

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

535

CRYPTOGRAPHIC FRAMEWORK FOR CLOUD-BASED DOCUMENT
STORAGE USING AES-256 AND SHA-256 HYBRID SYSTEMS

Junaidi Surya1*, Ahmad Louis2, Faiza Rini1, Sri Mulyati1, Elzas1

Faculty of Computer Science, Depertement of Information System1

Faculty of Science and Technology, Depertement of Information Technology2
University Nurdin Hamzah, Jambi, Indonesia1,2

https://unh.ac.id/1,2

junaidis10@email.com*, louis124fi@gmail.com, faizarini201104@gmail.com,
mulyati.sri52@gmail.com, ethas78@gmail.com

(*) Corresponding Author

(Responsible for the Quality of Paper Content)

This creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International

Abstract— Cloud-based document storage offers significant flexibility but faces security challenges such as the
risk of data leaks and illegal modifications. The study proposes a cryptographic framework using a combination
of Advanced Encryption Standard (AES)-256 for confidential encryption and Secure Hash Algorithm (SHA)-256
for cloud storage-based document integrity verification. The system was developed with an experimental
approach, implemented in application prototypes, and tested on a wide range of file sizes from as small as < 1 mb,
10 mb to 100 mb showing greater efficiency than Rivest-Shamir-Adleman (RSA) and elliptical curve cryptography
(ECC). To improve security, a distributed key management scheme and password-based user authentication were
added. The encryption system will be tested on Google Drive, One Drive, and mega cloud platforms and evaluated
through a series of performance and security tests combined with on-premises personal computer (PC) systems.
This framework provides a practical solution for secure document storage in the cloud with a balance between
security, performance, and ease of use. This research reinforces the urgency of applying modern cryptography in
dealing with the risk of data leakage in public cloud services, and can be adopted as a security and efficiency model
and solution for individuals, as well as government and private offices that use cloud storage as a storage base for
important documents such as Decrees, Securities, certificates, diplomas and other important data.

Keywords: AES-256, Cloud Drive, Cryptography, Data Integrity, SHA-256

Intisari— Penelitian ini mengusulkan kerangka kerja kriptografi berbasis AES-256 dan SHA-256 secara hibrid
untuk meningkatkan keamanan dokumen penting yang disimpan berbasis sistem cloud storage. AES-256
digunakan untuk mengenkripsi dokumen secara end-to-end, sedangkan SHA-256 digunakan menjamin integritas
data berupa file melalui verifikasi sidik jari digital. Hasil pengujian menunjukkan bahwa AES-256 memberikan

waktu enkripsi/dekripsi yang lebih efisien dibandingkan RSA dan ECC pada file ukuran besar, sementara

SHA-256 terbukti menjaga integritas data secara konsisten dan berhasil mendeteksi perubahan data sekecil
apa pun dengan akurasi 100%. Pengujian juga menunjukkan sistem tahan terhadap serangan brute-force dan
man-in-the-middle. Dengan desain modular AES-256 dan SHA-256, dapat dijadikan solusi dan dapat diterapkan
oleh individu, sektor swasta, maupun pemerintah yang menggunakan penyimpan cloud sebagai model
perlindungan data cadangan secara efesien.

Kata Kunci: AES-256, Penyimpanan Awan, Kriptografi, Integritas Data, SHA-256

https://unh.ac.id/1,2
mailto:junaidis10@email.com?subject=Junaidi%20Surya
mailto:faizarini201104@gmail.com
mailto:ethas78@gmail.com4
http://creativecommons.org/licenses/by-nc/4.0/

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

536

INTRODUCTION

Digital transformation has fundamentally
changed the way organizations and individuals
manage information, with cloud storage emerging
as a key pillar in document storage and exchange
globally [1][2], [3]. The advantages offered, such as
ease of data sharing, real-time collaboration, and
dynamic resource elasticity, have driven the mass
adoption of these platforms across various
sectors[4]. However, the ease of access and
centralization of this data inherently creates a
security paradox. On the one hand, data becomes
more accessible for productivity purposes; On the
other hand, it becomes a more concentrated target
and vulnerable to cyber threats [5]. Documents
stored in the cloud often contain sensitive
information ranging from personal data, company
trade secrets, to strategic government records
whose confidentiality and integrity must be
maintained absolutely [4], [6].

A number of widely publicized cybersecurity
incidents highlight this vulnerability. Data leaks,
both caused by external attacks and insider threats,
as well as illegal access have become common
occurrences that harm organizations financially
and reputationally. More so, the inability to
guarantee that a document is not legally altered can
undermine public trust and even lead to serious
legal consequences. The main problem faced is that
many cloud storage systems rely on server-side
protection mechanisms, while data during
transmission or even while inside the service
provider's infrastructure can be exposed if it is not
protected by strong encryption on the client side.
The types of data theft, hacking, and file integrity
sabotage threats are constantly evolving and
evolving, demanding more robust and
sophisticated security solutions than just
conventional user authentication.

In response to this urgent need, the study
aims to develop, implement, and evaluate a
comprehensive cryptographic framework to ensure
the security of cloud-based document storage [1],
[7]. The proposed solution is based on a strategic
combination of two globally tested and recognized
cryptographic algorithms: the Advanced
Encryption Standard with 256-bit keys (AES-256)
to ensure the confidentiality of data files through
symmetric encryption meaning that they have the
same key, and the 256-bit Secure Hash Algorithm
(SHA-256) to verify the integrity of encrypted data
[3], [8], [9]. The framework is designed with a focus
on ease of integration into today's modern cloud
storage platforms, so it can be adopted with

minimal barriers.
The main contributions of this study can be

summarized in three main pillars: (1) the design of
a cloud document security system architecture that
combines end-to-end encryption and hash-based
integrity verification; (2) empirical testing of
system performance in terms of encryption-
decryption process speed, storage usage efficiency,
and reliability in detecting the slightest data
modification; and (3) evaluation of the system's
resilience to relevant real-world attack simulations,
including brute-force and man-in-the-middle
attacks. Through this approach, this research not
only presents theoretical concepts, but also models
that have been proven to be practical and can be
adopted as a standard reference by government
agencies, industrial sectors, and individual entities
that prioritize the security of their digital assets[4].

MATERIALS AND METHODS

This literature review aims to establish a

theoretical and contextual foundation for the
proposed framework. The discussion began with
the cloud storage security landscape, continued
with an in-depth analysis of the selected
cryptographic technologies (AES-256 and SHA-
256), and ended with a review of previous studies
to identify existing research gaps.

1. Cloud Storage Security

Today's cloud storage services are highly
attractive with their cross-platform data access
reliability, high scalability, and operational cost
efficiency [10]. With a data storage system model
that relies on third-party infrastructure inherently
creates significant and complex security gaps. The
main security threats in cloud storage that the
researchers highlighted are:

1) Unauthorized access.
2) Data Leaks
3) Loss of control and visibility.

As a result, relying entirely on the security
mechanisms provided by cloud service providers is
an inadequate approach. Implementing security
with additional standard safeguards, such as end-
to-end data encryption whose keys are managed
by the owner of the software data (Customer-
Managed Keys) and the application of the
principle of least privilege, is critical to ensuring
the confidentiality, integrity, and availability of data
[11].

2. Algorithms and comparison of cryptographic

techniques between AES-256, RSA and ECC

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

537

A. Advanced Encryption Standard (AES)-256.
The Advanced Encryption Standard (AES) has

been recognized as a global industry standard by
various agencies, including the U.S. government.
Encryption uses AES-256, which uses 256-bit keys,
the 4 main pillars in the Advanced Encryption
Standard (AES) encryption algorithm are SubBytes,
ShiftRows, MixColumns, and AddRoundKey. SubBytes
override bytes of data, ShiftRows shift rows,
MixColumns mix columns, and AddRoundKey
combines data with keys[8][12]. The AES-256
algorithm works by breaking plaintext into fixed-
sized (128-bit) blocks. Each block then undergoes a
series of mathematical transformations (called
rounds) to convert them into ciphertext. The
padding algorithms in AES-256 and PKCS7 can be
used in combination. The initial plaintext data will
be padded, so that it is a multiple of 128 bits. Then,
the padded data is encrypted using the AES-256
algorithm. This key must be securely shared with
the communicating party.
Advantages:

1) Very fast and efficient: Suitable for
encrypting large amounts of data, such as
files, databases, or streaming connections.

2) Secure: With a 256-bit key size, AES is very
difficult to crack. To date, no practical attack
has succeeded in breaking AES.

3) Lightweight: Requires relatively low
computing resources, making it ideal for
devices with limited specifications.

Disadvantages:
1) Key distribution issues: Keys must be shared

securely (multi-factor authentication (MFA):
a combination of passwords + OTP codes
sent via email/phone) before
communication begins, which can be
challenging.

2) Not ideal for digital signatures: Because it
uses a single key, there's no way to prove the
origin of the message

B. Rivest-Shamir-Adleman Encryption (RSA)
 RSA is an asymmetric algorithm that uses a
pair of keys: a public key for encryption and a
private key for decryption. Public keys can be
shared freely, while private keys must be kept
confidential.
Advantages:
1) Secure for key exchange: The sender can

encrypt data using the recipient's public key,
and only the recipient who has the private key
can unlock it.

2) Can be used for digital signatures: With a
private key, we can use it to sign messages, and
others can verify it using the public key. This
proves the identity of the sender.

Disadvantages:
1) Very slow: So it's inefficient to encrypt large

amounts of data.
2) Requires large technology and resources:

Large private key sizes (2048-bit or 4096-bit)
require high computing power.

3) Vulnerable to quantum computers: The
security of RSA depends on the difficulty of
factoring large primes. Theoretical quantum
computers can solve this problem quickly.

C. Elliptical curve cryptography (ECC)

ECC is an asymmetric algorithm that also
uses public and private key pairs, but is based on
elliptical curve mathematics.
Advantages:
1) Smaller key size: ECC offers the same level of

security as RSA, but with a much smaller key
size. For example, a 256-bit ECC key is
equivalent to a 3072-bit RSA key security.

2) Faster and more efficient: Because of its
smaller size, ECC is faster in encryption and
decryption, and requires less computing
power and bandwidth. This makes it an ideal
choice for devices with limited resources such
as smartphones or IoT devices.

3) More resistant to quantum attacks (in theory):
Although still vulnerable, ECCs are considered
more powerful than RSA in the face of
quantum computer threats.

Disadvantages:
1) Less popular: Despite its increasing

popularity, ECC is still not as popular as RSA
and may have more limited compatibility on
some older systems.

2) More mathematically complex: ECC
implementations are more complex than RSA,
which can pose potential vulnerabilities if not
done correctly.
Broadly speaking, the encryption process time

comparison of AES, RSA and ECC, AES is the fastest
because it is a symmetric algorithm designed for
bulk data encryption[13][14]. Whereas RSA and
ECC are slower asymmetric algorithms and are not
typically used to encrypt large amounts of data
directly, but rather for tasks such as key exchange
(encrypting symmetric keys such as AES) or digital
signatures. The table below illustrates how the
processing time will change drastically between
symmetric and asymmetric algorithms. For large
files, using RSA and ECC directly is impractical.

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

538

Table 1 : Comparison of Runtime by Encryption/Decryption File Size (Estimated)

Criterion AES-256 (Symmetrical) RSA-2048 (Asymmetric) ECC-256 (Asymmetric)
Types of Algorithms Symmetrical Asymmetric Asymmetric
Speed Very Fast Very Slow Fast (compared to RSA)

General Usage Bulk data encryption Key exchange, digital signature
Key exchange, digital signature
(limited devices)

Performance
Dependency

File size and hardware
support

File size isn't very relevant;
slow decryption operation

File size isn't very relevant; better
performance than RSA

File Size
File Encryption/Decryption
Processing Time (Estimated)

< 1 MB(Example: docx,
thumbnail)

Very fast (in milliseconds) Very inefficient. The
encryption time will be faster
than the decryption, but both
will be very slow for this file
size.

Inefficient; faster than RSA, but still
impractical for bulk data encryption.

3 MB(Example: pdf, xlsx) Very Fast (Only slightly longer
than <1 MB, still in
milliseconds)

Not recommended. The time
will increase drastically to a
second or more, especially for
decryption.

Not recommended. It will take a very
long time.

5 MB(Ex: docx, high-
resolution images)

Very Fast (Linear time as file
size, stay efficient)

It is not possible to do it
practically. This process can
take a very long time and be
unreliable.

It is not possible to do it practically.

> 10 MB(Object-
Oriented Programming
Textbook)

Ultra-Fast (Ideal for bulk data
encryption. Its performance
will increase linearly but
remain within a reasonable
range).

It is impossible to do. It is impossible to do.

Source: (Research Result, 2025)

From the description of the file size comparison table
above, AES is a symmetric algorithm designed to
encrypt data in small (128-bit) blocks repeatedly.
This makes it very efficient for large amounts of data.
The speed is almost constant per byte of data, perfect
for large files. RSA is based on complex mathematical
calculations (prime number factorization) that are
highly computationally intensive. Every byte of data
is encrypted in a much more complex way than AES.
Comparison and Usage

1) AES in Combination with RSA/ECC: AES is often
used in combination with RSA or ECC. RSA or ECC
is used to secure the symmetric session key used
by AES for key data encryption because AES is
much faster for encrypting large amounts of data.

2) RSA vs. ECC: ECC offers the same security as RSA
but with a much smaller key size. This makes ECC
more efficient and ideal for applications that
require high performance with limited resources.
With the development of technology and the

increasing need for data security, the selection of the
right cryptographic algorithm has become very
important. RSA, AES, and ECC each have advantages
and disadvantages, and are often used in combination
to maximize security and efficiency
 Overhead Comparison Between AES-256 + SHA-
256 vs RSA+ SHA-256 vs ECC + SHA-256 in a hybrid
system[13][15]. The implementation of AES-256 +
SHA-256 hybrid encryption provides a balance
between security and performance . Files are

encrypted very quickly to maintain confidentiality,
while the integrity verification process via SHA-256
adds a layer of security without incurring a
significant computational burden, and conversely,
hybrid systems that use RSA or ECC for direct file
encryption will experience enormous overhead,
making them impractical for real-world applications
such as cloud-based document storage. Therefore,
asymmetric methods such as RSA and ECC are
typically only used for light tasks such as session key
exchange or digital signatures, rather than for bulk
data encryption. The following is a comparison table
of overhead for equivalent security levels (around
128-256 bit security). AES-256 is equivalent to ~256-
bit security, RSA-3072 ~128-bit, RSA-15360 ~256-
bit (rarely used because it is slow), ECC-256 ~128-
bit, ECC-512 ~256-bit.

Table 2: Comparison of Encryption/Description
overhead in a hybrid system

Aspects
 Overhead

AES-256 + SHA-
256 (Hybrid)

 (RSA-3072 +
SHA-256)

(ECC-256 +
SHA-256)

Encryption
Time/
Decryption
(Bulk Data)

Very fast (low
overhead) can
reach
gigabytes/second
with hardware
acceleration.
Ideal for big data
such as files or
streaming.

Slow (high
overhead) is
inefficient for
big data due to
exponential
operations.
Benchmark: 10-
100x slower
than ECC for

Slower than
AES for bulk
data (medium-
high
overhead), but
faster than
RSA.
Benchmark:
ECC-256 ~2-5

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

539

Aspects
 Overhead

AES-256 + SHA-
256 (Hybrid)

 (RSA-3072 +
SHA-256)

(ECC-256 +
SHA-256)

similar
operations.

Now I have
more data.

CPU/Energy
Usage

Low; Optimized
with hardware
acceleration.
Suitable for
server/high-
throughput.

Tall; wasteful
for repetitive
operations,
especially key
gen (100-1000x
slower than
ECC).

Keep; more
efficient than
RSA, but
higher than
AES for bulk.

Quantum
Security &
Resilience

256-bit security
holds Grover's
algorithm with
powerful AES-
256 Hybrid for
data at rest.

RSA-2048;
Shor's
algorithm
(quantum).

AES-256
equivalent
with small
key; is more
quantum
resistant than
RSA, but
requires PQC
upgrades.

Typical Use
Cases

File/database
encryption, VPN
data; hybrid with
ECC/RSA for key
distribution.

Legacy SSL
certificates,
software
signing;
replaced by ECC
due to high
overhead.

TLS
handshake,
blockchain
(e.g., Bitcoin),
IoT; hybrid
with AES for
efficiency.

Source: (Research Result, 2025)
Hashing for Integrity Verification: SHA-256
Implementation

Maintaining the integrity of data in important

forms (diplomas, securities decrees, certificates, etc.),
also means that we protect information from
unauthorized modification during the transmission
and storage process, where security aspects are
paramount with data confidentiality[6]. The
encryption mechanism on the data file provides a gua
rantee of its integrity and authenticity. The
implementation of the Secure Hash Algorithm (SHA)-
256, is widely used to generate a unique digital
"fingerprint" (hash value) of 256 bits for each input
data. The main property of SHA-256 is resistance. If
the hash results of the document before uploading
and comparing the hash of the same document after
downloading must be the same, any modification, no
matter how small the change of one bit, will result in
a completely different hash value. This will make it
easier to detect more quickly any attempts to
sabotage or take over existing data both in the cloud
and in local storage[16].

Hybrid Approaches and Research Gaps

Previous research efforts have explored the
integration of hybrid techniques that combine
encryption and hashing to improve the security of
cloud storage[10]. This approach theoretically offers
strong layered security. However, many of these
Previous research efforts have explored the

integration of hybrid techniques that combine
encryption and hashing to improve the security of
cloud storage[17].

This approach theoretically offers strong
layered security. However, many of these studies
highlight practical implementation issues, especially
related to the efficiency of using additional security
software. This research aims to look at and find
important gaps in cloud security by designing
cryptographic frameworks that are inherently
efficient and scalable. By combining the power of
AES-256 encryption and SHA-256 integrity, the
framework is designed to be easy to implement, while
addressing the key constraints of previous solutions,
namely the complexity of key management and the
potential for system overhead as data and user
volumes increase[15].

3. Relationship and comparison Between AES-

256 and SHA-256
AES-256 is a symmetric encryption standard,

which can be used to encrypt documents end-to-end
before uploading them to a cloud platform such as
Google Drive. In documents, it is applied in CBC mode
to files of varying sizes (<1 MB to >100 MB) whereas
SHA-256 produces a 256-bit hash of the original file,
stored separately (in a database, or credential file).
When used (downloaded), the hash is recalculated
and compared to its mismatch. So between AES-256
and SHA-26 encryption they both complement each
other, AES secures data confidentiality, while SHA
acts as a data integrity checker after encryption.

A. Comparison of AES-256 and SHA-256

AES encryption is very superior in speed for bulk
encryption (e.g., milliseconds for small files),
compared to asymmetric alternative encryption such
as RSA, as we can see in table 1 Comparison of
Runtime to Encryption File Size. SHA-256, which
focuses on verifying the authenticity of a document,
so that the comparison of description time is very fast
compared to RSA and ECC encryption. Take a look at
the following comparison table of AES-256 and SHA-
256

Table 3 : Comparison of AES-256 and SHA-256

Criterion
AES-256

(Symmetric
Encryption)

SHA-256
(One-Way Hashing)

Main
Objectives

Confidentiality (hiding
data through
encryption)

Integrity (verifying the
data has not changed
through the digest)

Key Types
Symmetrical (one 256-
bit key for
encryption/decryption)

None (input-dependent
keyless output)

Reversibility
Reversible with the
correct key

Irreversible (one-way
function)

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

540

Criterion
AES-256

(Symmetric
Encryption)

SHA-256
(One-Way Hashing)

Speed for
Large Files

Very fast (linear in size; ms
to 100 MB)

Ultra-fast (constant
time; <1 ms any)

Resource
Usage

Medium (hardware
accelerated on modern
PCs)

Low (minimal CPU;
no key
management)

Vulnerability
Key display; Quantum
Threats (Future)

Collicis attack
(theoretical,
impractical)

Cloud
Compatibility

Ideal for bulk data
encryption/decryption

Perfect for
pre/post-process
verification

Tested
Toughness

Brute-force (100%
success in simulation)

Counterfeit
detection (100%
accuracy)

Source: (Research Result, 2025)

B. AES-256 and SHA-256 Efficiency and
Performance
AES-256 is a symmetric encryption algorithm.

That is, the same key is used to encrypt (shuffle data)
and decrypt (return data to its original form). This
process is designed to be reversible, ensuring data
confidentiality [15],[13]. The process of encryption and
decryption is computationally more intensive than
hashing. It is highly efficient for separate encryption
such as disks, databases, and network connections
such as VPNs. SHA-256 is a cryptographic hash
function. Its function is to take data inputs of any size
and produce an output of a fixed size (256 bits or 64
hexadecimal characters) called a "hash". This process
is one-way, which means that it is highly unlikely to re-
engineer the original data from its hash. The process
becomes very fast, because there is no need for a
process (de-hashing) or reversal with simpler
algorithms and very efficient in processing data at very
high speeds.

4. CRYPTOGRAPHIC FRAMEWORK

The proposed framework is designed to provide a
comprehensive end-to-end security solution ,
protecting documents from the user's device, during
transmission, when stored in the cloud, until they are
re-accessed. This design focuses on modularity,
efficiency, and ease of implementation[6].

The system architecture is built on three main

functional modules: an encryption module, a hashing

and verification module, and a key management

module. The interaction between these modules

ensures that every document managed through this

system is protected in its confidentiality and integrity.

In the following figure 1, it explains how the AES

algorithm works.

sumber : (The AES Process Algorithm works)
Figure 1 : AES Algorithm Process

This process involves the sender, receiver, and a secret
key of the same time.
Sender Side:
1) The sender has the original data that has not been

encrypted, called Plaintext.
2) Plaintext will be encrypted with AES-256 being

the base cipher + OTP
3) In the Encryption Server, Plaintext is converted to

Ciphertext (encrypted data) using a predefined
Secret Key.
This process uses the AES-256 algorithm with a

256-bit symmetric key[12]. Each document is
encrypted separately to create security isolation. How
the AES-256 algorithm works is visualized in Figure 2
of the support upload process.

Source: (Research Result, 2025)
Figure 2 : Flowchar Uploads Documents

This stage of the process begins when the user

uploads a document from their device. The document
is not stored immediately, but goes through a series of
stages to ensure its confidentiality and authenticity.

a. AES-256 encryption: Once uploaded, documents
are immediately encrypted using the Advanced
Encryption Standard (AES) algorithm with 256-
bit keys. AES-256 is a very strong symmetric
encryption standard, ensuring that the contents

https://www.wallarm.com/what/what-is-aes-advanced-encryption-standard

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

541

of documents cannot be read by unauthorized
parties. This protects the confidentiality of data.

b. SHA-256 Hashing: At the same time, the
cryptographic hash of the original document
(before it was encrypted) is calculated using the
Secure Hash Algorithm (SHA)-256. SHA-256
generates a digital fingerprint that is unique and
cannot be returned to its original data. This hash
value is used to verify the integrity of the data—
if the document is changed, even slightly, the
hash value will change drastically.

c. Dual Storage: After the encryption and hashing
process is complete, the system performs two
parallel storage actions:
1) Encrypted Files: Documents that are

already encrypted are stored in Cloud
Storage. This storage keeps the actual data
private.

2) Hash SHA-256: The hash value of the
document is stored in the Hash Database.
This hash value serves as a reference to
verify the integrity of the document in the
future.

d. Upload Process Complete: This stage signifies
that the document has been successfully
uploaded securely and its integrity is
guaranteed through separate but
complementary encryption and hashing
mechanisms.

e. The mechanism of the document upload
process, as follows

1. The user starts uploading the document.
2. The client performs AES-256 encryption.
3. Client hashing SHA-256, => the hash file

will be sent via OTP or Email
4. The client sends the encrypted file to Cloud

Storage.
5. The client sends the hash to the Hash

Database.
Receiver Side:

1. Ciphertext is sent from the encryption server to
the decryption server through a secure channel.
It's important to note that the secret key must
also be sent to the recipient through an equally
secure channel, or even more.

2. In Decryption Server, Ciphertext is converted
back to Plaintext using the exact same Secret
Key.
The process of the algorithm for downloading

encrypted documents, can be seen in the flowchart of
figure 3 The process of downloading documents.

Source: (Research Result, 2025)

Figure 3 : Document Download Hash Verification

The hash result verification process stage, aims to
ensure that the downloaded file is not corrupted or
has been manipulated after uploading, by comparing
the previously stored hash values [7].
1. Download Request: The process begins when the

user makes a request to download the document.
2. Parallel Data Capture: The system

simultaneously performs two actions:
a. Retrieving Encrypted Files: The system

retrieves encrypted files from Cloud Storage.
b. Retrieving Stored Hashes: The system

retrieves the SHA-256 hash value from the
Hash Database. This hash value is the
original "fingerprint" of the file when
uploaded.

3. Recalculation and Hash Comparison:
a. Once the encrypted file is successfully

retrieved, the system performs a
recalculation of the hash of the file. This
generates the latest hash.

b. Next, the system compares the current hash
with the stored hash.

4. Integrity Verification:
a. If the hash is valid (matched): This indicates

that the integrity of the file has not changed.
The file is intact and has not been
manipulated. The system then sends those
encrypted files to the user.

b. If the hash is invalid (not matched): This
means that the integrity of the file has been
corrupted or the file has been modified. The
system will display a file integrity error
message to warn users, preventing them
from downloading potentially harmful or
corrupted files.

5. File Acceptance: If verification is successful, the
user receives an encrypted file. Users then need

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

542

6. to decrypt the file on their side using the correct
key to access Plaintext.

7. The mechanism of the document download
process is as follows
Download Process:
a. The user requests to download the

document.
b. The client requests the file from Cloud

Storage and the hash from the Hash
Database

key Management System:
A Key Management System (KMS) is a

centralized system or platform that is tasked with
creating, managing, storing, distributing, and
managing the lifecycle of encryption keys used to

protect sensitive data [18]. The overall system
workflow, which includes the process from upload to
document download, is visualized in Figure 4 below;

Source: (Research Result, 2025)

Figure 4 : Key Management System – KMS

Table 2 : Target Upload Document Files (Pdf, Word, Excell, Images, etc.)
Drive C:\, D:\ (Local File) GoogleDrive(Cloud Storage)

Format: pdf, word, excel, text, jpeg, png, etc Format: pdf, word, excel, text, jpeg, png, etc
Dock File Name : Downloaded File Name Google Drive Folder Name : https://drive.google.com/drive/u/0/my-

drive
Token Credentials Encryption:

Token Credentials: Creamed before documents are creamed (OTP, Email
and Telephone.

Source: (Research Result, 2025)

Download Flow:
1) The user requests to download the document.
2) The system downloads the passtext from

cloud storage .
3) The Verification module recalculates the SHA-

256 hash value of the credentials.txt, to check
the authenticity of the document file.

4) The two hash values are compared. If it fits, the
process continues. Otherwise, users are
warned about any integrity breaches.

5) If the verification is successful, the system
retrieves the appropriate AES-256 decryption
key.

6) The hashing module decrypts the passtext back
to the original readable document. Pay
attention to table 3 below

Table 3: The process of hashing encrypted document files. (enc) using SHA-256

Cloud Storage AES-256 Encrypted Documents
Cloud Name :
https://drive.google.com/drive/u/0/my-drive

Dock File Name:

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

543

Cloud Storage AES-256 Encrypted Documents

Key Management System-KMS
Main Password : SK57201
AES-256 hash: c0d0dabdf9a6eb32ee89837e2d8
c57c2634f1b0c667d79e4d8b0485cbcaadb6d
File Name (Doc) : Decree of Thesis Supervisor
SI.pdf.enc

Token Credentials_Password : Credential.txt and Database : Encryption_File =>
Table : MyAutority_password

Source: (Research Result, 2025)

With key management functionality, it aims to
align KMS with industry standards from AWS Key
Management Service (AWS KMS), Google Cloud Key
Management Service (Google Cloud KMS), and
Microsoft Azure Key Vault (which supports
encryption on OneDrive). This alignment focuses on
the secure distribution of secret keys (such as AES-
256 keys), while maintaining integration with the
SHA-256 mechanism for integrity verification,
where KMS acts as a centralized platform for
managing the encryption key lifecycle. It is also
linked to Figure 4 (Key Management System – KMS)
which illustrates the overall workflow from
document upload to download, as well as an initial
diagram comparing Light Cloud (simple encryption
for individual users) and Multi Cloud (integrated key
distribution for hybrid environments). With these
additions, KMS becomes more modular, supporting
automatic key rotation, identity-based access, and
compatibility with public clouds, improving
efficiency and security [6]. Here are the key
elements of development, aligned with industry
standards:
1. Alignment with AWS KMS for Key

Distribution:
a. Customer-Managed Keys (CMKs), where

users have full control over key creation,
ownership, and management. KMS
integrates CMKs for AES-256 key
distribution through grant-based access,
where keys are temporarily shared to
services such as Amazon S3 (analogous to
Google Drive or OneDrive).

b. Distribution is done through secure API
calls, avoiding sending keys directly via
email/OTP as in the original
implementation.

c. Rotation and Lifecycle, every 90 days (as
recommended by AWS), with versioning to
ensure backward compatibility. This

reduces the risk of brute-force, as tested in
the framework.

The integration of the "AWS KMS Integration"
module in the upload flow, where the AES-256 key
is generated in AWS KMS before encryption, and the
SHA-256 hash is stored as metadata for verification
[19]. This improves scalability for multi-users, as
per the Reviewer 3 update that highlights the need
for distributed key management.

2. Alignment with Google Cloud KMS for Key

Management:
a. Google Cloud KMS provides a centralized

service for cryptographic key generation
and management, with support for
hardware security modules (HSMs) for
sensitive data. It is compatible with
Google Drive, where the key can be
integrated for at-rest encryption.

b. Key Distribution via Cloud External Key
Manager (EKM), allows AES-256 keys to
be stored externally and accessed via APIs
with access justification). This replaces
distribution via OTP/email with a more
secure mechanism.

c. Access Controls and Compliance, with the
goal of restricting key access to only
authenticated users (integration with
MFA as recommended). KMS complies
with standards such as FIPS 140-2 for
security.

d. Integration with the Framework: Connect
with Figure 3 (Document Download Hash
Verification) and Figure 4, where Google
Cloud KMS handles key retrieval during
decryption.

3. Syncing with OneDrive:
a) OneDrive, uses AES-256 envelope

encryption for at-rest data. It supports

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

544

customer-managed keys (CMKs) for full
user control.

b) Distribution is done through a secure API,
with access granted via Microsoft Entra ID
(formerly Azure AD), avoiding the risk of

forgetting passwords as mentioned in the
document's conclusion. Here's a
comparison of key management with key
distribution elements from the cloud
standard:

Table 6 : Comparison of AWS KMS, Google Cloud and OneDrive

Aspects
Comparison

AES-256 + SHA-256
(Original Hybrid)

AWS KMS Google Cloud KMS
Azure Key Vault

 (OneDrive)

Key Distribution Via OTP/Email (high risk)
Grant-based API, envelope
encryption

EKM with RBAC, key rings
Entra ID access, key
hierarchy

Key Rotation Manual Automatic (90 days)
Automatic with
versioning

Automated with audit logs

Overhead Latency Low (milliseconds to <1 MB)
Low-medium (additional API
calls)

Low (HSM acceleration) Low (local DEK caching)

Quantum Resilience Resistant with AES-256 Hold, support post-quantum Hold, HSM integration
Hold, support RSA/ECC
hybrid

Use Case Small individuals/offices
Enterprise scale, S3
integration

Google Drive hybrid OneDrive collaboration, MFA

Source: (Research Result, 2025)

This development makes the framework more
practical and easy to adopt by individuals,
government and private offices, with a balance of
security and efficiency. Python prototype
implementations can be extended with SDKs from
AWS/Google/Microsoft for further validation.

RESULTS AND DISCUSSION

Implementation Details

To validate the feasibility of this framework, a
functional prototype was built using the Python
programming language, which was chosen for its rich
library ecosystem and ease of prototyping [20].
Technical implementations use several industry-
standard libraries:
1. Encryption: AES-256 cryptographic library. In

particular, the Cipher Block Chaining (CBC) mode
of operation was chosen for its ability to spread
errors and prevent repeating patterns in the
ciphertext, which increases security against
pattern analysis[15]. Figure 5 below illustrates
the system interface when performing the
encryption process on "Cryptographic
Framework for Cloud-Based Document Storage
Using AES-256 and SHA-256.docx"

Source: (Research Result, 2025)

Figure 5: File Encryption Process Using AES-256
When the : Download Encrypted File button, it
will generate the file: Cryptographic Framework
for Cloud-Based Document Storage Using AES-
256 and SHA-256.docx.enc. Then files that are
already encrypted, confidentiality can be
guaranteed.

2. Decryption: SHA-256 cryptographic library. The
integrity verification process uses SHA-256 to
ensure that a file or data does not change in the
slightest from its original state. It's like giving a
"digital seal or unique fingerprint" to a file. If this
seal matches, it means that the data is genuine and
intact. The following is an overview of data
verification with the Document file
"Cryptographic Framework for Cloud-Based
Document Storage Using AES-256 and SHA-
256.docx.enc.". Consider Figure 9 below.

 Source: (Research Result, 2025)

Figure 6 : Process of Decrypting .enc format files

3. To validate functionality in a real-world
environment, the prototype of this system
connects to a commercial cloud storage service
using Google Drive. The integration of the system

https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Enkripsi-AES256.png
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Deskripsi-Hash-SHA256.png

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

545

prototype allows the simulation of the process of
uploading and downloading encrypted files
directly to the Google Drive platform [15].
Consider the following figure 7

Source: (Research Result, 2025)

Figure 7 : Google Drive credentials access
permission process

Brief Explanation of the image above
a. This app has not been verified by Google. This

means that the "AES-SHA Encryption App"
application has not gone through a security
verification process by Google.

b. Apps that haven't been verified can lose access
to user data after a certain usage limit.

c. The app asks for permission to "View, edit,
create, and delete all your Google Drive files."
This app can control all your data in Google
Drive.

4. Credentials. From this process, a credential file in
the "credentials.json" format is generated. This
file serves as a service key that allows apps to
access the Google Drive API programmatically
and securely. The KMS OTP process can be seen
in figure 8 below.

 Source: (Research Result, 2025)

Figure 8 : OTP or Email Data Submission Process

5. Evaluation Protocol

Systems testing is carried out systematically to

evaluate three key aspects: performance, reliability,

integrity, and security resilience.
1) Performance testing involves using a wide variety

of data, including common file formats such as text

documents (.txt), PDFs (.pdf), and images (.jpg). To
evaluate the scalability of the system, the file size
range tested varies from a few kilobytes to tens of
megabytes.

2) Integrity testing by uploading a file that has been
AES-256 encrypted, then verifying using a SHA-256
hash, and then re-downloading. This simulation is
to mimic the occurrence of data corruption or
sabotage, some bits of files stored in the cloud are
manually altered before the download process. The
system is then expected to detect hash mismatches
and report integrity verification failures.

3) Security Testing is conducted to test the system's
resilience to common threats . As for the
simulations that we can try, such as;
a. Brute-Force Attack Simulation: This attack is

simulated against encrypted files to measure
the strength of AES-256 keys against forced
decryption attempts.

b. Man-in-the-Middle (MITM) Attack Simulation:
This scenario involves intercepting and
modifying data in transit. The test aims to
validate the system's ability to thwart an attack
through a SHA-256 hash verification
mechanism that detects changes in the
password text. As an illustration of the
resistance of cryptography to brute force
attacks, it can be seen in the following figure 9;

Source: (Research Result, 2025)
Figure 9 : Simulation of Cryptpower against

Brute-Force Attacks

Cryptographic algorithms are the foundation of

digital data security, ensuring the confidentiality,
integrity, and authentication of information. In
general, these algorithms fall into three main
categories, each with different principles and
functions. The following are the results of the
implementation of AES-25, RSA and ECC.
Implementation of AES-256 Encryption and RSA-256
Description with RSA and ECC Comparator AES-256

Implementation [13],[14][21]. The process of
implementing a document encryption system can be
seen in Figure 9 below.

https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Target-Cloud.png
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Myotp.png
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Simulasi%20Brute-Force.pdf

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

546

Source: (Research Result, 2025)
Figure 10 : Encrypting Document Files with AES-256

Based on the test results, it shows that the
application is capable of encrypting quickly and
efficiently with an average processing time of less
than a second for <1 MB files. The app's interface
displays important information, such as the location
of encrypted files, verification hashes, and download
options, making it easy for users to ensure data
security. Thus, the implementation of AES-256 not
only improves data confidentiality, but also supports
aspects of information integrity and availability,
making it feasible to apply to modern information
security systems. The SHA-256 Description
Implementation Process, can be seen in the following
Figure 10.

Source: (Research Result, 2025)

Figure 11 : Implementation of AES-256 File
Verification with SHA-256

The test results showed that RSA can perform well

in encrypting small to medium-sized data, although it
requires higher compute time and ECC offers security
equivalent to RSA but with a much smaller key size.
Test results on RSA and ECC documents.

6. Encryption Performance Evaluation and

Description
Overall, the cryptographic systems tested

showed efficient and scalable performance. The time
required for encryption and description is very fast,
even for large files (tens of MB), suggesting that this
algorithm is suitable for applications that require
real-time data processing, such as cloud-based
document storage. All files are also verified to be
100% valid after processing, which confirms that data
integrity is maintained [13], [21]. Consider the

following Encryption and Decryption Size and Time
Comparison Figure

Source: (Research Result, 2025)
Figure 12. Comparison of Encryption and Decryption

Process Size and Time

Based on the analysis of figure 12 above, it can be
concluded that the data file size has a positive and
significant correlation with the time required for the
encryption and description process. The larger the file
size, the longer it will take for both operations.
Additionally, encryption times tend to be longer than
description times, although this is not always the case.
This phenomenon is consistent with the existing
literature on the performance of cryptographic
algorithms, where the encryption process often
requires more computation to generate the cipher
text (encrypted text) than the description process to
return it to plain text (real text) [22].

7. Potential Impact on Cloud System Performance in

implementation
The research focuses more on the efficiency

aspects of encryption or decryption of individuals and
public offices in transmitting data to cloud storage
with a variety of different file sizes, as shown in Table
1 and figure 12). However, we need to measure
system performance holistically in cloud file data
transmission, such as multi-user scalability or server
interaction [23]. Impact on latency (low-medium),
memory consumption (minimal), and bandwidth
(small).

Conveniently, it is suitable for individuals,
government and private offices that prioritize secure
cloud storage. In general, AES-256 + SHA-256
encryption has a low impact, but it can be scaled up on
a large scale or limited devices.
Latency (System Response Time)

a. Impact: Client-side encryption adds end-to-end
latency. For large files (>10 MB), the encryption
time is linear yet still fast. Additional latency in
cloud transmission can be as high as 50–100 ms
per operation.

https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Hasil%20Implementasi%20AES-256.png
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Gambar/Hasil%20Implementasi-RSA256.png
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/File_Enkripsi/RSA-Implementasi.pdf
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/File_Enkripsi/ECC%20Implementasi.pdf
https://github.com/junaidis10/ENKRIPSI-HYBRATE-AES-SHA-256-/blob/main/ENKRIPSI-HYBRATE-AES-SHA-256/Tabel%207.%20Perbandingan%20Ukuran%20dan%20Waktu%20Proses%20Enkripsi%20dan%20Dekripsi.pdf

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

547

b. Mitigation: Use hardware acceleration to reduce
latency by 5–20%. The overall impact is low to
moderate.

Memory Consumption (RAM)
a. Impact: AES-256 requires a buffer of the size of

the file + padding. SHA-256 is lighter because it
can run streaming. In a multi-user cloud system,
memory consumption can increase by 15–30%
due to cryptographic operations and key
management.

b. Mitigation: Streaming-based implementations
reduce memory usage, effective for resource-
constrained devices.

Bandwidth (Network Usage)
a. Impact: AES-256 does not significantly increase

file size, only small padding. SHA-256 adds a 32
byte overhead to the hash. Network throughput
remains about the same as plaintext files.

b. Mitigation: Perform client-side encryption and
compression before encryption to reduce file
size.

So the implementation of AES-256 + SHA-256
hybrid encryption has a relatively low performance
impact on cloud systems. AES-256 is efficient for big
data, while SHA-256 provides additional integrity
with minimal overhead. This research is particularly
relevant for individuals, as well as private sector
government offices that need secure and efficient
cloud storage.

Discussion

The results of the evaluation collectively show
that the proposed framework has successfully
achieved its objectives. Compared to asymmetric
encryption algorithms like RSA, which are
computationally more expensive for large files, or
older symmetric algorithms like Blowfish, AES-256-
based approaches have proven to be more efficient in
terms of time and resource requirements, making
them more suitable for modern cloud applications. On
the other hand, SHA-256, although simple in its
implementation, provides a highly reliable and
efficient assurance of integrity. However,
implementation on a large institutional scale will
present further challenges [4]. As identified in the
Library review, managing secure and efficient key
distribution is becoming increasingly complex as the
number of users grows. System scalability also needs
to be considered, as the computing overhead of
encryption and decryption, while small for a single
user, can be significant when combined across the
organization [4].

Therefore, further development of this
framework can be directed towards some
innovations. Automating the rotation of the key at
regular intervals can improve the security posture by

limiting the window of time if the key is compromised.
Additionally, the integration of this framework with
multi-factor authentication (MFA) solutions or more
granular authorization mechanisms will create a
more holistic security ecosystem.

This recommendation is in line with findings
from other studies that emphasize the importance of
an in-depth defense approach. While these
frameworks have proven to be efficient, one of the
major challenges in applying cryptography to cloud
storage is key management. The distribution,
rotation, and storage of secure encryption keys often
creates complexity, especially as the number of users
grows on an institutional scale [7], [24], [25].
Therefore, further development needs to be directed
towards integration with distributed Key
Management Systems (KMS) and support automatic
rotation. This is in line with best practices
implemented by popular cloud providers, such as
Google Cloud Default Encryption, Amazon Web
Services (AWS KMS), and Microsoft OneDrive. These
services generally implement server-side encryption
by default, but they don't guarantee full protection on
the client side. Thus, the combination of AES-256 +
SHA-256 based end-to-end encryption on the user
side with integration into the KMS cloud will create a
more comprehensive security ecosystem[15]. In
addition, usability is also important—the system
must remain easy to use without adding to the
operational burden of the user, in order for its
adoption to be more realistic in the

CONCLUSION

The study successfully designed and tested a
hybrid cryptographic framework by combining AES-
256 as an algorithm to encrypt data and SHA-256 for
verifying and ensuring data integrity to address
security vulnerabilities in cloud-based document
storage, such as data leaks, unauthorized
modifications and various other cyber threats. Based
on the results of implementation and testing, it can be
concluded that: AES-256 encryption, has advantages
in terms of speed and resource consumption
efficiency compared to asymmetric algorithms such
as RSA and ECC, especially for large files. This is in line
with findings in the literature that AES is suitable for
bulk data encryption [4][13][26]. Linear encryption
and decryption times to file size make them ideal for
integration with high-performance cloud services.

SHA-256, has high reliability and integrity in
detecting the slightest data change with 100%
accuracy, so as to be able to guarantee the authenticity
of documents. These results are in line with previous
studies confirming the effectiveness of SHA-256 in
verifying data integrity [3],[6] Encryption by

VOL. 11. NO. 2 NOVEMBER 2025
.

DOI: 10.33480 /jitk.v11i2.7132

548

combining AES-256 and SHA-256 in a hybrid manner
is robust against brute-force threats, has been tested
against brute-force and man-in-the-middle attacks,
and demonstrates adequate resilience thanks to a
combination of strong encryption and a change-
sensitive hashing mechanism.[15], [16]. Modular and
Integrated Implementations, which can be used to
support interfaces connected to Google Drive as well
as key management implementations inspired by
industry standards (such as AWS KMS and Google
Cloud KMS), these frameworks are not only secure but
also easy to adopt by individual users and
organizations[18], [19]. Although the implementation
and testing are quite effective, the research is still
limited to the encryption and integrity layers without
including more advanced authentication mechanisms.
For further development, integration with Multi-
Factor Authentication (MFA), biometric systems, or
Zero-Knowledge Proofs (ZKP) and distributed key
management will further strengthen security
holistically [27],[23]. Thus, the proposed framework
not only addresses the fundamental challenges in
cloud-based security, which must be ensured with
high confidentiality and integrity, but also provides a
foundation that can be further developed towards a
more resilient cloud storage system that meets the
needs of modern users.

REFERENCE

[1] D. T. Valivarthi, “Implementing the SHA

Algorithm in an Advanced Security
Framework for Improved Data Protection in
Cloud Computing via Cryptography,” 2023.

[2] S. H. Murad and K. H. Rahouma, “Hybrid
Cryptographic Approach to Safeguard Cloud
Computing Services: A Survey,” 2021, pp.
785–793. doi: 10.1007/978-3-030-69717-
4_72.

[3] R. Ardiansyah, S. Widodo, and M. Lestari,
“Analysis of the effectiveness of SHA-256 on
data authenticity verification,” J Cybersecur,
vol. 4, no. 1, pp. 12–22, 2023.

[4] M. Alshalaan and N. A. Khan, “Complexities
and Challenges for Securing Digital Assets and
Infrastructure in Academia,” in Complexities
and Challenges for Securing Digital Assets and
Infrastructure, IGI Global, 2025, pp. 225–244.
doi: 10.4018/979-8-3373-1370-2.ch011.

[5] M. Pamungkas and D. Chandra, “Analisis Pola
dan Dampak Serangan Cryptojacking dengan
Menggunakan Metode Analisis Dinamis dan
Analisis Statis,” JURIKOM (Jurnal Riset
Komputer), vol. 9, p. 1511, Oct. 2022, doi:
10.30865/jurikom.v9i5.5041.

[6] P. Biswas, “A Comparative Study Of
Encryption Algorithms For Enhancing Data
Confidentiality In Cloud Storage Systems,”
2025. [Online]. Available:
https://www.theaspd.com/ijes.php

[7] L. K. Suresh Kumar, “Cloud Computing Data
Storage Security: A Comprehensive Review,”
International Journal of Intelligent Systems and
Applications in Engineering, vol. 12, no. 3, pp.
4443 – 4449, Mar. 2024, [Online]. Available:
https://ijisae.org/index.php/IJISAE/article/v
iew/7205

[8] M. Rais Rabtsani, A. Triayudi, and G.
Soepriyono, “Combination of AES (Advanced
Encryption Standard) and SHA256 Algorithms
for Data Security in Bill Payment
Applications,” SAGA: Journal of Technology and
Information Systems, vol. 2, no. 1, p. 175189,
2024, doi: 10.58905/SAGA.vol2i1.250.

[9] R. Indrayani, P. Ferdiansyah, and M. Koprawi,
“Analisis Penggunaan Kriptografi Metode AES
256 Bit pada Pengamanan File dengan
Berbagai Format,” Digital Transformation
Technology, vol. 4, no. 2, pp. 1245–1251, Feb.
2025, doi: 10.47709/digitech.v4i2.5457.

[10] L. Aprillia, M. Febiyana, and S. S. Pungkasari,
“PERAN CLOUD COMPUTING DALAM
MENINGKATKAN EFISIENSI SISTEM
INFORMASI DI PERUSAHAAN.”

[11] William Stallings,
Cryptography_and_Network_Security, 8th ed.
Pearson, 2022. Accessed: Nov. 26, 2025.
[Online]. Available:
https://dokumen.pub/qdownload/security-
and-cryptography-for-networks-i-
6340972.html

[12] N. W. Hidayatulloh, M. Tahir, H. Amalia, N. A.
Basyar, A. F. Prianggara, and M. Yasin,
“Mengenal Advance Encryption Standard
(AES) sebagai Algoritma Kriptografi dalam
Mengamankan Data,” Digital Transformation
Technology, vol. 3, no. 1, pp. 1–10, May 2023,
doi: 10.47709/digitech.v3i1.2293.

[13] S. S. R and A. C. M, “Comparison Between
Encryption Algorithms: A Performance and
Security Perspective,” 2025.

[14] Rajesh Kumar, Neha Gupta, and Arun Mehta,
“A Comparative Analysis of Cryptographic
Algorithms for Secure Data Transmission in
5G Networks,” International Journal of
Information Engineering and Science, vol. 1, no.
2, pp. 08–12, May 2024, doi:
10.62951/ijies.v1i2.88.

[15] A. Chincholkar, A. Londhe, M. Joshi, P. Gole,
and S. Mirgale, “Ensuring Confidentiality and

VOL. 11. NO. 2 NOVEMBER 2025.
 .

DOI: 10.33480/jitk.v11i2.7132.

549

Integrity in Cloud Storage using AES
Encryption and SHA-256 Hashing,” 2025. doi:
DOI:10.17577/IJERTV14IS100041.

[16] Mrs. G. Venkateswari, S. Sowjanya, S.
Meenamrutha, K. S. Mounika, S. H. Priyanka,
and M. Anvitha, “Detecting Replicated Files in
the Cloud,” Int J Res Appl Sci Eng Technol, vol.
11, no. 4, pp. 3621–3627, Apr. 2023, doi:
10.22214/ijraset.2023.50987.

[17] Saman Khan, “Enhancing Cloud Data Security
using a Hybrid Cryptographic Model: A
Combination of Advanced Encryption
Standard and Elliptic Curve Cryptography,”
Journal of Information Systems Engineering
and Management, vol. 10, no. 34s, pp. 01–13,
Apr. 2025, doi: 10.52783/jisem.v10i34s.5770.

[18] T. Blake, R. Wells, M. Barton, M. Song, and M.
Yates, “Data Encryption and Key Management
with AWS KMS: A Comprehensive Exploration
of Secure Cloud Cryptography,” Nov. 2024.

[19] M. Blessing, “Cloud Encryption Strategies and
Key Management,” Sep. 2024.

[20] J. Surya and M. Fattachul, PEMROGRAMAN
MYSQL DATABASE WITH STREAMLIT
PYTHON. PT. Sonpedia Publishing Indonesia.
[Online]. Available: www.buku.sonpedia.com

[21] Peter Iris, “PERFORMANCE ANALYSIS OF AES,
RSA, AND ECC IN REAL- TIME
APPLICATIONS,” Jul. 2025.

[22] Springer, Security and Cryptography for
Networks, vol. 14973. Cham: Springer Nature
Switzerland, 2024. doi: 10.1007/978-3-031-
71070-4.

[23] D. Tohanean and S.-G. Toma, “The Impact of
Cloud Systems on Enhancing Organizational
Performance through Innovative Business
Models in the Digitalization Era,” Proceedings
of the International Conference on Business
Excellence, vol. 18, pp. 3568–3577, Jul. 2024,
doi: 10.2478/picbe-2024-0289.

[24] W. Miller, K. Lerner, A. Conn, and H. Blake,
“The Importance of Cryptographic Key
Management in Cloud Security,” Feb. 2023.

[25] Y. M. A. Abualkas and L. B. D, “Hybrid
Approach to Cloud Storage Security Using
ECC-AES Encryption and Key Management
Techniques,” International Journal of
Engineering Trends and Technology, vol. 72,
no. 4, pp. 92–100, Apr. 2024, doi:
10.14445/22315381/IJETT-V72I4P110.

[26] J. Hutagalung, P. S. Ramadhan, and S. J.
Sihombing, “Keamanan Data Menggunakan
Secure Hashing Algorithm (SHA)-256 dan
Rivest Shamir Adleman (RSA) pada Digital
Signature,” Jurnal Teknologi Informasi dan
Ilmu Komputer, vol. 10, no. 6, pp. 1213–1222,

Dec. 2023, doi: 10.25126/jtiik.2023107319.
[27] K. Sasikumar and S. Nagarajan, “Enhancing

Cloud Security: A Multi-Factor Authentication
and Adaptive Cryptography Approach Using
Machine Learning Techniques,” IEEE Open
Journal of the Computer Society, vol. 6, pp.
392–402, 2025, doi:
10.1109/OJCS.2025.3538557.

