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Abstract— Electrocardiograms (ECG) are important for detecting arrhythmias. Conventional models such as 
CNN and LSTM are accurate but require large amounts of computation, making them difficult to use on 
wearable devices and for real-time monitoring. This study evaluates the Narrow Neural Network Classifier 
(NNNC) as a lightweight and efficient alternative. The dataset consists of 21 subjects with 881 ECG samples, 
categorized based on walking, sitting, and running activities, and processed through bandpass filtering, 
normalization, and P-QRS- T wave segmentation. The data is divided into training (70%), validation (15%), 
and test (15%) sets. The NNNC has 11 convolutional layers, a ReLU activation function, a Softmax output, and 
120,000 parameters. The model was trained using the Adam optimizer, a batch size of 32, and a learning rate 
of 0.001 for 100 epochs and compared with SVM, CNN, and LSTM using accuracy, precision, recall, F1-score, 
and ROC-AUC. The results show that NNNC achieves an accuracy of 98.9%, a precision of 99.2%, a recall of 
99.2%, and an F1-score of 99.2%, higher than SVM and comparable to CNN/LSTM, with lower computational 
consumption. The model is capable of reliably detecting early arrhythmias. These findings support the potential 
of NNNC for ECG-based automatic diagnostic systems, including real-time implementation on wearable 
devices, although further research is needed for large-scale validation. 

 
Keywords: arrhythmia detection, machine learning, narrow neural network classifier, signal preprocessing, 
wearable device. 

 
Intisari— Elektrokardiogram (ECG) penting untuk deteksi aritmia. Model konvensional seperti CNN dan 
LSTM akurat namun membutuhkan komputasi besar, sehingga sulit digunakan pada perangkat wearable dan 
pemantauan real-time. Penelitian ini mengevaluasi Narrow Neural Network Classifier (NNNC) sebagai 
alternatif ringan dan efisien. Dataset terdiri dari 21 subjek dengan 881 sampel ECG, dibagi berdasarkan 
aktivitas berjalan, duduk, dan berlari, serta diproses melalui filter bandpass, normalisasi, dan segmentasi 
gelombang P-QRS-T. Data dibagi menjadi set pelatihan (70%), validasi (15%), dan uji (15%). NNNC memiliki 
11 lapisan konvolusi, fungsi aktivasi ReLU, output Softmax, dan 120.000 parameter. Model dilatih dengan 
optimizer Adam, batch size 32, learning rate 0,001, selama 100 epoch, dan dibandingkan dengan SVM, CNN, 
dan LSTM menggunakan akurasi, precision, recall, F1-score, dan ROC-AUC. Hasil menunjukkan NNNC 
mencapai akurasi 98,9%, precision 99,2%, recall 99,2%, dan F1-score 99,2%, lebih tinggi dibanding SVM dan 
sebanding dengan CNN/LSTM, dengan konsumsi komputasi lebih rendah. Model mampu mendeteksi aritmia 
awal secara handal. Temuan ini mendukung potensi NNNC untuk sistem diagnostik otomatis berbasis ECG, 
termasuk implementasi real-time pada perangkat wearable, meskipun penelitian selanjutnya perlu validasi 
skala besar. 
 

mailto:angeliaayuchandra@gmail.com,
mailto:sunniacecilia2022@gmail.com,
mailto:kenwjy24@gmail.com,
mailto:marditurnip@unprimdn.ac.id4


 

 

VOL. 11. NO. 2 NOVEMBER 2025. 
 . 

DOI: 10.33480/jitk.v11i2.7121. 
 

  

529 

Kata Kunci: deteksi aritmia, pembelajaran mesin, klasifikator jaringan saraf sempit, pra-pemrosesan sinyal, 
perangkat yang dapat dipakai. 
 

INTRODUCTION 
 

Electrocardiography (ECG) is a key 
physiological tool for monitoring heart activity and 
diagnosing arrhythmias such as tachycardia and 
bradycardia, conditions linked to more than 17.9 
million deaths worldwide each year [1], [2]. The 
demand for effective monitoring is growing, driven 
by aging populations and the rapid expansion of 
telemedicine applications [3]. Machine learning 
techniques have been widely applied for ECG 
classification. Support vector machines (SVMs) and 
k-nearest neighbors (k- NNs) are valued for their 
simplicity; however, their ability to model nonlinear 
ECG patterns is limited [4]. Convolutional neural 
networks (CNNs) achieve high accuracy by 
automatically extracting spatial features, but their 
deep architectures require significant 
computational resources, reducing their suitability 
for real- time use convolutional neural networks 
(CNNs) excel at automatically extracting spatial 
features but often have high architectural 
complexity, making them challenging for real-time 
use [5], [6]. Long short-term memory (LSTM) 
networks capture temporal dynamics effectively 
but are also computationally expensive and often 
impractical for wearable devices [7], [8]. To address 
these limitations, an alternative is the Narrow 
Neural Network Classifier (NNNC), a lightweight 
deep neural network designed with fewer layers 
and parameters while maintaining the capacity to 
learn complex ECG patterns. 

An alternative is the Narrow Neural Network 
Classifier (NNNC), designed with fewer layers and 
parameters while maintaining the ability to learn 
complex ECG patterns [9], [10]. Studies have shown 
NNNCs achieve high accuracy with minimal latency, 
making them suitable for lightweight, real-time 
applications [11], [12]. Some approaches improve 
robustness using adaptive preprocessing or wavelet 
transforms, though such techniques may hinder 
practical deployment [13], [14]. Other feature 
extraction methods, such as Histogram of Oriented 
Gradients (HOG), have also been investigated but 
introduce additional processing steps [15]. Data 
quality remains crucial; although validated clinical 
devices exist, localized datasets are often required 
for reliable model development [16], [17]. Recent 
studies emphasize evaluating NNNC performance 
under diverse physical activities, including sitting, 
walking, and running, to better reflect real- world 
conditions [18], [19]. Despite these advances, 
existing research still faces notable limitations. 

Many rely on relatively small datasets, lack baseline 
comparisons with CNN, LSTM, or SVM under 
identical settings, and rarely assess robustness 
against noise or activity-related variability. 
Addressing these gaps, this study develops and 
evaluates an NNNC model tested on multi-activity 
ECG data and directly compared with conventional 
classifiers. The objective is to demonstrate NNNC’s 
advantages as a lightweight, computationally 
efficient, and accurate method for real-time 
arrhythmia detection [20] 

 
MATERIALS AND METHODS 

 
This research was conducted in collaboration 

with Padjadjaran University at Prima Indonesia 
University. ECG data were collected using a 3- lead 
device, rounded by fresh recordings from hospitals 
and simulators to enhance result trustability [21]. 
The signal accession system incorporates an 
AD8232 module as the analog front- end, an ESP32 
microcontroller for digitization, and a jeer Pi for 
transmitting data to a garçon, allowing storehouse 
on an SD card or real-time access through a web 
operation , as illustrated in Figure 1 [22], [23]. 

 
Source: (Research Results, 2024) 

Figure 1. ECG signal acquisition and classification 
system based on AD8232, ESP32, and Raspberry Pi. 

 
The dataset consisted of 881 samples. Raw 

ECG signals were preprocessed through a bandpass 
filter (0.5–45 Hz) to eliminate noise and baseline 
drift, followed by normalization and P-QRS-T 
segmentation to preserve waveform integrity. 
Feature extraction was performed using MATLAB 
and Python, focusing on RR intervals, PQRST 
morphology, and QRS complex features [24]. For 
training and evaluation, data were split into 70% 
training, 15% validation, and 15% testing, with 
balanced class distribution. To improve robustness 
and prevent overfitting, 5-fold cross- validation was 
applied, and the average results across folds were 
reported. The proposed narrow neural network 
classifier (NNNC) employed a residual encoder 
block with 11 convolutional layers, batch 
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normalization, and global average pooling, totaling 
approximately 120,000 parameters. ReLU 
activation was used in hidden layers, while Softmax 
was applied at the output. To justify the design, an 
ablation study tested variations in convolutional 
depth (7, 9, 11, 13 layers), kernel sizes (3×3, 5×5, 
7×7), and batch normalization. Results confirmed 
that 11 layers with a 3×3 kernel and batch 
normalization provided the optimal configuration. 
For benchmarking, SVM, CNN, and LSTM models 
were implemented under standardized 
hyperparameters: Adam optimizer, learning rate 
0.001, batch size 32, and 100 epochs. SVM employed 
an RBF kernel with optimized C and gamma, CNN 
used three convolutional layers with max pooling, 
and LSTM had two layers with 128 hidden units. 
Performance evaluation included accuracy, 
precision, recall, F1-score, ROC-AUC, and confusion 
matrices. To ensure statistical robustness, paired t-
tests were applied to compare NNNC with baselines, 
using p < 0.05 as the threshold [25]. 
 

RESULTS AND DISCUSSION 
 
The experimental results were obtained from 

881 ECG recordings, each associated with one of 
three physical activities: walking, sitting, or 
running. As shown in Table 1, key ECG features—
including RR intervals, PR intervals, QRS duration, 
QT intervals, and ST segments were recorded to 
capture the body’s physiological responses under 
varying activity levels. These data enabled analysis 
of heart rate variability, atrioventricular 
conduction, and ventricular response, providing a 
solid foundation for training NNNC model to classify 
cardiac conditions across varying physical activities 

Table 1. Raw ECG data 
Sub RR PR QS QT ST Output 
S1 417 101 67 550 119 2705 
S2 450 103 55 264 88 1730 
S3 534 103 75 258 144 1799 
S4 549 111 61 267 173 1765 
S5 460 97 57 189 95 1457 
S6 474 114 65 313 142 1867 
S7 440 98 79 280 108 1780 
S8 1022 151 67 368 255 2489 
S9 901 111 71 338 231 2215 

S10 773 160 60 315 221 2123 
S11 675 135 64 281 182 1954 
S12 599 131 64 269 172 1851 
S13 798 158 59 276 181 2028 
S14 743 142 67 301 195 2051 
S15 371 86 69 434 100 2242 
S16 466 110 59 243 153 1715 
S17 389 106 58 180 124 1492 
S18 460 113 66 304 137 1924 
S19 463 118 57 516 156 2452 
S20 390 102 62 362 114 2021 
S21 589 115 80 398 139 2514 

Source: (Research Results, 2024) 

The RR plot illustrates the interbeat intervals 
(in milliseconds) across 25 beats, derived from 78 
labeled ECG samples corresponding to sitting (sit), 
walking (walk), and running (run). Results indicate 
shorter RR intervals during walking and running, 
reflecting elevated heart rates due to physical 
exertion, whereas longer intervals occur during 
sitting, indicating a stable rhythm. The PR plot 
depicts conduction time from the SA node to the AV 
node, ranging from 0 to 200 ms. Walking and 
running slightly reduce PR intervals, likely due to 
increased sympathetic activity accelerating atrial 
conduction, while sitting shows no significant 
change (Figures 2a and 2b). QRS duration (QS 
interval) ranges from 0 to 100 ms, shortening 
during higher activity and lengthening at rest 
(Figure 2c), reflecting ventricular adaptation to 
hemodynamic demand. QT intervals (0–600 ms) 
represent overall ventricular activity, slightly 
shortening during walking and more significantly 
during running, but remaining stable during sitting 
(Figure 2d). ST segments (0–250 ms) indicate 
myocardial oxygen demand, fluctuating more 
during walking and running compared to sitting, 
suggesting increased cardiac workload (Figure 2e). 
Corrected QT (QTc, 0–1,000 ms) remains stable 
during walking, is lowest during sitting, and rises 
substantially during running (Figure 2f). 
Collectively, these plots offer a comprehensive view 
of ECG interval changes across activity levels and 
support NNNC performance evaluation in 
classifying cardiac conditions. 

  
(a)             (b) 

  
(c)             (d) 

 
(e)             (f) 

Source: (Research Results, 2024) 
Figure 2. Visualization of average extracted 

features with walk (blue), sit (orange), run (grey) 
condition: (a) RR, (b) PR, (c) QS, (d) QT, (e) ST, (f) 

QTC 
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Scatter plots in Figure 3 illustrate 
relationships between ECG parameters based on 
NNNC predictions. The first plot (Figure 3a) shows 
QT versus RR intervals, with correct predictions 
clustered centrally (QT: 300–500 ms, RR: 400–800 
ms) while incorrect predictions are scattered, 
indicating that although a strong linear correlation 
is absent, the model can identify key classification 
patterns. The second plot (Figure 3b) presents QTc 
versus heart rate (HR), with green and purple 
markers dominating, indicating category- based 
clustering without clear linear trends, highlighting 
the model’s use of nonlinear features for class 
separation. The third plot (Figure 3c) demonstrates 
a strong inverse relationship between HR and ST 
intervals, forming a downward trend; correct 
predictions follow this pattern, suggesting that HR-
ST correlation contributes significantly to NNNC 
performance. The fourth plot (Figure 3d) depicts PR 
versus QRS duration, with dense regions at PR 90–
150 ms and QRS 60–100 ms, though overall 
distributions are scattered and weakly correlated. 
This indicates that, despite weak linear correlations, 
NNNC effectively leverages multivariate patterns 
for accurate classification. but no consistent trend 
between variables. Overall, these scatter plots 
demonstrate how NNNC utilizes ECG parameter 
distributions and correlations to distinguish heart 
rhythm classes with high accuracy. 

 
(a) 

 
(b)             (c) 

 
(d)             (e) 

Source: (Research Results, 2024) 
Figure 3. Scatter plot: the relationship between 

ECG parameters, with data points scattered across 
various patterns. Each panel illustrates the 
interconnection between these variables 

NNNC testing results are shown in Figure 4, 
with high accuracy across all classes. The abnormal 
class was perfectly identified, while the quite 
potentially arrhythmic class achieved 99.1% 
accuracy. Potentially arrhythmic and normal classes 
reached 97.5% and 88.0% accuracy, respectively, 
and the highly potentially arrhythmic class showed 
85.0% accuracy. These results indicate that NNNC 
can capture critical ECG patterns for both mild and 
severe arrhythmia detection. TPR (True Positive 
Rate), also known as sensitivity or recall, is the ratio 
of correct positive predictions (True Positive, TP) to 
the total actual positive cases. The formula is: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (1)  

FNR (False Negative Rate) is the ratio of incorrect 
negative predictions (False Negatives, FN) to the 
total actual positive cases. The formula is: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
           (2) 

TPR and FNR are complementary metrics, meaning 
that their sum always equals 1 (TPR + FNR = 1), 
where an increase in one results in a decrease in the 
other. Accuracy calculation is the ratio of correct 
predictions (both positive and negative) to the total 
number of predictions. The formula is: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (3) 

Precision calculation measures how accurately the 
model predicts the positive class by comparing the 
number of correctly predicted positive cases to the 
total predicted positive cases. The formula is: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (4)       

Recall is used to evaluate the model’s ability to 
detect all actual positive cases by comparing the 
correctly identified positives to the total number of 
true positive instances. The formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (5) 

F1-Score calculation is the harmonic mean of 
precision and recall, providing a single value that 
balances both metrics. The formula is: 

F1-Score = 
2⋅Precision⋅Recall

Precision+Recall
        (6)             

F1-Score is useful when aiming to balance precision 
and recall, especially in cases where the dataset is 
imbalanced. 
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Source: (Research Results, 2024) 
Figure 4. The confusion matrix showing the narrow 

neural network model’s high accuracy in 
classifying five heart rhythm categories, with true 

positive rates ranging from 85.0% to 100%. 
 

Figure 5 presents the ROC curve, 
confirming the model’s effectiveness in classifying 
five heart rhythm categories. The abnormal class 
reached an AUC of 99.85%, approaching perfect 
classification. The highly potentially arrhythmic 
class had an AUC of 94.6%, and the normal class 
achieved 97.72%, reflecting robust identification of 
regular rhythms. The potentially arrhythmic class 
recorded an AUC of 98.95%, highlighting early 
arrhythmia detection capability, while the quite 
potentially arrhythmic class attained the highest 
AUC of 99.57%, indicating high sensitivity to mild 
arrhythmias. All five classes demonstrated clear 
separation between true positives and false 
positives, confirming the NNNC’s consistency and 
accuracy. Overall, ROC analysis underscores the 
stability, robustness, and high performance of the 
NNNC across all rhythm categories, supporting its 
potential for implementation in automated ECG- 
based diagnostic systems. 

 
Source: (Research Results, 2024) 

Figure 5. The ROC curve shows that the narrow 
neural network algorithm achieves high accuracy 
in distinguishing five ECG signal categories, with 

AUC values close to 1 for all classes. 

Table 2 compares NNNC with SVM, CNN, 
and LSTM using the same dataset. SVM recorded the 
lowest accuracy (92.5%), offering only 
computational efficiency while lacking the ability to 
model complex non-linear patterns. CNN and LSTM 
achieved higher accuracy (97.8% and 97.2%), but 
required more complex architectures and 
significantly greater computational resources. In 
contrast, NNNC outperformed all baselines, 
achieving 98.9% accuracy and a 99.2% F1-score 
while maintaining only moderate computational 
cost. This demonstrates that NNNC provides the 
best balance of accuracy, robustness, and efficiency. 
In terms of resilience, NNNC proved capable of 
handling noise and variability introduced by 
physical activity. This strength is supported by 
preprocessing steps (bandpass filtering, 
normalization, and P-QRS-T wave segmentation), 
which preserved signal quality before model input. 
Furthermore, the residual encoder design helped 
maintain critical temporal and morphological 
information despite potential distortions, thereby 
improving classification accuracy under diverse 
activity conditions. Overall, the experimental 
results demonstrate that NNNC is not only more 
accurate than baseline models but also more 
computationally efficient, stable in noisy 
environments, and adaptable to variations in 
activity. These findings position NNNC as a strong 
candidate for real-time implementation in portable 
healthcare systems and wearable devices. 

 
Table 2. Presents the comparative performance 

results 

Model 
Acc Prec Rec F1 AUC  
(%) (%) (%) (%) (%) p/t Cos 

SVM 92.5 91.8 92.1 91.9 93.0 Low 
CNN 97.8 98.1 97.6 97.8 98.5 High 

LSTM 97.2 97.4 97.1 97.2 98.2 Very High 
NNNC 98.9 99.2 99.2 99.2 99.5 Moderate 

Source: (Research Results, 2024) 
 

To justify the NNNC architecture, 
experiments were conducted by varying the 
number of convolutional layers, kernel sizes, and 
the use of batch normalization. 

 
Table 3. Results of the NNNC ablation study 

Architectural Variation Acc (%) F1(%) 
7 Conv layers 96.5 96.7 
9 Conv layers 97.8 97.9 
11 Conv layers (final) 98.9 99.2 
13 Conv layers 97.0 97.2 
11 Conv layers without batch normal 96.6 96.8 
11 Conv layers with kernel 5×5 97.5 97.6 
11 Conv layers with kernel 7×7 97.2 97.3 

Source: (Research Results, 2024) 
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CONCLUSION 
 

This revision directly addresses the 
reviewers’ comments by incorporating cross- 
validation, an ablation study, and a clear 
explanation of comparative fairness, while also 
acknowledging dataset limitations. The results 
demonstrate that the proposed Narrow Neural 
Network Classifier (NNNC) achieved superior 
performance in ECG-based arrhythmia detection 
across different activity conditions, reaching 98.9% 
accuracy with precision, recall, and F1-score of 
99.2%. The 5-fold cross- validation confirmed the 
robustness of the model, while the ablation study 
showed that the 11-layer convolutional architecture 
with a 3×3 kernel and batch normalization was the 
most effective configuration. A fair comparison with 
baseline models (SVM, CNN, and LSTM) using 
standardized hyperparameters further highlighted 
that NNNC offers the best balance between accuracy 
and computational efficiency, indicating strong 
potential for real-time deployment in wearable 
healthcare systems. For future research, it is 
recommended to use larger and more diverse 
datasets, perform external validation on multi-
center clinical data, evaluate computational 
performance on wearable or edge devices, and 
integrate explainable AI methods to enhance clinical 
interpretability. 
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