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Abstract— Climate variability poses a major challenge to rice production in Sumatra, a key contributor to 
Indonesia’s food security. This study aims to analyze spatiotemporal climate impacts on rice yields by 
integrating climatic, geographical, and agricultural datasets. Historical records from 1993–2024, including 
rainfall, temperature, humidity, and rice production statistics, were collected from BMKG, BPS, and the 
Ministry of Agriculture. After preprocessing and feature selection, six machine learning algorithms—Linear 
Regression, Random Forest, Gradient Boosting, Support Vector Regression, Decision Tree, and K-Nearest 
Neighbors—were evaluated for predictive performance. Results show significant spatial heterogeneity: 
rainfall strongly affects yields in Aceh and North Sumatra, while temperature stress is critical in southern 
provinces. Among the tested models, Random Forest achieved the best accuracy (R² = 0.985), outperforming 
other algorithms. These findings highlight the importance of localized adaptation strategies and demonstrate 
the potential of ensemble machine learning to support climate-resilient rice production.  

 
Keywords: climate change, machine learning, spatiotemporal analysis, rice production. 

 
Intisari— Variabilitas iklim menjadi tantangan utama bagi produksi padi di Sumatra, yang berperan penting 
dalam ketahanan pangan Indonesia. Penelitian ini bertujuan menganalisis dampak iklim secara spasial dan 
temporal terhadap hasil padi dengan mengintegrasikan data iklim, geografis, dan pertanian. Data historis 
tahun 1993–2024, mencakup curah hujan, suhu, kelembapan, serta produksi padi diperoleh dari BMKG, BPS, 
dan Kementerian Pertanian. Setelah melalui tahap pra-pemrosesan dan seleksi fitur, enam algoritma machine 
learning—Linear Regression, Random Forest, Gradient Boosting, Support Vector Regression, Decision Tree, 
dan K-Nearest Neighbors—dievaluasi kinerjanya. Hasil penelitian menunjukkan adanya heterogenitas spasial 
yang signifikan: curah hujan berpengaruh besar di Aceh dan Sumatra Utara, sedangkan stres suhu menjadi 
faktor utama di provinsi bagian selatan. Model Random Forest terbukti paling akurat (R² = 0,985), melampaui 
algoritma lain. Temuan ini menekankan perlunya strategi adaptasi lokal dan potensi pembelajaran mesin 
ensemble untuk mendukung produksi padi yang tangguh terhadap iklim.  
 
Kata Kunci: perubahan iklim, pembelajaran mesin, analisis spasiotemporal, produksi padi. 
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INTRODUCTION 
 

Rice functions not only as as staple food but 
also as a cornerstone of food security and rural 
economies sustaining the livelihoods of more than 
half of the population in Southeast Asia. However, 
climate change poses an increasingly severe threat 
to this vital commodity [1]. By mid-century, rice 
yields in South and Southeast Asia may drop 10-
15% due to heat, erratic rain, and drought [2]. The 
Vast lowland rice ecosystems in Sumatra, Indonesia, 
make the region highly vulnerable to climate change 
[3].Traditional agricultural practices are becoming 
increasingly unreliable due to rising climate 
variability, placing smallholder farmers at greater 
risk of both instability and production challenges. A 
pressing global concern arises from this challenge’s, 
how can food systems effectively adapt to maintain 
agricultural productivity in the face of changing 
environmental conditions. The combination of 
spatiotemporal analysis and machine learning has 
become a central theme in agricultural research, as 
it provides data-driven foundations for decision- 
making while delivering meaningful predictive 
insights [4].  These developments are strongly 
connected to the international agenda on climate-
smart agriculture and to the Sustainable 
Development Goals (specifically SDGs 2 and 13), 
highlighting the essential function of innovative 
methods in evaluating environmental effects on rice 
production.  

This study applies advanced machine 
learning techniques to investigate the spatial and 
temporal patterns of climate variability and their 
impacts on rice production in Sumatra, Indonesia. 
Although many studies examined climate impacts 
on Southeast Asian Agriculture, few explored how 
regional climate variations rice yield in Sumatra [5], 
[6]. Although remote sensing and GIS are widely 
used for land monitoring, their integration with 
predictive machine learning for estimating crop 
yields in complex tropical regions like Sumatra 
remains limited [7], [8]. Temperature extremes, 
cropping intensity, and rainfall anomalies are 
widely acknowledged as critical variables. 
Nevertheless, research investigating the interaction 
of these factors across provinces remains scarce, 
particularly when considered over varying spatial 
and temporal dimensions [9]. This study identifies 
rice as the main staple and Sumatra as a key 
agricultural area.    Researchs on spatiotemporal 
variability and rice yield remains fragmented, as 
most studies use board climate models that 
overlook, local impacts on productivity [10], [11]. In 
practical applications, a key limitation is the 
underutilization of high-resolution remote sensing 

data and advanced machine learning techniques, 
despite their significant potential for tracking rice 
phenology across varied landscapes and dynamic 
environmental conditions [12], [13]. Worsening El 
Niño impacts on Sumatra’s rainfed rice underscore 
urgent action [14], [15] Integrating spatiotemporal 
analysis with AI models enhances yield prediction 
and climate resilience [16], [17]. Thus, achieving 
sustainable precision agriculture requires 
integrating ML with climate-rice models. 
Considering these factors, further research is 
needed to refine climate-agriculture interaction 
analyses in Sumatra.  Most studies on climate effects 
on Indonesia’s rice focus on board scales, 
overlooking regional spatiotemporal variations like 
in Sumatra. In Sumatra diverse agroecological 
zones, climate–yield dynamics remain 
underexplored Temporal lags, spatial 
autocorrelation, and non-linear effects lack clear 
understanding. 

This study builds a spatiotemporal model 
using advanced machine learning methods. The 
goals are: (1) Identify key climatic drivers of rice 
yield variation, (2) Analyze spatial and temporal 
climate–yield variability, and (3) Compare 
advanced AI algorithms with traditional statistical 
models. This study enhances spatiotemporal and 
ML methods for climate assessment [18], [19]. This 
study applies machine learning to model climate 
impacts on rice yields [20]. It advances climate-
agriculture models using spatial-temporal 
integration [21], [22].  This framework link crop 
yield, regional diversity, and climate dynamics.   
 

MATERIALS AND METHODS 
 

The sequence of research activities, 
illustrated in Figure 1, begins with problem 
identification, followed by a literature review, he 
selection of the study area, data acquisition, data 
preprocessing, the determination of appropriate 
machine learning algorithms, and ultimately, the 
evaluation of the developed model.   

 
Source:  (Research Results, 2025) 

Figure 1. Research Flow and Modeling Framework  
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Problem Identification 
Rice production in Sumatra is vital for 

national food security but highly vulnerable to 
climate variability. Rainfall, temperature, and 
seasons strongly affected crop yields. Conventional 
models poorly capture complex climate-crop 
interactions. Limited spatial-temporal detail 
hinders adaptive agricultural planning.  

 
Study Literature  

Rice cultivation in Southeast Asia is highly 
vulnerable to climate change, driven by shifting 
rainfall, rising temperatures, and extreme weather. 
Studies show that changing climates severely 
impact rice production in Indonesia and other Asian 
countries, disrupting planting schedules and crop 
cycles [23], [24]. Recently, machine learning models 
like Random Forests, SVMs, and Neural Networks 
effectively captured non-linear climate–yield 
relationships in agriculture [25], [26]. In the 
Indonesian context, several studies have examined 
the vulnerability of rice yields to El Niño events and 
monsoon variability, indicating that severe climatic 
fluctuations may decrease production by as much 
15 % [27]. Previous studies have employed spatial 
econometric and statistical models to identify 
vulnerability hotspots; however, these methods did 
not incorporate advanced machine learning 
algorithms for cross-regional comparisons [28], 
[29]. Recent research has emphasized the 
importance of combining remote sensing and 
machine learning to enhance the precision of crop 
yield forecasting [7].  Unlike previous studies, this 
research offer’s new spatiotemporal analysis of 
climate effects on Sumatra’s rice yields using 
multiple machine learning model for stronger 
regional insights.   
 
Data Collection  

This study analyzes climate variability’s 
impact on rice production in Sumatra (1993–2024) 
using BMKG and agricultural data, integrating 
climate and yield records after preprocessing for 
consistency. The procedure for gathering data is 
depicted in Figure 2, whereas Table 1 presents a 
summary of the dataset employed in this study. 

 
Table 1. Research Dataset 

Province  Aceh  Aceh  Aceh  Aceh  
Year 1993 1994 1995 1996 

Production 
(tons) 

13295 12996 13829 14191 

Land Area 
(KM²) 

3235 3290 3392 3482 

Rainfall 
(mm) 

1627 1521 1476 1557 

Humidity 
(%) 

82.00 82.12 82.72 83.00 

Province  Aceh  Aceh  Aceh  Aceh  
Temperature 26.06 26.92 26.27 26.08 

(℃)     

Source: (Research Results, 2025) 
  

 
Source: (Research Results, 2025) 

Figure 2. Data Collection Phase 
 

Pre-processing   
The data processing stage aims to convert 

and refine raw datasets into structured, high-
quality inputs, thereby ensuring their 
appropriateness and effectiveness for 
implementing machine learning models consistent 
with the intended objectives of the study [30]. The 
procedure involves a structured sequence of steps 
aimed at improving data quality, resolving 
inconsistencies, and aligning the data architecture 
with the requirements of the analytical framework 
[31]. This section outlines the primary objectives of 
the data preprocessing stage, which is essential for 
preserving the dataset’s integrity, ensuring 
consistency, and preparing it for analysis [32], the 
following are the objectives of the data pre-
processing stage:  
1. Cleaning Data 

Eliminate irrelevant noise, unusual 
observations, and non-essential records to 
improve the integrity of the dataset, including 
the systematic identification and proper 
handling of missing or abnormal values [33].  

2. Normalization  
Standardizing feature scales to comparable 
ranges helps prevent variables with larger 
magnitudes from dominating, thereby ensuring 
a balanced contribution of each attribute to the 
learning algorithm [34].  

3. Data Transformation   
Implement additional data preprocessing 
techniques, such as transformation or 
normalization, to adjust the underlying 
distribution when required by the analytical 
objectives [35].  
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4. Feature Selection 
Important preprocessing stage in machine 
learning, feature selection improves the 
efficiency and interpretability of the model by 
removing redundant or unnecessary variables 
while keeping the most important features for 
prediction accuracy [36].  

5. Hyperparameter Tuning 
Hyperparameter tuning increases prediction 
accuracy and generalization by methodically 
modifying algorithm parameter to balance bias 
and volatility [37].  

 
Modeling  

This study develops models to assess and 
predict climate impacts on rice yield in Sumatra. 
The process begins with collecting and 
preprocessing climate, yield, and spatial datasets. 
These datasets undergo feature selection and 
normalization for consistency and performance 
optimization. Model training and validation follow, 
applying various machine learning algorithms. The 
models capture complex, non-linear relationships 

between climate factors and rice production. 
Ensemble and kernel methods effectively capture 
crop yield non-linearity [38].  
 
Linear Regression  
               Linear regression is a fundamental 
statistical method used to analyze the relationship 
between a response variable and one or more 
explanatory variables [39], as shown in Equation 1.  

𝑦 = β0 + β1𝑥1 + β2𝑥2 +⋯+ β𝑝𝑥𝑝 + ε     (1) 

            Linear Regression provides a transparent, 
simple baseline model quantifying the marginal 
linear effects of climatic variables on rice yield, 
enabling direct interpretability. Linear Regression 
serves as a benchmark model for agricultural data, 
evaluating complex machine learning’s 
performance gains in nonlinear, multicollinear 
environments.  
 
Random Forest 

Random Forest is a machine learning method 
built on the ensemble concept, where multiple 
decision trees are constructed during training, and 
the final prediction is produced through majority 
voting for classification or by averaging the 
outcomes for regression [40]. Utilizes constructed 
decision trees and uses random feature subsets at 
each split to reduce overfitting [41]. Formally, for a 
set of {𝑇𝑏}𝑏=1

𝐵 , the prediction of a Random Forest for 
regression can be written in Equation 2.  Where, 
𝑇𝑏(𝑥) is the prediction of the 𝑏 − 𝑡ℎ decision tree.  

𝑓(𝑥) = ∑ 𝑇𝑏(𝑥)
𝐵
𝑏=1               (2) 

            Random Forest was chosen for its robustness, 
ensembles of decision trees, and ability to handle 
complex, nonlinear agricultural data interactions, 
reducing overfitting. The accuracy and adaptability 
of Random Forest’s performance were compared 
because of its restricted interpretability and high 
computing expenses for huge temporal data.  
 
Gradient Boosting  

Gradient Boosting represents an ensemble 
technique that constructs predictive models 
through the iterative integration of weak learners, 
typically decision trees, to minimize a specified loss 

function [42]. Formally, given a loss function 

𝐿(𝑦, 𝐹(𝑥)), the model is updated as Equation 3.  

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ν ⋅ ℎ𝑚(𝑥)            (3) 

Where, 𝐹𝑚−1(𝑥) is the previous model ℎ𝑚(𝑥) 
is the weak learner fitted to the gradient of loss, and 
ν ∈ (0,1] is the learning rate controlling the 
contribution of each learner. Gradient Boosting was 
prioritized for its strong predictive performance 
and adaptability to heterogeneous agricultural data. 
Gradient boosting offers high accuracy but its 
computationally intensive, risk overfitting (if 
mistuned), and demands careful interpretation to 
simpler models.  

 
Support Vector Regression  

Support Vector Regression (SVR) functions 
as an extension of the Support Vector Machine 
(SVM) framework, commonly employed to address 
regression problems [43]. SVR finds optimal 
function linking inputs to targets, minimizing 
complexity within error ε, tolerance. Equation 4 
provides the formulation of the optimization 
problem.  

min𝑤,𝑏,ξ𝑖,ξ𝑖∗
1

2
|𝑤|2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖∗)

𝑛
𝑖=1      (4) 

SVR, unlike linear models uses kernel 
function (e.g., RBF) to capture complex climatic 
variable and rice yield interactions. SVR 
performance is sensitive to kernel and parameter 
selection, demanding careful tuning which 
increases computational complexity. However, its 
balanced trade-off between predictive accuracy and 
generalization justifies inclusion.  

 
Decision Tree  

Decision Tree is a method that applies a 
supervised learning technique that is commonly 
applied in both classification and regression 
problems, primarily because of its transparent 
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structure and its capability to process categorical as 
well as numerical variables [44]. The dataset is 
repeatedly divided into smaller groups according to 
feature values, with each division designed to either 
increase information gain or reduce impurity. The 
most common impurity measure is the Gini Index, 
defined as Equation 5. 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑ 𝑝(𝑖|𝑡)2𝐶
𝑖=1              (5) 

Decision tree were chosen for their high 
interpretability, effectiveness with heterogenous 
and nonlinear agricultural data, and ability to 
manage mixed/missing variables. DTs risk 
overfitting high-dimensional data, limiting 
generalization. Pruning and cross-validation were 
used; yet, their explanatory power remains valuable 
for comparison.  

  
K-Nearest Neighbors 

As a supervised learning model, the K-
Nearest Neighbors (KNN) approach is widely 
applied in classification tasks technique of a non-
parametric nature, commonly applied in both 
classification and regression problems [45]. KNN 
classifies data points by assigning the class most 
common among its 𝑘 nearest neighbors, offering 
robust, simple pattern recognition despite high 
computational cost on large datasets [46]. The 
Euclidean distance in Equation 6. 

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1               (6) 

           The K-Nearest Neighbors (KNN) is suitable for 
heterogeneous agricultural datasets due to its 
similarity-based prediction. Its strength are 
simplicity, flexibility, and interpretability for 
modeling complex patterns without distribution. 
KNN’s sensitivity to irrelevant features, data scaling, 
and computational inefficiency with large 
spatiotemporal datasets necessitated careful 
parameter tuning and data normalization for fair 
comparison.  
 
Spatiotemporal Analysis for Environmental 
Studies  

Spatial dependence diagnostics and model 
changes addressed potential spatial 
autocorrelation, preventing skewed parameter 
estimates and model overfitting. To achieve 
objective model evaluation spatial filtering using 
eigenvector-based spatial filtering (ESF) and spatial 
cross-validation when significant spatial clustering 
was found. [47]. To mitigate geographical bias, 
Random Forest and GBM were trained using 
spatially blocked k-fold cross validation [48]. This 
approach robustly estimated climate-yield 

relationships across Sumatra-Indonesia, mitigating 
common agricultural spatial autocorrelation [49].  

RESULTS AND DISCUSSION 
 
Descriptive Analysis of Climatic and Rice 
Production Trends  

Sumatra’s hot, humid climate (26–28℃, 
>80% humidity) shows stable conditions but 
distinct wet–dry seasons. Rainfall patterns differ 
north–south and across years, influenced by ENSO 
and IOD. Rice yields (1993–2024) vary regionally, 
peaking in North, South Sumatra, and Lampung, 

with fluctuations tied to El Niño/La Niña. The data 

emphasizes these inter-provincial differences and 
the year-over-year volatility, shown in table 2 
below. Rice production in Sumatra peaked mid-
2010s, declined after 2017, showing strong 
provincial disparities and structural vulnerabilities. 
Figure 3 shows the specific of this interprovincial 
results trend.   
 
Table 2. Summary of Rice Production and Climatic 

Data (1993-2024) 

Province 
Average 

Production 
(tons) 

Average 
Rainfall 
(mm) 

Average 
Humidity 

(%) 

Temp 
(℃) 

     
Aceh 1,486,900 1,627 82.00 26.06 
North 

Sumatra 
1,400,000 2,300 85.00 25.50 

West  
Sumatra 

1,300,000 2,140 83.00 26.50 

Riau 1,100,000 2,100 83.00 27.00 
Jambi 800,000 1,900 81.00 27.50 
South 

Sumatra 
3,500,000 1,850 80.00 27.00 

Bengkulu 650,000 2,200 84.00 26.00 
Lampung 1,900,000 1,950 83.00 26.50 

Source: (Research Results, 2025) 
 

 
Source: (Research Results, 2025) 

Figure 3. Average Annual Rice Production Trends 
 
Spatial-Temporal Patterns of Climate Impacts 
on Rice Yields  

Climate impacts on rice yields vary 
regionally; rainfall and temperature changes 
differently affect productivity across Sumatra 
provinces. Table 3 and Figure 4 below provide an 
overview of the variations in the effects of 
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important climatic factors on rice production in the 
eight Sumatra provinces. Table 3, which presents 
the average temperature, rainfall, and rice output 
for eight.  Rainfall variation strongly influences rice 
yields across Sumatra’s provinces.  

 

 
Source: (Research Results, 2025) 

Figure 4. Sumatra Rice-Climate Trends 
 

Table 3. Mean Values of Rice Output and Climatic 
Variables Across Sumatra’s Provinces (1993–2024) 

Province 
Average 

Production 
(106 kg) 

Average 
Rainfall 
(mm) 

Average 
Temperature 

(℃) 
Aceh  1,48 1,580 26.29 
North 
Sumatra  

2,11 1,850 27.06 

West 
Sumatra  

2,44 2,100 26.83 

Riau  0.65 1,700 27.52 
Jambi  1,18 1,650 27.81 
South 
Sumatra  

4,38 1,750 28.11 

Bengkulu   0.44 2,200 27.01 
Lampung  2,21 1,550 28.02 

   Source: (Research Results, 2025) 
 
Model Performance Comparison  
            The forecasting capability of various machine 
learning algorithms—namely Linear Regression, 
Random Forest, Gradient Boosting, Support Vector 
Regression (SVR), and a Neural Network—was 
evaluated through the statistical indicators R², 
RMSE, and MAE to determine their efficiency in 
predicting rice production across Sumatra Island, as 
presented in Table 4. The Random Forest model 
achieved the best performance with an R² of 0.985 
and minimal errors (RMSE 114,142.21; MAE 
63,135.09). It explained 98.5% of the dependent 
variable’s variance with minimal mean prediction 
error. Its superior results stem from its ensemble 
approach that merges multiple trees to reduce 
overfitting and enhance accuracy. The Gradient 
Boosting model ranked second with an R² of 0.982 
and slightly higher errors (RMSE 125,565.34; MAE 
74,409.28). The Neural Network achieved an R² of 
0.978, performing well but with larger errors 
(RMSE 138,590.23; MAE 82,901.15). The SVR and 
Linear Regression models performed weaker, with 
R² values of 0.954 and 0.951 respectively, and their 

higher error rates (SVR RMSE 196,432.11; Linear 
Regression RMSE 204,501.56) indicate less 
effective pattern recognition. Overall, simpler 
models underperformed, revealing non-linear 
relationships better captured by ensemble and 
neural network approaches.  
 

Table 4. Performance Comparison of Machine 
Learning Models 

Model  R² Score  RMSE  MAE  
Random 
Forest  

0.985 114,142.21 63,135.09  

Gradient 
Boosting   

0.982  125,565.34  74,409.28  

Neural 
Network   

0.978  138,590.23  82,901.15   

SVR  0.954  196,432.11  108,765.43  
Linear 
Regression   

0.951  204,501.56  120,321.89  

Source: (Research Results, 2025) 
 
Key Climatic Determinants of Rice Production  
            Feature importance analysis shows land as 
the main factor for rice prediction in Sumatra 
(0.928), while temperature (0.025), rainfall (0.024), 
and humidity (0.022) have smaller yet notable 
effects (Table 5). Rainfall during planting remains a 
key factor determining water availability for rice 
germination and tillering. Although land availability 
drives most production variability, climatic 
variables regulate crop resilience to environmental 
stress. These findings emphasize the vital role of 
climate indicators in agricultural planning. The 
quantified effects of rainfall and temperature 
underscore the importance of seasonal climate 
forecasts for optimizing irrigation and reducing 
water deficit risks. Similarly, the moderate yet 
significant temperature influence highlights the 
need for developing heat-tolerant rice varieties 
amid ongoing climate warming. While climatic 
factors show lower feature importance than land 
area, their alignment with rice growth physiology—
where water and temperature directly affect 
developmental stages—reinforces their adaptive 
relevance. Hence, although land expansion may 
boost short-term yields, sustainable rice production 
ultimately depends on adopting climate-responsive 
technologies and policies.  

 
Source: (Research Results, 2025) 

Figure 5. Climate Anomalies in Sumatra 
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Table 5. Feature Importance of Climatic and Land 
Variables on Rice Production 

Rank   Feature  Importance  
1 Land Area  0.928 
2 Temperature  0.025 

3 Rainfall  0.024   
4 Humidity  0.022  

Source: (Research Results, 2025) 
 

CONCLUSION 
 
 This study demonstrates that integrating 
spatiotemporal analysis with advance machine 
learning models provides a powerful framework for 
understanding and predicting the impacts of 
climate variability on rice production in Sumatra. 
The Random Forest model achieved the highest 
predictive accuracy (R²=0.985), outperforming other 
algorithms by effectively capturing complex 
nonlinear interactions between climatic and 
agricultural variables. Results highlight distinct 
spatial heterogeneity, where rainfall and 
temperature exert varying influences across 
provinces, emphasizing the necessity of localized 
adaptation measures. While land area remains the 
dominant factor in yield prediction, climatic 
parameters significantly affect productivity stability 
and resilience. Therefore, developing climate-smart 
agricultural policies, incorporating ensemble 
machine learning tools, and enhancing early 
warning systems are essential to support 
sustainable and climate-resilient rice productions 
across Sumatra and similar tropical regions 
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