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Abstract— This study presents a comparative study of hyperparameter optimization methods applied to the
Light Gradient Boosting Machine (LightGBM) algorithm for asthma prediction. Traditional machine learning
models often face limitations in accuracy and generalization capabilities due to suboptimal hyperparameter
configurations. To address these challenges, this study evaluates and compares four approaches: Default
LightGBM, RandomizedSearchCV, Optuna Optimization, and Bayesian Optimization. Experimental results
show that Bayesian Optimization provides the best performance with an accuracy of 78%, a precision of
0.7778, a recall of 0.7778, an F1-score of 0.7778, and an ROC-AUC of 0.975. These findings emphasize the
importance of selecting an appropriate optimization strategy to improve model performance in clinical
prediction tasks. Overall, this study confirms the effectiveness of Bayesian Optimization in improving the
predictive capabilities of LightGBM and provides an important contribution to the development of decision
support systems in healthcare, particularly in the diagnosis and management of asthma.

Keywords: asthma prediction, bayesian optimization, hyperparameter optimization, lightgbm, machine
learning
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Intisari— Penelitian ini menyajikan studi komparatif mengenai metode optimisasi hyperparameter yang
diterapkan pada algoritma Light Gradient Boosting Machine (LightGBM) untuk prediksi penyakit asma. Model
machine learning tradisional sering menghadapi keterbatasan akurasi dan kemampuan generalisasi akibat
konfigurasi hyperparameter yang tidak optimal. Untuk mengatasi tantangan tersebut, penelitian ini
mengevaluasi dan membandingkan empat pendekatan, yaitu Default LightGBM, RandomizedSearchCV,
Optuna Optimization, dan Bayesian Optimization. Hasil eksperimen menunjukkan bahwa Bayesian
Optimization memberikan kinerja terbaik dengan akurasi sebesar 78%, precision 0.7778, recall 0.7778, F1-
score 0.7778, dan ROC-AUC 0.975. Temuan ini menegaskan pentingnya pemilihan strategi optimisasi yang
tepat untuk meningkatkan performa model dalam tugas prediksi klinis. Secara keseluruhan, penelitian ini
menegaskan efektivitas Bayesian Optimization dalam meningkatkan kemampuan prediktif LightGBM, serta
memberikan kontribusi penting bagi pengembangan sistem pendukung keputusan di bidang kesehatan,
khususnya dalam diagnosis dan manajemen penyakit asma.

Kata Kunci: prediksi asma, optimisasi Bayesian, optimisasi hyperparameter, LightGBM, pembelajaran mesin.

INTRODUCTION

Artificial Intelligence (AI) has become a
highly influential catalyst driving transformation
across multiple domains, particularly in healthcare,
where machine learning (ML) models are being
increasingly employed to enhance clinical decision
making and disease prediction [1][2][3]. With the
rapid growth of computing power and the
availability of large-scale medical data, Al-based
methods offer the potential to improve diagnostic
accuracy, reduce human bias, and provide more
efficient and cost-effective healthcare solutions
[4]1[5][6]- Among various diseases, Globally, asthma
impacts over 300 million individuals, making it one
of the most common chronic respiratory illnesses
[71[8][9][10][11] is a key focus area where
advanced computational approaches can make
significant contributions to early detection and
management.

Asthma involves chronic airway
inflammation, variable airflow restriction, and
repeated occurrences including symptoms such as
wheezing, coughing, and difficulty breathing
[12][13][14][15]. Conventional diagnostic methods,
such as spirometry and peak expiratory flow
measurement, are still considered the gold standard
in clinical practice. However, these methods often
face challenges, including dependence on patient
cooperation, limited sensitivity in detecting changes
in the small airways, and potential delays in
diagnosis [16][17][18][19][20]. Therefore,
researchers are increasingly exploring non-invasive
Al-based alternatives, including acoustic analysis of
breath sounds and computational modeling of
medical records, to improve the efficiency and
objectivity of asthma detection.

Several machine learning algorithms, such as
Support Vector Machine (SVM), Random Forest
(RF), Extreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Machine (LightGBM), have
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shown potential in classifying respiratory diseases
using both structured and unstructured data
[21][22][23][24]. Previous studies have
demonstrated that ensemble learning methods
combined with acoustic biomarkers or clinical
variables can achieve better predictive performance
compared to traditional diagnostic tools. For
example, Lyu et al. developed an XGBoost-based
model for asthma classification using non-invasive
sound biomarkers, which demonstrated high
accuracy and good generalization ability across
multiple validation cohorts [21]. Meanwhile, Wang
et al. proposed an ensemble framework for
detecting acute exacerbations of chronic
obstructive pulmonary disease (AECOPD) by
leveraging LightGBM and Bayesian optimization,
successfully improving prediction reliability in
complex and imbalanced clinical datasets [25]. In
another study, Muthevi and Mutyam introduced an
enhanced LightGBM  model (HY_OptGBM)
optimized using the OPTUNA framework for
predicting coronary heart disease (CHD). This study
demonstrated that hyperparameter tuning and loss
function modification can significantly improve
prediction accuracy and training efficiency.
Furthermore, the integration of a Voting Classifier
combining Random Forest and AdaBoost achieved
an impressive 99% accuracy, confirming the power
of ensemble learning and hyperparameter
optimization in medical prediction tasks [26].
Despite these advances, a challenge remains
hyperparameter optimization in ML models, which
significantly impacts generalizability, accuracy, and
computational efficiency. LightGBM, a boosting
framework known for its speed and accuracy, is
highly sensitive to hyperparameter settings
[27]128][29]. Techniques such as Bayesian
Optimization, Optuna, and RandomizedSearchCV
have emerged as optimal configuration search
strategies [30][31], but comparative studies on the
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effectiveness of these methods in the context of
asthma prediction are still limited.

This study attempts to address this gap by
conducting a comparative analysis of various
hyperparameter optimization techniques in
LightGBM for asthma prediction. Using a curated
asthma dataset, this research assesses and contrasts
the performance of Bayesian Optimization, Optuna,
RandomizedSearchCV, and the default
configuration of LightGBM. This study not only
provides empirical insights into the balance among
accuracy, robustness, and computational efficiency
of various optimization methods but also confirms
the potential of optimized LightGBM as a reliable
predictive tool to support clinical decision-making
in asthma diagnosis and management.

MATERIALS AND METHODS

This study aimed to investigate the
comparison of hyperparameter optimization
techniques in the LightGBM algorithm in predicting
asthma. The classification results are expected to
provide more comprehensive insights into the
effectiveness of each optimization method in
improving the performance of the LightGBM model
to support data-driven diagnosis.

A. Method of collecting data

The research data was obtained from an
asthma dataset available on Kaggle. This dataset
contains several cdinical variables relevant to
distinguishing patients with and without asthma
risk. A total of 900 data samples were used. Before
being used for model training, the dataset
underwent several preprocessing stages. This
process included data processing involving
cleansing and imputation of missing values, and
normalizing numeric variables to ensure each
feature was on a balanced scale. Missing values
were handled using median imputation to minimize
the influence of outliers and maintain data
consistency across features. This ensured data
quality and increased accuracy of the results.
Although the dataset contains only 900 samples, it
provides a balanced and representative subset for
benchmarking optimization techniques. However,
this sample size may not fully capture the
heterogeneity of real-world asthma data, which
should be addressed in future studies with larger
datasets. The relatively limited sample size could
restrict the extent to which the findings can be
generalized; thus, future research should validate
the findings on larger and more diverse datasets.
Examples of sample data used in this study are
shown in Table 1.
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Table 1. Asthma Data Sample

No. X1 X2 X3 X4 X5 Y
1. No 28.13 Yes No No No
2. Yes 23.63 Yes No No No
3. Yes 37.42 No No No No
4. Yes 21.95 No No No No
5. No 38.41 Yes No No No
6. No 26.61 No No No No
7. No 23.56 Yes No No Yes
8. No 30.04 No No No Yes
9. No 23.3 No No No No
10. No 33.52 Yes No No Yes
11. No 28.32 No No Yes No
12. No 33.45 No No No No
13. Yes 33.28 Yes No No Yes
14. Yes 24.27 Yes No Yes No
15. No 23.38 Yes No No No
16. No 24.53 No No No No
17. No 23.63 No No No No
18. No 31.09 Yes No No Yes
900. No 46.56 No No No No

Source : (Research Results, 2025)

Table 2. Asthma Prediction Dataset Structure
Attribute Name Description

X1 HeartDisease g;z‘;(}lgo). of heart disease
Body Mass Index (BMI) is the
X2 BMI result of calculating
weight/height.
Smoking status, whether the
X3 Smoking individual has ever smoked or
not.
X4 AlcoholDrinking A(AYIZ(;;)I(\)IIO).consumptlon status

X5 Stroke History of stroke (Yes/No).
Total number of days in the
previous month characterized
by poor physical condition.
Total number of days in the
previous month characterized
by poor Mental condition.
Difficulty walking or climbing
stairs (Yes/No).

Gender (Male/Female).

Age groups (e.g.: 18-24, 25-29,
etc.).

Respondent's  race/ethnicity
(e.g.: White, Black, Asian, etc.).
Diabetic status (Yes/No).
Physical activity in the last 30
days (Yes/No).

Overall health evaluation
categorized as Excellent, Very
Good, Good, Fair, or Poor.
Average sleep time per night
(hours).

Asthma status (Yes/No) -
target label in this study.

Source : (Research Results, 2025)

X6 PhysicalHealth

X7 MentalHealth

X8 DiffWalking
X9 Sex
X10 AgeCategory

X11 Race
X12 Diabetic
X13  PhysicalActivity

X14 GenHealth

X15 SleepTime

Y Asthma

The data sample taken for this study was
balanced, as seen in Figure 1. Figure 1 shows the
distribution of asthma and non-asthma cases,
confirming a balanced data set (50% positive, 50%
negative).
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Source : (Research Results, 2025)
Figure 1. Balanced Data
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B. Light Gradient Boosting Machine (LightGBM)

algorithm

The Light Gradient Boosting Machine
(LightGBM) is a gradient boosting decision tree-
based algorithm developed to achieve high
computational speed while maintaining optimal
prediction accuracy. This algorithm uses a leaf-wise
growth strategy, allowing for more efficient
decision tree branch separation compared to level-
wise methods. LightGBM is also capable of handling
large-scale datasets, supports categorical data, and
relies heavily on hyperparameter configuration to
achieve maximum performance. In this study,
LightGBM was used as the primary model for
asthma classification. The LightGBM workflow is
shown in Figure 2.

Inftialzation Prediction

| '

1 B —

T ModelEaluation

} '
Siling Tne Pl Tuing

Source : (Nirajan Khadka, 2023)
Figure 2. LightGBM Architecture and Process Flow

Figure 2 shows the main stages in the
LightGBM algorithm. The workflow commences
with data preprocessing, a stage that focuses on
cleaning, normalizing, and preparing the data. The
data is then divided into subsets for training and
testing (Splitting the Data). The next stage involves
Initialization to initialize the model's initial
parameters, followed by Splitting Nodes and
Building a Tree to build a decision tree structure
based on a leaf-wise growth strategy. Once the tree
is formed, the algorithm performs Gradient
Boosting, which corrects prediction errors by
combining weak tree models. This process is
complemented by Regularization to prevent
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overfitting. The final stage is Prediction, where the
model generates predictions for new data, followed
by Model Evaluation using performance metrics. If
the results are not optimal, Parameter Tuning is
performed by adjusting hyperparameters until the
model achieves optimal performance.

C Hyperparameter Optimization Stages

Hyperparameter tuning was carried out to
achieve the optimal configuration that could
improve LightGBM performance. This study used
four  approaches: the default LightGBM
configuration, RandomizedSearchCV, Bayesian
Optimization, and Optuna Optimization. The main
hyperparameters optimized included the number of
leaves (num_leaves), maximum tree depth
(max_depth), learning rate (learning_rate), number
of boosting rounds (n_estimators), and the
minimum number of samples in leaf formation
(min_child_samples).

D. Model Evaluation

Model performance was assessed through
conventional classification metrics such as
accuracy, precision, recall, and F1-score, which are
defined as follows:

TP+TN

Accuracy = (1)
TP+FP+FN+TN
.. TP
Precision = —— (2)
TP + FP
TP
Recall = (3)
TP+FN
2 x Precision x Recall
F1 - Score =

Precision+Recall

In addition, ROC Curve and AUC value are
used to measure the model’s capability to
differentiate between positive and negative
categories, while Confusion Matrix is used to
analyze the distribution of correct and incorrect
predictions.

E. Research Flow

This research process begins with data
collection and pre-processing, followed by the
application of the LightGBM algorithm. Next,
hyperparameter optimization is performed using
various methods, followed by an evaluation phase
using classification metrics. Finally, the results of
each optimization method are compared to
determine the most effective approach for asthma
prediction. The overall research process is

visualized in Figure 3.
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Source : (Research Results, 2025)
Figure 3. Research Flow Diagram

Diagram 3 illustrates the overall research
flow for the asthma prediction study using
LightGBM with various hyperparameter
optimization techniques. The study began with the
collection of the Asthma Dataset, followed by the
Data Preprocessing stage, which included data
cleaning, handling missing values, normalization,
and encoding categorical variables. Categorical
variables were encoded using Label Encoding,
which is natively supported by LightGBM. This
approach ensures efficient computation while
maintaining feature interpretability. Subsequently,
the data was partitioned into two sets: training and
testing.

The next stage is LightGBM Architecture &
Process, where data is fed into the LightGBM
algorithm to construct a decision tree, run the
boosting process, and generate initial predictions.
After the base model is formed, Hyperparameter
Optimization is performed, which is the focus of this
research. Four approaches are compared: Default
LightGBM, RandomizedSearchCV, Bayesian
Optimization, and Optuna Optimization.

Each optimization method was tested using
Model Training & Evaluation using cross-validation
techniques. Model evaluation was performed based
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on accuracy, precision, recall, F1-score, ROC Curve,
and AUC metrics. The results of each method were
then analyzed in the Comparative Analysis stage,
where the performance of the four approaches was
compared to examine the trade-offs between
accuracy, robustness, and computational efficiency.

The final stage of this research is Conclusion,
where conclusions are drawn regarding the most
effective hyperparameter optimization method to
improve LightGBM performance in asthma
prediction.

RESULTS AND DISCUSSION

Based on the results of training, validation,
and testing the model using different
hyperparameter configurations, varying
performance was obtained for asthma prediction.
The main objective of this experiment was to
evaluate the impact of various hyperparameter
optimization techniques on the accuracy and
generalization of the LightGBM model.

A. Result
The study results compare the performance of
LightGBM  across four scenarios:  Default,

RandomizedSearchCV, Optuna Optimization, and
Bayesian Optimization. The evaluation was conducted
using accuracy, precision, recall, F1-score, and ROC-
AUC metrics. Under the default configuration, the
proposed LightGBM model attained an accuracy of
0.70. These results serve as a baseline
demonstrating LightGBM's capabilities without
hyperparameter optimization.

With RandomizedSearchCV, the accuracy
value obtained was 0.7 with an ROC-AUC of 0.7527.
Although there was an increase in model
discrimination in the ROC-AUC, the accuracy and
F1-score performance were actually lower than the
default configuration. On Optuna Optimization, the
model produced an accuracy of 0.7278 with a
precision of 0.7114, a recall of 0.7667, an F1-score
of 0.7381, and an ROC-AUC of 0.7698. The higher
AUC value compared to RandomizedSearchCV
indicates Optuna's superior hyperparameter space
exploration capabilities.

Meanwhile, Bayesian Optimization provided
the best performance with achieved an accuracy,
precision, recall, and F1-score of 0.78 each, and the
highest ROC-AUC among all methods, namely 0.975.
In the Confusion Matrix, it can be seen that Bayesian
Optimization is superior in balancing the
predictions of the "No" and "Yes" classes, although
the recall of the "Yes" class is still lower than the
"No" class.
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Figure 4. Confusion Matrix LightGBM per
Optimization Method
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Figure 5. ROC Curve Comparison among
Optimization Methods

In addition to the visualization, the performance
comparison is shown in the following table:

Table 3. Comparison Results of Light GBM with
Different Hyperparameter Optimization Methods

. F1-
Method Accura Precisi Reca Scor ROC-
cy on 11 e AUC
Default 0.68 0.70 0.75
709 7127
LightGBM 0% 0 89 06 8
RandomSear
chCV 0.68 0.69 0.75
709 .704
Cv=10, 0% 0.7046 89 67 27
500 Iterasi
Optuna 0.76 0.73 0.76
0,
Optimization 72% 0.7114 67 81 98
Bayesian
0.77 0.77 0.97
imizati 789 777
Optimization 8% 0 8 78 78 5

Cv=10
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500 Iterasi

Source : (Research Results, 2025)

Table 3 summarizes the performance of the
four hyperparameter optimization methods used in
LightGBM. The results show that Bayesian
Optimization provides the best performance across
all key metrics, specifically with an accuracy of 0.78
and a peak precision of 0.7800 with a training
time taken of 1 hour and 28 minutes. Optuna
Optimization shows improvement over the default
configuration with a higher ROC-AUC value
(0.7698) with a training time of 34 minutes,

although accuracy is still slightly lower.
RandomizedSearchCV  produces the lowest
performance compared to the other two

optimization methods in both accuracy and F1-
score, although its ROC-AUC value (0.7527) with a
training time of 13 minutes is still relatively good.
The default LightGBM configuration is more stable
than RandomizedSearchCV with a training time of
only 4 minutes, but it is unable to outperform the
Bayesian results. Thus, this table confirms that the
Bayesian model-based optimization approach is
more effective than both random search and the
default configuration.

B. Discussion

This study compared four hyperparameter
optimization approaches to LightGBM for asthma
prediction. Results showed that Bayesian
optimization performed best compared to other
methods. With an accuracy of 0.78 and relatively
balanced precision and recall values, Bayesian
optimization proved more effective in finding
optimal hyperparameter configurations.

Compared to Optuna, Bayesian performed
better, especially in positive class recall, despite
both being based on sequential model-based
optimization. Meanwhile, RandomizedSearchCV
tended to produce less stable results because
random search often failed to find the best
parameter combination. The default LightGBM
actually outperformed RandomizedSearchCV in
terms of accuracy, although it was less able to
improve ROC-AUC.

Overall, these results confirm that the choice
of  hyperparameter  optimization = method
significantly impacts model performance. Bayesian
optimization emerged as the most consistent and
accurate approach for asthma prediction, and
therefore can be recommended for the development
of machine learning-driven systems for clinical
decision-making. Beyond metric comparisons, the
differences in performance can be attributed to each
optimizer’s search  mechanism. Bayesian
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Optimization’s probabilistic approach allows it to
explore and exploit the hyperparameter space more
effectively, leading to better generalization. In
contrast, RandomizedSearchCV’s random
exploration may overlook optimal regions, resulting
in less consistent outcomes.

CONCLUSION

Based on the results of a study comparing
four methods, one default and three
hyperparameter optimization methods in the
LightGBM algorithm for asthma prediction, it can be
concluded that Bayesian Optimization showed the
best performance compared to other methods.
Bayesian Optimization with a 10-fold cross-
validation configuration and 500 iterations
managed to achieve an accuracy of 78%, a precision
of 0.7778, arecall of 0.7778, an F1-score of 0.7778,
and the highest ROC-AUC value of 0.975.

Meanwhile, the Optuna Optimization method
provided quite good results with an accuracy of
72%, a precision of 0.7114, arecall of 0.7667, an F1-
score of 0.7381, and an ROC-AUC of 0.7698. This
method excels in the recall aspect, although overall
it is still below Bayesian Optimization. On the other
hand, RandomizedSearchCV with a 10-fold cross-
validation configuration and 500 iterations
produced an accuracy of 70% with relatively lower
performance compared to Bayesian and Optuna.
Meanwhile, Default LightGBM showed baseline
results with an accuracy of 70% and an ROC-AUC of
0.758.

Bayesian optimization's success in achieving
better performance can be attributed to its ability to
more efficiently explore and exploit
hyperparameter space using a probabilistic model
approach. This suggests that selecting the right
hyperparameter optimization method substantially
enhances the performance of the LightGBM model
in predicting asthma. One limitation of this study is
the absence of external validation through
independent datasets or actual clinical data. Future
work should include external validation to confirm
the robustness and clinical applicability of the
optimized LightGBM models.

Overall, this study confirms that Bayesian
optimization is the most effective and consistent
hyperparameter optimization method, and
therefore can be recommended for use in the
development of machine learning-based asthma
prediction systems. With its more stable and
accurate performance, this approach has the
potential to make a significant contribution to
supporting decision support systems in the
healthcare sector.
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