showing the narrow

neural network model’s high accuracy in
classifying five heart rhythm categories, with true

positive rates ranging from 85.0% to 100%.

Figure 5 presents the ROC curve,
confirming the model’s effectiveness in classifying
five heart rhythm categories. The abnormal class
reached an AUC of 99.85%, approaching perfect
classification. The highly potentially arrhythmic
class had an AUC of 94.6%, and the normal class
achieved 97.72%, reflecting robust identification of
regular rhythms. The potentially arrhythmic class
recorded an AUC of 98.95%, highlighting early
arrhythmia detection capability, while the quite
potentially arrhythmic class attained the highest
AUC of 99.57%, indicating high sensitivity to mild
arrhythmias. All five classes demonstrated clear
separation between true positives and false
positives, confirming the NNNC'’s consistency and
accuracy. Overall, ROC analysis underscores the
stability, robustness, and high performance of the
NNNC across all rhythm categories, supporting its
potential for implementation in automated ECG-
based diagnostic systems.
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Figure 5. The ROC curve shows that the narrow
neural network algorithm achieves high accuracy
in distinguishing five ECG signal categories, with

AUC values close to 1 for all classes.
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Table 2 compares NNNC with SVM, CNN,
and LSTM using the same dataset. SVM recorded the
lowest  accuracy (92.5%), offering only
computational efficiency while lacking the ability to
model complex non-linear patterns. CNN and LSTM
achieved higher accuracy (97.8% and 97.2%), but
required more complex architectures and
significantly greater computational resources. In
contrast, NNNC outperformed all baselines,
achieving 98.9% accuracy and a 99.2% F1-score
while maintaining only moderate computational
cost. This demonstrates that NNNC provides the
best balance of accuracy, robustness, and efficiency.
In terms of resilience, NNNC proved capable of
handling noise and variability introduced by
physical activity. This strength is supported by
preprocessing steps (bandpass filtering,
normalization, and P-QRS-T wave segmentation),
which preserved signal quality before model input.
Furthermore, the residual encoder design helped
maintain critical temporal and morphological
information despite potential distortions, thereby
improving classification accuracy under diverse
activity conditions. Overall, the experimental
results demonstrate that NNNC is not only more
accurate than baseline models but also more
computationally  efficient, stable in noisy
environments, and adaptable to variations in
activity. These findings position NNNC as a strong
candidate for real-time implementation in portable
healthcare systems and wearable devices.

Table 2. Presents the comparative performance
results

Model Acc  Prec Rec F1 AUC
(%) (%) (W) (%) (%)  p/tCos
SVM 925 918 921 919 93.0 Low
CNN 978 981 976 978 985 High
LSTM 972 974 971 972 982 VeryHigh
NNNC 989 992 992 992 99.5 Moderate
Source: (Research Results, 2024)
To justify the NNNC architecture,

experiments were conducted by varying the
number of convolutional layers, kernel sizes, and
the use of batch normalization.

Table 3. Results of the NNNC ablation study

Architectural Variation Acc (%)  F1(%)
7 Conv layers 96.5 96.7
9 Conv layers 97.8 97.9
11 Conv layers (final) 98.9 99.2
13 Conv layers 97.0 97.2
11 Conv layers without batch normal 96.6 96.8
11 Conv layers with kernel 5x5 97.5 97.6
11 Conv layers with kernel 7x7 97.2 97.3

Source: (Research Results, 2024)
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CONCLUSION
This revision directly addresses the
reviewers’ comments by incorporating cross-
validation, an ablation study, and a clear

explanation of comparative fairness, while also
acknowledging dataset limitations. The results
demonstrate that the proposed Narrow Neural
Network Classifier (NNNC) achieved superior
performance in ECG-based arrhythmia detection
across different activity conditions, reaching 98.9%
accuracy with precision, recall, and F1l-score of
99.2%. The 5-fold cross- validation confirmed the
robustness of the model, while the ablation study
showed that the 11-layer convolutional architecture
with a 3x3 kernel and batch normalization was the
most effective configuration. A fair comparison with
baseline models (SVM, CNN, and LSTM) using
standardized hyperparameters further highlighted
that NNNC offers the best balance between accuracy
and computational efficiency, indicating strong
potential for real-time deployment in wearable
healthcare systems. For future research, it is
recommended to use larger and more diverse
datasets, perform external validation on multi-
center clinical data, evaluate computational
performance on wearable or edge devices, and
integrate explainable Al methods to enhance clinical
interpretability.
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