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Abstract— Climate variability poses a major challenge to rice production in Sumatra, a key contributor to
Indonesia’s food security. This study aims to analyze spatiotemporal climate impacts on rice yields by
integrating climatic, geographical, and agricultural datasets. Historical records from 1993-2024, including
rainfall, temperature, humidity, and rice production statistics, were collected from BMKG, BPS, and the
Ministry of Agriculture. After preprocessing and feature selection, six machine learning algorithms—Linear
Regression, Random Forest, Gradient Boosting, Support Vector Regression, Decision Tree, and K-Nearest
Neighbors—were evaluated for predictive performance. Results show significant spatial heterogeneity:
rainfall strongly affects yields in Aceh and North Sumatra, while temperature stress is critical in southern
provinces. Among the tested models, Random Forest achieved the best accuracy (R? = 0.985), outperforming
other algorithms. These findings highlight the importance of localized adaptation strategies and demonstrate
the potential of ensemble machine learning to support climate-resilient rice production.

Keywords: climate change, machine learning, spatiotemporal analysis, rice production.

Intisari— Variabilitas iklim menjadi tantangan utama bagi produksi padi di Sumatra, yang berperan penting
dalam ketahanan pangan Indonesia. Penelitian ini bertujuan menganalisis dampak iklim secara spasial dan
temporal terhadap hasil padi dengan mengintegrasikan data iklim, geografis, dan pertanian. Data historis
tahun 1993-2024, mencakup curah hujan, suhu, kelembapan, serta produksi padi diperoleh dari BMKG, BPS,
dan Kementerian Pertanian. Setelah melalui tahap pra-pemrosesan dan seleksi fitur, enam algoritma machine
learning—Linear Regression, Random Forest, Gradient Boosting, Support Vector Regression, Decision Tree,
dan K-Nearest Neighbors—dievaluasi kinerjanya. Hasil penelitian menunjukkan adanya heterogenitas spasial
yang signifikan: curah hujan berpengaruh besar di Aceh dan Sumatra Utara, sedangkan stres suhu menjadi
faktor utama di provinsi bagian selatan. Model Random Forest terbukti paling akurat (R? = 0,985), melampaui
algoritma lain. Temuan ini menekankan perlunya strategi adaptasi lokal dan potensi pembelajaran mesin
ensemble untuk mendukung produksi padi yang tangguh terhadap iklim.

Kata Kunci: perubahan iklim, pembelajaran mesin, analisis spasiotemporal, produksi padi.
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INTRODUCTION

Rice functions not only as as staple food but
also as a cornerstone of food security and rural
economies sustaining the livelihoods of more than
half of the population in Southeast Asia. However,
climate change poses an increasingly severe threat
to this vital commodity [1]. By mid-century, rice
yields in South and Southeast Asia may drop 10-
15% due to heat, erratic rain, and drought [2]. The
Vastlowland rice ecosystems in Sumatra, Indonesia,
make the region highly vulnerable to climate change
[3]-Traditional agricultural practices are becoming
increasingly unreliable due to rising climate
variability, placing smallholder farmers at greater
risk of both instability and production challenges. A
pressing global concern arises from this challenge’s,
how can food systems effectively adapt to maintain
agricultural productivity in the face of changing
environmental conditions. The combination of
spatiotemporal analysis and machine learning has
become a central theme in agricultural research, as
it provides data-driven foundations for decision-
making while delivering meaningful predictive
insights [4]. These developments are strongly
connected to the international agenda on climate-
smart agriculture and to the Sustainable
Development Goals (specifically SDGs 2 and 13),
highlighting the essential function of innovative
methods in evaluating environmental effects on rice
production.

This study applies advanced machine
learning techniques to investigate the spatial and
temporal patterns of climate variability and their
impacts on rice production in Sumatra, Indonesia.
Although many studies examined climate impacts
on Southeast Asian Agriculture, few explored how
regional climate variations rice yield in Sumatra [5],
[6]. Although remote sensing and GIS are widely
used for land monitoring, their integration with
predictive machine learning for estimating crop
yields in complex tropical regions like Sumatra
remains limited [7], [8]. Temperature extremes,
cropping intensity, and rainfall anomalies are
widely acknowledged as critical variables.
Nevertheless, research investigating the interaction
of these factors across provinces remains scarce,
particularly when considered over varying spatial
and temporal dimensions [9]. This study identifies
rice as the main staple and Sumatra as a key
agricultural area.  Researchs on spatiotemporal
variability and rice yield remains fragmented, as
most studies use board climate models that
overlook, local impacts on productivity [10], [11]. In
practical applications, a key limitation is the
underutilization of high-resolution remote sensing
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data and advanced machine learning techniques,
despite their significant potential for tracking rice
phenology across varied landscapes and dynamic
environmental conditions [12], [13]. Worsening El
Nifio impacts on Sumatra’s rainfed rice underscore
urgent action [14], [15] Integrating spatiotemporal
analysis with Al models enhances yield prediction
and climate resilience [16], [17]. Thus, achieving
sustainable  precision  agriculture requires
integrating ML with climate-rice models.
Considering these factors, further research is
needed to refine climate-agriculture interaction
analyses in Sumatra. Most studies on climate effects
on Indonesia’s rice focus on board scales,
overlooking regional spatiotemporal variations like
in Sumatra. In Sumatra diverse agroecological

zones, climate-yield dynamics remain
underexplored Temporal lags, spatial
autocorrelation, and non-linear effects lack clear
understanding.

This study builds a spatiotemporal model
using advanced machine learning methods. The
goals are: (1) Identify key climatic drivers of rice
yield variation, (2) Analyze spatial and temporal
climate-yield variability, and (3) Compare
advanced Al algorithms with traditional statistical
models. This study enhances spatiotemporal and
ML methods for climate assessment [18], [19]. This
study applies machine learning to model climate
impacts on rice yields [20]. It advances climate-
agriculture  models using spatial-temporal
integration [21], [22]. This framework link crop
yield, regional diversity, and climate dynamics.

MATERIALS AND METHODS

The sequence of research activities,
illustrated in Figure 1, begins with problem
identification, followed by a literature review, he
selection of the study area, data acquisition, data
preprocessing, the determination of appropriate
machine learning algorithms, and ultimately, the
evaluation of the developed model.

Problem Identification

Research Objectives

Study Area Selection

Data Acquisition

Data Preprocessing

Pick ML Algorithms

Model Evaluation

Source: (Research Results, 2025)
Figure 1. Research Flow and Modeling Framework
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Problem Identification

Rice production in Sumatra is vital for
national food security but highly vulnerable to
climate variability. Rainfall, temperature, and
seasons strongly affected crop yields. Conventional
models poorly capture complex climate-crop
interactions. Limited spatial-temporal detail
hinders adaptive agricultural planning.

Study Literature

Rice cultivation in Southeast Asia is highly
vulnerable to climate change, driven by shifting
rainfall, rising temperatures, and extreme weather.
Studies show that changing climates severely
impactrice production in Indonesia and other Asian
countries, disrupting planting schedules and crop
cycles [23], [24]. Recently, machine learning models
like Random Forests, SVMs, and Neural Networks
effectively captured non-linear climate-yield
relationships in agriculture [25], [26]. In the
Indonesian context, several studies have examined
the vulnerability of rice yields to El Nifio events and
monsoon variability, indicating that severe climatic
fluctuations may decrease production by as much
15 % [27]. Previous studies have employed spatial
econometric and statistical models to identify
vulnerability hotspots; however, these methods did
not incorporate advanced machine learning
algorithms for cross-regional comparisons [28],
[29]. Recent research has emphasized the
importance of combining remote sensing and
machine learning to enhance the precision of crop
yield forecasting [7]. Unlike previous studies, this
research offer’'s new spatiotemporal analysis of
climate effects on Sumatra’s rice yields using
multiple machine learning model for stronger
regional insights.

Data Collection

This study analyzes climate variability’s
impact on rice production in Sumatra (1993-2024)
using BMKG and agricultural data, integrating
climate and yield records after preprocessing for
consistency. The procedure for gathering data is
depicted in Figure 2, whereas Table 1 presents a
summary of the dataset employed in this study.

Table 1. Research Dataset

Province Aceh Aceh Aceh Aceh
Year 1993 1994 1995 1996
Production 3,95 12996 13820 14191
(tons)
Land Area
KM?) 3235 3290 3392 3482
Rainfall 1627 1521 1476 1557
(mm)
Humidity
%) 8200 8212 8272  83.00
552

Province Aceh Aceh Aceh Aceh
Temperature 26.06 26.92 26.27 26.08
9

Source: (Research Results, 2025)

DATA COLLECTION

L .

CLIMATE DATA RICE
g PRODUCTION
DATA

Indonesian
Meteorology.,

Ministry of
Agriculture and
Central Bureau

of Statistics (BPS)

Climatology, and
Geophysics
(BMKG)

o <
[ Monthly Rainfall ] [ Annual Yield

| Average Harvested Area I
Temperature

Relative Pmducnon Volume
Humidity

Source: (Research Results, 2025)
Figure 2. Data Collection Phase

Pre-processing
The data processing stage aims to convert
and refine raw datasets into structured, high-
quality  inputs, thereby  ensuring their
appropriateness and effectiveness for
implementing machine learning models consistent
with the intended objectives of the study [30]. The
procedure involves a structured sequence of steps
aimed at improving data quality, resolving
inconsistencies, and aligning the data architecture
with the requirements of the analytical framework
[31]. This section outlines the primary objectives of
the data preprocessing stage, which is essential for
preserving the dataset’s integrity, ensuring
consistency, and preparing it for analysis [32], the
following are the objectives of the data pre-
processing stage:
1. Cleaning Data
Eliminate irrelevant noise, unusual
observations, and non-essential records to
improve the integrity of the dataset, including
the systematic identification and proper
handling of missing or abnormal values [33].
2. Normalization
Standardizing feature scales to comparable
ranges helps prevent variables with larger
magnitudes from dominating, thereby ensuring
a balanced contribution of each attribute to the
learning algorithm [34].
3. Data Transformation

Implement additional data preprocessing
techniques, such as transformation or
normalization, to adjust the underlying

distribution when required by the analytical

objectives [35].
BY NG
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4. Feature Selection
Important preprocessing stage in machine
learning, feature selection improves the
efficiency and interpretability of the model by
removing redundant or unnecessary variables
while keeping the most important features for
prediction accuracy [36].

5. Hyperparameter Tuning
Hyperparameter tuning increases prediction
accuracy and generalization by methodically
modifying algorithm parameter to balance bias
and volatility [37].

Modeling

This study develops models to assess and
predict climate impacts on rice yield in Sumatra.
The process begins with collecting and
preprocessing climate, yield, and spatial datasets.
These datasets undergo feature selection and
normalization for consistency and performance
optimization. Model training and validation follow,
applying various machine learning algorithms. The
models capture complex, non-linear relationships
between climate factors and rice production.
Ensemble and kernel methods effectively capture
crop yield non-linearity [38].

Linear Regression

Linear regression is a fundamental
statistical method used to analyze the relationship
between a response variable and one or more
explanatory variables [39], as shown in Equation 1.

Yy =Bo+Brixy +Baxz + -+ Bpxp +€ (1)

Linear Regression provides a transparent,
simple baseline model quantifying the marginal
linear effects of climatic variables on rice yield,
enabling direct interpretability. Linear Regression
serves as a benchmark model for agricultural data,
evaluating complex machine learning’s
performance gains in nonlinear, multicollinear
environments.

Random Forest

Random Forest is a machine learning method
built on the ensemble concept, where multiple
decision trees are constructed during training, and
the final prediction is produced through majority
voting for classification or by averaging the
outcomes for regression [40]. Utilizes constructed
decision trees and uses random feature subsets at
each split to reduce overfitting [41]. Formally, for a
set of {T,}5_,, the prediction of a Random Forest for
regression can be written in Equation 2. Where,
Ty (x) is the prediction of the b — th decision tree.
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Random Forest was chosen for its robustness,
ensembles of decision trees, and ability to handle
complex, nonlinear agricultural data interactions,
reducing overfitting. The accuracy and adaptability
of Random Forest’s performance were compared
because of its restricted interpretability and high
computing expenses for huge temporal data.

Gradient Boosting

Gradient Boosting represents an ensemble
technique that constructs predictive models
through the iterative integration of weak learners,
typically decision trees, to minimize a specified loss
function [42]. Formally, given a loss function

L(y, F(x)), the model is updated as Equation 3.
Fn(x) = Fp_1(x) + v - by (%) (3)

Where, F,,,_, (x) is the previous model h,,(x)
is the weak learner fitted to the gradient of loss, and
v € (0,1] is the learning rate controlling the
contribution of each learner. Gradient Boosting was
prioritized for its strong predictive performance
and adaptability to heterogeneous agricultural data.
Gradient boosting offers high accuracy but its
computationally intensive, risk overfitting (if
mistuned), and demands careful interpretation to
simpler models.

Support Vector Regression

Support Vector Regression (SVR) functions
as an extension of the Support Vector Machine
(SVM) framework, commonly employed to address
regression problems [43]. SVR finds optimal
function linking inputs to targets, minimizing
complexity within error g, tolerance. Equation 4
provides the formulation of the optimization
problem.

. 1
miny,pg e W2+ CEL (G +80) @

SVR, unlike linear models uses Kkernel
function (e.g., RBF) to capture complex climatic
variable and rice yield interactions. SVR
performance is sensitive to kernel and parameter
selection, demanding careful tuning which
increases computational complexity. However, its
balanced trade-off between predictive accuracy and
generalization justifies inclusion.

Decision Tree

Decision Tree is a method that applies a
supervised learning technique that is commonly
applied in both classification and regression
problems, primarily because of its transparent
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structure and its capability to process categorical as
well as numerical variables [44]. The dataset is
repeatedly divided into smaller groups according to
feature values, with each division designed to either
increase information gain or reduce impurity. The
most common impurity measure is the Gini Index,
defined as Equation 5.

Gini(t) = 1 - X, p(ilt)? (5)

Decision tree were chosen for their high
interpretability, effectiveness with heterogenous
and nonlinear agricultural data, and ability to
manage mixed/missing variables. DTs risk
overfitting  high-dimensional data, limiting
generalization. Pruning and cross-validation were
used; yet, their explanatory power remains valuable
for comparison.

K-Nearest Neighbors

As a supervised learning model, the K-
Nearest Neighbors (KNN) approach is widely
applied in classification tasks technique of a non-
parametric nature, commonly applied in both
classification and regression problems [45]. KNN
classifies data points by assigning the class most
common among its k nearest neighbors, offering
robust, simple pattern recognition despite high
computational cost on large datasets [46]. The
Euclidean distance in Equation 6.

d(x,y) = X G — y0)? (6)

The K-Nearest Neighbors (KNN) is suitable for
heterogeneous agricultural datasets due to its
similarity-based prediction. Its strength are
simplicity, flexibility, and interpretability for
modeling complex patterns without distribution.
KNN’s sensitivity to irrelevant features, data scaling,
and computational inefficiency with large
spatiotemporal datasets necessitated careful
parameter tuning and data normalization for fair
comparison.

Spatiotemporal Analysis for Environmental
Studies

Spatial dependence diagnostics and model
changes addressed potential spatial

autocorrelation, preventing skewed parameter
estimates and model overfitting. To achieve
objective model evaluation spatial filtering using
eigenvector-based spatial filtering (ESF) and spatial
cross-validation when significant spatial clustering
was found. [47]. To mitigate geographical bias,
Random Forest and GBM were trained using
spatially blocked k-fold cross validation [48]. This
approach  robustly estimated climate-yield
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relationships across Sumatra-Indonesia, mitigating
common agricultural spatial autocorrelation [49].
RESULTS AND DISCUSSION

Descriptive Analysis of Climatic and Rice
Production Trends

Sumatra’s hot, humid climate (26-28°C,
>80% humidity) shows stable conditions but
distinct wet-dry seasons. Rainfall patterns differ
north-south and across years, influenced by ENSO
and IOD. Rice yields (1993-2024) vary regionally,
peaking in North, South Sumatra, and Lampung,
with fluctuations tied to El Nifio/La Nifia. The data
emphasizes these inter-provincial differences and
the year-over-year volatility, shown in table 2
below. Rice production in Sumatra peaked mid-
2010s, declined after 2017, showing strong
provincial disparities and structural vulnerabilities.
Figure 3 shows the specific of this interprovincial
results trend.

Table 2. Summary of Rice Production and Climatic
Data (1993-2024)

Average Average  Average Tem
Province  Production Rainfall Humidity (°CP3
(tons) (mm) (%)

Aceh 1,486,900 1,627 82.00 26.06

North 1,400,000 2,300 85.00 25.50
Sumatra

West 1300000 2140  83.00 26.50
Sumatra

Riau 1,100,000 2,100 83.00 27.00

Jambi 800,000 1,900 81.00 27.50

South 3,500,000 1,850 80.00 27.00
Sumatra
Bengkulu 650,000 2,200 84.00 26.00
Lampung 1,900,000 1,950 83.00 26.50

Source: (Research Results, 2025)

Awerage Annual Rice Production Trend in Sumatra Provinces (1993-2024)

war

Source: (Research Results, 2025)
Figure 3. Average Annual Rice Production Trends

Spatial-Temporal Patterns of Climate Impacts
on Rice Yields

Climate impacts on rice yields vary
regionally; rainfall and temperature changes
differently affect productivity across Sumatra
provinces. Table 3 and Figure 4 below provide an
overview of the variations in the effects of
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important climatic factors on rice production in the
eight Sumatra provinces. Table 3, which presents
the average temperature, rainfall, and rice output
for eight. Rainfall variation strongly influences rice
yields across Sumatra’s provinces.

Average Rice Production, Rainfall, and Temperature by Province (1993-2024)

Source: (Research Results, 2025)
Figure 4. Sumatra Rice-Climate Trends

Table 3. Mean Values of Rice QOutput and Climatic
Variables Across Sumatra’s Provinces (1993-2024)

Average Average Average
Province Production Rainfall Temperature
(10° kg) (mm) Q)
Aceh 1,48 1,580 26.29
North 2,11 1,850 27.06
Sumatra
West 2,44 2,100 26.83
Sumatra
Riau 0.65 1,700 27.52
Jambi 1,18 1,650 27.81
South 4,38 1,750 28.11
Sumatra
Bengkulu 0.44 2,200 27.01
Lampung 2,21 1,550 28.02

Source: (Research Results, 2025)

Model Performance Comparison

The forecasting capability of various machine
learning algorithms—namely Linear Regression,
Random Forest, Gradient Boosting, Support Vector
Regression (SVR), and a Neural Network—was
evaluated through the statistical indicators R?,
RMSE, and MAE to determine their efficiency in
predicting rice production across Sumatra Island, as
presented in Table 4. The Random Forest model
achieved the best performance with an R? of 0.985
and minimal errors (RMSE 114,142.21; MAE
63,135.09). It explained 98.5% of the dependent
variable’s variance with minimal mean prediction
error. Its superior results stem from its ensemble
approach that merges multiple trees to reduce
overfitting and enhance accuracy. The Gradient
Boosting model ranked second with an R? of 0.982
and slightly higher errors (RMSE 125,565.34; MAE
74,409.28). The Neural Network achieved an R? of
0.978, performing well but with larger errors
(RMSE 138,590.23; MAE 82,901.15). The SVR and
Linear Regression models performed weaker, with
R? values of 0.954 and 0.951 respectively, and their
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higher error rates (SVR RMSE 196,432.11; Linear
Regression RMSE 204,501.56) indicate less
effective pattern recognition. Overall, simpler
models underperformed, revealing non-linear
relationships better captured by ensemble and
neural network approaches.

Table 4. Performance Comparison of Machine
Learning Models

Model R? Score RMSE MAE
Random — ggq 11414221  63,135.09
Forest

Gradient — gg, 12556534  74,409.28
Boosting

Neural 0.978 138,590.23  82,901.15
Network

SVR 0.954 196,432.11  108,765.43
Linear 0.951 204,501.56  120,321.89
Regression

Source: (Research Results, 2025)

Key Climatic Determinants of Rice Production

Feature importance analysis shows land as
the main factor for rice prediction in Sumatra
(0.928), while temperature (0.025), rainfall (0.024),
and humidity (0.022) have smaller yet notable
effects (Table 5). Rainfall during planting remains a
key factor determining water availability for rice
germination and tillering. Although land availability
drives most production variability, climatic
variables regulate crop resilience to environmental
stress. These findings emphasize the vital role of
climate indicators in agricultural planning. The
quantified effects of rainfall and temperature
underscore the importance of seasonal climate
forecasts for optimizing irrigation and reducing
water deficit risks. Similarly, the moderate yet
significant temperature influence highlights the
need for developing heat-tolerant rice varieties
amid ongoing climate warming. While climatic
factors show lower feature importance than land
area, their alignment with rice growth physiology—
where water and temperature directly affect
developmental stages—reinforces their adaptive
relevance. Hence, although land expansion may
boost short-term yields, sustainable rice production
ultimately depends on adopting climate-responsive
technologies and policies.

Climate Variability and Rice Production Anomalies in Sumatra (1993-2024)

e

Source: (Research Results, 2025)
Figure 5. Climate Anomalies in Sumatra
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Table 5. Feature Importance of Climatic and Land
Variables on Rice Production

Rank Feature Importance
1 Land Area 0.928
2 Temperature 0.025
3 Rainfall 0.024
4 Humidity 0.022

Source: (Research Results, 2025)
CONCLUSION

This study demonstrates that integrating
spatiotemporal analysis with advance machine
learning models provides a powerful framework for
understanding and predicting the impacts of
climate variability on rice production in Sumatra.
The Random Forest model achieved the highest
predictive accuracy (R?=0.985), outperforming other
algorithms by effectively capturing complex
nonlinear interactions between climatic and
agricultural variables. Results highlight distinct
spatial heterogeneity, where rainfall and
temperature exert varying influences across
provinces, emphasizing the necessity of localized
adaptation measures. While land area remains the
dominant factor in yield prediction, climatic
parameters significantly affect productivity stability
and resilience. Therefore, developing climate-smart
agricultural policies, incorporating ensemble
machine learning tools, and enhancing early
warning systems are essential to support
sustainable and climate-resilient rice productions
across Sumatra and similar tropical regions
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