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Abstract— This study presents a comparative study of hyperparameter optimization methods applied to the 
Light Gradient Boosting Machine (LightGBM) algorithm for asthma prediction. Traditional machine learning 
models often face limitations in accuracy and generalization capabilities due to suboptimal hyperparameter 
configurations. To address these challenges, this study evaluates and compares four approaches: Default 
LightGBM, RandomizedSearchCV, Optuna Optimization, and Bayesian Optimization. Experimental results 
show that Bayesian Optimization provides the best performance with an accuracy of 78%, a precision of 
0.7778, a recall of 0.7778, an F1-score of 0.7778, and an ROC-AUC of 0.975. These findings emphasize the 
importance of selecting an appropriate optimization strategy to improve model performance in clinical 
prediction tasks. Overall, this study confirms the effectiveness of Bayesian Optimization in improving the 
predictive capabilities of LightGBM and provides an important contribution to the development of decision 
support systems in healthcare, particularly in the diagnosis and management of asthma. 
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Intisari— Penelitian ini menyajikan studi komparatif mengenai metode optimisasi hyperparameter yang 
diterapkan pada algoritma Light Gradient Boosting Machine (LightGBM) untuk prediksi penyakit asma. Model 
machine learning tradisional sering menghadapi keterbatasan akurasi dan kemampuan generalisasi akibat 
konfigurasi hyperparameter yang tidak optimal. Untuk mengatasi tantangan tersebut, penelitian ini 
mengevaluasi dan membandingkan empat pendekatan, yaitu Default LightGBM, RandomizedSearchCV, 
Optuna Optimization, dan Bayesian Optimization. Hasil eksperimen menunjukkan bahwa Bayesian 
Optimization memberikan kinerja terbaik dengan akurasi sebesar 78%, precision 0.7778, recall 0.7778, F1-
score 0.7778, dan ROC-AUC 0.975. Temuan ini menegaskan pentingnya pemilihan strategi optimisasi yang 
tepat untuk meningkatkan performa model dalam tugas prediksi klinis. Secara keseluruhan, penelitian ini 
menegaskan efektivitas Bayesian Optimization dalam meningkatkan kemampuan prediktif LightGBM, serta 
memberikan kontribusi penting bagi pengembangan sistem pendukung keputusan di bidang kesehatan, 
khususnya dalam diagnosis dan manajemen penyakit asma. 
 
Kata Kunci: prediksi asma, optimisasi Bayesian, optimisasi hyperparameter, LightGBM, pembelajaran mesin. 
 

INTRODUCTION 
 

Artificial Intelligence (AI) has become a 
highly influential catalyst driving transformation 
across multiple domains, particularly in healthcare, 
where machine learning (ML) models are being 
increasingly employed to enhance clinical decision 
making and disease prediction [1][2][3]. With the 
rapid growth of computing power and the 
availability of large-scale medical data, AI-based 
methods offer the potential to improve diagnostic 
accuracy, reduce human bias, and provide more 
efficient and cost-effective healthcare solutions 
[4][5][6]. Among various diseases, Globally, asthma 
impacts over 300 million individuals, making it one 
of the most common chronic respiratory illnesses 
[7][8][9][10][11] is a key focus area where 
advanced computational approaches can make 
significant contributions to early detection and 
management. 

Asthma involves chronic airway 
inflammation, variable airflow restriction, and 
repeated occurrences including symptoms such as 
wheezing, coughing, and difficulty breathing 
[12][13][14][15]. Conventional diagnostic methods, 
such as spirometry and peak expiratory flow 
measurement, are still considered the gold standard 
in clinical practice. However, these methods often 
face challenges, including dependence on patient 
cooperation, limited sensitivity in detecting changes 
in the small airways, and potential delays in 
diagnosis [16][17][18][19][20]. Therefore, 
researchers are increasingly exploring non-invasive 
AI-based alternatives, including acoustic analysis of 
breath sounds and computational modeling of 
medical records, to improve the efficiency and 
objectivity of asthma detection. 

Several machine learning algorithms, such as 
Support Vector Machine (SVM), Random Forest 
(RF), Extreme Gradient Boosting (XGBoost), and 
Light Gradient Boosting Machine (LightGBM), have 

shown potential in classifying respiratory diseases 
using both structured and unstructured data 
[21][22][23][24]. Previous studies have 
demonstrated that ensemble learning methods 
combined with acoustic biomarkers or clinical 
variables can achieve better predictive performance 
compared to traditional diagnostic tools. For 
example, Lyu et al. developed an XGBoost-based 
model for asthma classification using non-invasive 
sound biomarkers, which demonstrated high 
accuracy and good generalization ability across 
multiple validation cohorts [21]. Meanwhile, Wang 
et al. proposed an ensemble framework for 
detecting acute exacerbations of chronic 
obstructive pulmonary disease (AECOPD) by 
leveraging LightGBM and Bayesian optimization, 
successfully improving prediction reliability in 
complex and imbalanced clinical datasets [25]. In 
another study, Muthevi and Mutyam introduced an 
enhanced LightGBM model (HY_OptGBM) 
optimized using the OPTUNA framework for 
predicting coronary heart disease (CHD). This study 
demonstrated that hyperparameter tuning and loss 
function modification can significantly improve 
prediction accuracy and training efficiency. 
Furthermore, the integration of a Voting Classifier 
combining Random Forest and AdaBoost achieved 
an impressive 99% accuracy, confirming the power 
of ensemble learning and hyperparameter 
optimization in medical prediction tasks [26]. 

Despite these advances, a challenge remains 
hyperparameter optimization in ML models, which 
significantly impacts generalizability, accuracy, and 
computational efficiency. LightGBM, a boosting 
framework known for its speed and accuracy, is 
highly sensitive to hyperparameter settings 
[27][28][29]. Techniques such as Bayesian 
Optimization, Optuna, and RandomizedSearchCV 
have emerged as optimal configuration search 
strategies [30][31], but comparative studies on the 
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effectiveness of these methods in the context of 
asthma prediction are still limited. 

This study attempts to address this gap by 
conducting a comparative analysis of various 
hyperparameter optimization techniques in 
LightGBM for asthma prediction. Using a curated 
asthma dataset, this research assesses and contrasts 
the performance of Bayesian Optimization, Optuna, 
RandomizedSearchCV, and the default 
configuration of LightGBM. This study not only 
provides empirical insights into the balance among 
accuracy, robustness, and computational efficiency 
of various optimization methods but also confirms 
the potential of optimized LightGBM as a reliable 
predictive tool to support clinical decision-making 
in asthma diagnosis and management. 

 
MATERIALS AND METHODS 

 
This study aimed to investigate the 

comparison of hyperparameter optimization 
techniques in the LightGBM algorithm in predicting 
asthma. The classification results are expected to 
provide more comprehensive insights into the 
effectiveness of each optimization method in 
improving the performance of the LightGBM model 
to support data-driven diagnosis. 

A. Method of collecting data 
The research data was obtained from an 

asthma dataset available on Kaggle. This dataset 
contains several clinical variables relevant to 
distinguishing patients with and without asthma 
risk. A total of 900 data samples were used. Before 
being used for model training, the dataset 
underwent several preprocessing stages. This 
process included data processing involving 
cleansing and imputation of missing values, and 
normalizing numeric variables to ensure each 
feature was on a balanced scale. Missing values 
were handled using median imputation to minimize 
the influence of outliers and maintain data 
consistency across features. This ensured data 
quality and increased accuracy of the results. 
Although the dataset contains only 900 samples, it 
provides a balanced and representative subset for 
benchmarking optimization techniques. However, 
this sample size may not fully capture the 
heterogeneity of real-world asthma data, which 
should be addressed in future studies with larger 
datasets.   The relatively limited sample size could 
restrict the extent to which the findings can be 
generalized; thus, future research should validate 
the findings on larger and more diverse datasets. 
Examples of sample data used in this study are 
shown in Table 1. 

Table 1. Asthma Data Sample 
No. X1 X2 X3 X4 X5 ... Y 
1. No 28.13 Yes No No ... No 
2. Yes 23.63 Yes No No ... No 
3. Yes 37.42 No No No ... No 
4. Yes 21.95 No No No ... No 
5. No 38.41 Yes No No ... No 
6. No 26.61 No No No ... No 
7. No 23.56 Yes No No ... Yes 
8. No 30.04 No No No ... Yes 
9. No 23.3 No No No ... No 

10. No 33.52 Yes No No ... Yes 
11. No 28.32 No No Yes ... No 
12. No 33.45 No No No ... No 
13. Yes 33.28 Yes No No ... Yes 
14. Yes 24.27 Yes No Yes ... No 
15. No 23.38 Yes No No ... No 
16. No 24.53 No No No ... No 
17. No 23.63 No No No ... No 
18. No 31.09 Yes No No ... Yes 
… … … … … … ... … 

900. No 46.56 No No No ... No 

Source : (Research Results, 2025) 
 

Table 2. Asthma Prediction Dataset Structure 
 Attribute Name Description 

X1 HeartDisease 
History of heart disease 
(Yes/No). 

X2 BMI 
Body Mass Index (BMI) is the 
result of calculating 
weight/height. 

X3 Smoking 
Smoking status, whether the 
individual has ever smoked or 
not. 

X4 AlcoholDrinking 
Alcohol consumption status 
(Yes/No). 

X5 Stroke History of stroke (Yes/No). 

X6 PhysicalHealth 
Total number of days in the 
previous month characterized 
by poor physical condition. 

X7 MentalHealth 
Total number of days in the 
previous month characterized 
by poor Mental condition. 

X8 DiffWalking 
Difficulty walking or climbing 
stairs (Yes/No). 

X9 Sex Gender (Male/Female). 

X10 AgeCategory 
Age groups (e.g.: 18–24, 25–29, 
etc.). 

X11 Race 
Respondent's race/ethnicity 
(e.g.: White, Black, Asian, etc.). 

X12 Diabetic Diabetic status (Yes/No). 

X13 PhysicalActivity 
Physical activity in the last 30 
days (Yes/No). 

X14 GenHealth 
Overall health evaluation 
categorized as Excellent, Very 
Good, Good, Fair, or Poor. 

X15 SleepTime 
Average sleep time per night 
(hours). 

Y Asthma 
Asthma status (Yes/No) – 
target label in this study.  

Source : (Research Results, 2025) 
 

The data sample taken for this study was 
balanced, as seen in Figure 1. Figure 1 shows the 
distribution of asthma and non-asthma cases, 
confirming a balanced data set (50% positive, 50% 
negative). 
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Source : (Research Results, 2025) 

Figure 1. Balanced Data 
 

B. Light Gradient Boosting Machine (LightGBM) 
algorithm 
The Light Gradient Boosting Machine 

(LightGBM) is a gradient boosting decision tree-
based algorithm developed to achieve high 
computational speed while maintaining optimal 
prediction accuracy. This algorithm uses a leaf-wise 
growth strategy, allowing for more efficient 
decision tree branch separation compared to level-
wise methods. LightGBM is also capable of handling 
large-scale datasets, supports categorical data, and 
relies heavily on hyperparameter configuration to 
achieve maximum performance. In this study, 
LightGBM was used as the primary model for 
asthma classification. The LightGBM workflow is 
shown in Figure 2. 

 

 
Source : (Nirajan Khadka, 2023) 
Figure 2. LightGBM Architecture and Process Flow 

 
Figure 2 shows the main stages in the 

LightGBM algorithm. The workflow commences 
with data preprocessing, a stage that focuses on 
cleaning, normalizing, and preparing the data. The 
data is then divided into subsets for training and 
testing (Splitting the Data). The next stage involves 
Initialization to initialize the model's initial 
parameters, followed by Splitting Nodes and 
Building a Tree to build a decision tree structure 
based on a leaf-wise growth strategy. Once the tree 
is formed, the algorithm performs Gradient 
Boosting, which corrects prediction errors by 
combining weak tree models. This process is 
complemented by Regularization to prevent 

overfitting. The final stage is Prediction, where the 
model generates predictions for new data, followed 
by Model Evaluation using performance metrics. If 
the results are not optimal, Parameter Tuning is 
performed by adjusting hyperparameters until the 
model achieves optimal performance. 

 
C. Hyperparameter Optimization Stages 

Hyperparameter tuning was carried out to 
achieve the optimal configuration that could 
improve LightGBM performance. This study used 
four approaches: the default LightGBM 
configuration, RandomizedSearchCV, Bayesian 
Optimization, and Optuna Optimization. The main 
hyperparameters optimized included the number of 
leaves (num_leaves), maximum tree depth 
(max_depth), learning rate (learning_rate), number 
of boosting rounds (n_estimators), and the 
minimum number of samples in leaf formation 
(min_child_samples). 

 
D. Model Evaluation 

Model performance was assessed through 
conventional classification metrics such as 
accuracy, precision, recall, and F1-score, which are 
defined as follows: 

 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
           (1) 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
            (2) 

Recall  = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (3) 

F1 - Score = 
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (4) 

 
In addition, ROC Curve and AUC value are 

used to measure the model’s capability to 
differentiate between positive and negative 
categories, while Confusion Matrix is used to 
analyze the distribution of correct and incorrect 
predictions. 

 
E. Research Flow 

This research process begins with data 
collection and pre-processing, followed by the 
application of the LightGBM algorithm. Next, 
hyperparameter optimization is performed using 
various methods, followed by an evaluation phase 
using classification metrics. Finally, the results of 
each optimization method are compared to 
determine the most effective approach for asthma 
prediction. The overall research process is 
visualized in Figure 3. 



 

 

VOL. 11. NO. 2 NOVEMBER 2025. 
 . 

DOI: 10.33480/jitk.v11i2.7369. 
 

  

465 

 
Source : (Research Results, 2025) 

Figure 3. Research Flow Diagram 
 

Diagram 3 illustrates the overall research 
flow for the asthma prediction study using 
LightGBM with various hyperparameter 
optimization techniques. The study began with the 
collection of the Asthma Dataset, followed by the 
Data Preprocessing stage, which included data 
cleaning, handling missing values, normalization, 
and encoding categorical variables. Categorical 
variables were encoded using Label Encoding, 
which is natively supported by LightGBM. This 
approach ensures efficient computation while 
maintaining feature interpretability. Subsequently, 
the data was partitioned into two sets: training and 
testing. 

The next stage is LightGBM Architecture & 
Process, where data is fed into the LightGBM 
algorithm to construct a decision tree, run the 
boosting process, and generate initial predictions. 
After the base model is formed, Hyperparameter 
Optimization is performed, which is the focus of this 
research. Four approaches are compared: Default 
LightGBM, RandomizedSearchCV, Bayesian 
Optimization, and Optuna Optimization. 

Each optimization method was tested using 
Model Training & Evaluation using cross-validation 
techniques. Model evaluation was performed based 

on accuracy, precision, recall, F1-score, ROC Curve, 
and AUC metrics. The results of each method were 
then analyzed in the Comparative Analysis stage, 
where the performance of the four approaches was 
compared to examine the trade-offs between 
accuracy, robustness, and computational efficiency. 

The final stage of this research is Conclusion, 
where conclusions are drawn regarding the most 
effective hyperparameter optimization method to 
improve LightGBM performance in asthma 
prediction. 

 
RESULTS AND DISCUSSION 

 
Based on the results of training, validation, 

and testing the model using different 
hyperparameter configurations, varying 
performance was obtained for asthma prediction. 
The main objective of this experiment was to 
evaluate the impact of various hyperparameter 
optimization techniques on the accuracy and 
generalization of the LightGBM model. 

 
A. Result 

The study results compare the performance of 

LightGBM across four scenarios: Default, 

RandomizedSearchCV, Optuna Optimization, and 

Bayesian Optimization. The evaluation was conducted 

using accuracy, precision, recall, F1-score, and ROC-

AUC metrics. Under the default configuration, the 
proposed LightGBM model attained an accuracy of  
0.70. These results serve as a baseline 
demonstrating LightGBM's capabilities without 
hyperparameter optimization. 

With RandomizedSearchCV, the accuracy 
value obtained was 0.7 with an ROC-AUC of 0.7527. 
Although there was an increase in model 
discrimination in the ROC-AUC, the accuracy and 
F1-score performance were actually lower than the 
default configuration. On Optuna Optimization, the 
model produced an accuracy of 0.7278 with a 
precision of 0.7114, a recall of 0.7667, an F1-score 
of 0.7381, and an ROC-AUC of 0.7698. The higher 
AUC value compared to RandomizedSearchCV 
indicates Optuna's superior hyperparameter space 
exploration capabilities. 

Meanwhile, Bayesian Optimization provided 
the best performance with achieved an accuracy, 
precision, recall, and F1-score of 0.78 each, and the 
highest ROC-AUC among all methods, namely 0.975. 
In the Confusion Matrix, it can be seen that Bayesian 
Optimization is superior in balancing the 
predictions of the "No" and "Yes" classes, although 
the recall of the "Yes" class is still lower than the 
"No" class. 
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a) LightGBM Default 

b) LightGBM + 
RandomSearchCV 

  

c) LightGBM + Optuna 
d) LightGBM + Bayesian 
Optimization 

Source : (Research Results, 2025) 
Figure 4. Confusion Matrix LightGBM per 

Optimization Method 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
62 + 65

62 + 65 + 25 + 28

=
127

180
≈ 0.7055 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
62

62 + 25

=
62

87
≈ 0.7127 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
62

62 + 28
=

62

90
≈ 0.6889 

𝐹1 𝑆𝑐𝑜𝑟𝑒 

=  
2. (0.7127 𝑥 0.6889)

0.7127 + 0.6889
= 

0.9819 

1.4016
≈ 0.7006 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
62 + 64

62 + 64 + 26 + 28

=
126

180
≈ 0.7 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
62

62 + 26

=
62

88
≈ 0.7046 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
62

62 + 28
=

62

90
≈ 0.6889 

𝐹1 𝑆𝑐𝑜𝑟𝑒 

=  
2. (0.7046 𝑥 0.6889)

0.7046 + 0.6889
= 

0.9708

1.3935
≈ 0.6967 

a) LightGBM Default 
b) LightGBM + 

RandomSearchCV 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
69 + 62

69 + 62 + 28 + 21

=
131

180
≈ 0.7278 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
69

69 + 28

=
69

97
≈ 0.7114 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=  
70 + 70

70 + 70 + 20 + 20

=
140

180
≈ 0.7778 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
70

70 + 20

=
70

90
≈ 0.7778 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
69

69 + 21
=

69

90
≈ 0.7667 

𝐹1 𝑆𝑐𝑜𝑟𝑒 

=  
2. (0.7114 𝑥 0.7667)

0.7114 + 0.7667
= 

1.0909

1.4781
≈ 0.7381 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
70

70 + 20
=

70

90
≈ 0.7778 

𝐹1 𝑆𝑐𝑜𝑟𝑒 

=  
2. (0.7778 𝑥 0.7778)

0.7778 + 0.7778
= 

1.2099

1.5556
≈ 0.7778 

c) LightGBM + Optuna 
d) LightGBM + Bayesian 

Optimization 

 
Below is the ROC Curve of all Optimization 

Methods including Default LightGBM: 
 

 
 

a) LightGBM Default 
b) LightGBM + 

RandomSearchCV 

 
 

c) LightGBM + Optuna 
d) LightGBM + Bayesian 

Optimization 

Source : (Research Results, 2025) 
Figure 5. ROC Curve Comparison among 

Optimization Methods 
 

In addition to the visualization, the performance 
comparison is shown in the following table: 

 
Table 3. Comparison Results of LightGBM with 

Different Hyperparameter Optimization Methods 

Method 
Accura

cy 
Precisi

on 
Reca

ll 

F1-
Scor

e 

ROC-
AUC 

Default 

LightGBM 
70% 0.7127 

0.68

89 

0.70

06 

0.75

8 

RandomSear

chCV 

CV=10,  

500 Iterasi 

70% 0.7046 
0.68

89 

0.69

67 

0.75

27 

Optuna 

Optimization 
72% 0.7114 

0.76

67 

0.73

81 

0.76

98 

Bayesian 

Optimization 

CV=10 

78% 0.7778 
0.77

78 

0.77

78 

0.97

5 
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500 Iterasi 

Source : (Research Results, 2025) 
 
Table 3 summarizes the performance of the 

four hyperparameter optimization methods used in 
LightGBM. The results show that Bayesian 
Optimization provides the best performance across 
all key metrics, specifically with an accuracy of 0.78 
and a peak precision of 0.7800 with a training 
time taken of 1 hour and 28 minutes. Optuna 
Optimization shows improvement over the default 
configuration with a higher ROC-AUC value 

(0.7698) with a training time of 34 minutes, 
although accuracy is still slightly lower. 
RandomizedSearchCV produces the lowest 
performance compared to the other two 
optimization methods in both accuracy and F1-

score, although its ROC-AUC value (0.7527) with a 
training time of 13 minutes is still relatively good. 
The default LightGBM configuration is more stable 

than RandomizedSearchCV with a training time of 
only 4 minutes, but it is unable to outperform the 
Bayesian results. Thus, this table confirms that the 
Bayesian model-based optimization approach is 
more effective than both random search and the 
default configuration. 

 
B. Discussion 

This study compared four hyperparameter 
optimization approaches to LightGBM for asthma 
prediction. Results showed that Bayesian 
optimization performed best compared to other 
methods. With an accuracy of 0.78 and relatively 
balanced precision and recall values, Bayesian 
optimization proved more effective in finding 
optimal hyperparameter configurations. 

Compared to Optuna, Bayesian performed 
better, especially in positive class recall, despite 
both being based on sequential model-based 
optimization. Meanwhile, RandomizedSearchCV 
tended to produce less stable results because 
random search often failed to find the best 
parameter combination. The default LightGBM 
actually outperformed RandomizedSearchCV in 
terms of accuracy, although it was less able to 
improve ROC-AUC. 

Overall, these results confirm that the choice 
of hyperparameter optimization method 
significantly impacts model performance. Bayesian 
optimization emerged as the most consistent and 
accurate approach for asthma prediction, and 
therefore can be recommended for the development 
of machine learning-driven systems for clinical 
decision-making. Beyond metric comparisons, the 
differences in performance can be attributed to each 
optimizer’s search mechanism. Bayesian 

Optimization’s probabilistic approach allows it to 
explore and exploit the hyperparameter space more 
effectively, leading to better generalization. In 
contrast, RandomizedSearchCV’s random 
exploration may overlook optimal regions, resulting 
in less consistent outcomes. 

 
CONCLUSION 

 
Based on the results of a study comparing 

four methods, one default and three 
hyperparameter optimization methods in the 
LightGBM algorithm for asthma prediction, it can be 
concluded that Bayesian Optimization showed the 
best performance compared to other methods. 
Bayesian Optimization with a 10-fold cross-
validation configuration and 500 iterations 
managed to achieve an accuracy of 78%, a precision 
of 0.7778, a recall of 0.7778, an F1-score of 0.7778, 
and the highest ROC-AUC value of 0.975. 

Meanwhile, the Optuna Optimization method 
provided quite good results with an accuracy of 
72%, a precision of 0.7114, a recall of 0.7667, an F1-
score of 0.7381, and an ROC-AUC of 0.7698. This 
method excels in the recall aspect, although overall 
it is still below Bayesian Optimization. On the other 
hand, RandomizedSearchCV with a 10-fold cross-
validation configuration and 500 iterations 
produced an accuracy of 70% with relatively lower 
performance compared to Bayesian and Optuna. 
Meanwhile, Default LightGBM showed baseline 
results with an accuracy of 70% and an ROC-AUC of 
0.758. 

Bayesian optimization's success in achieving 
better performance can be attributed to its ability to 
more efficiently explore and exploit 
hyperparameter space using a probabilistic model 
approach. This suggests that selecting the right 
hyperparameter optimization method substantially 
enhances the performance of the LightGBM model 
in predicting asthma. One limitation of this study is 
the absence of external validation through 
independent datasets or actual clinical data. Future 
work should include external validation to confirm 
the robustness and clinical applicability of the 
optimized LightGBM models. 

Overall, this study confirms that Bayesian 
optimization is the most effective and consistent 
hyperparameter optimization method, and 
therefore can be recommended for use in the 
development of machine learning-based asthma 
prediction systems. With its more stable and 
accurate performance, this approach has the 
potential to make a significant contribution to 
supporting decision support systems in the 
healthcare sector. 



 

VOL. 11. NO. 2 NOVEMBER 2025 
. 

DOI: 10.33480 /jitk.v11i2.7369 
 

 

 

468 

REFERENCE 
 
[1] S. Maleki Varnosfaderani and M. 

Forouzanfar, “The Role of AI in Hospitals 
and Clinics: Transforming Healthcare in the 
21st Century,” Bioengineering, vol. 11, no. 4, 
pp. 1–38, 2024, doi: 
10.3390/bioengineering11040337. 

[2] A. Husnain, S. Rasool, A. Saeed, A. Yousaf Gill, 
and H. Khawar Hussain, “AI’S Healing Touch: 
Examining Machine Learning’s 
Transformative Effects On Healthcare,” J. 
World Sci., vol. 2, no. 10, pp. 1681–1695, 
2023, doi: 10.58344/jws.v2i10.448. 

[3] S. Balakrishna and V. Kumar Solanki, “A 
Comprehensive Review on AI-Driven 
Healthcare Transformation,” Ing. Solidar., 
vol. 20, no. 2, pp. 1–30, 2024, doi: 
10.16925/2357-6014.2024.02.07. 

[4] N. N. Khanna et al., “Economics of Artificial 
Intelligence in Healthcare: Diagnosis vs. 
Treatment,” Healthc., vol. 10, no. 12, 2022, 
doi: 10.3390/healthcare10122493. 

[5] D. C. Das and M. S. Akter, “AI-Powered 
Multimodal Diagnostics in Modern 
Healthcare : A Shift Toward Integrative 
Intelligence,” Asia Pacific J. Med. Innov., vol. 
2, no. 3, 2025, doi: 
https://doi.org/10.70818/apjmi.v02i03.02
7. 

[6] Z. Ahmad, S. Rahim, M. Zubair, and J. Abdul-
Ghafar, “Artificial intelligence (AI) in 
medicine, current applications and future 
role with special emphasis on its potential 
and promise in pathology: present and 
future impact, obstacles including costs and 
acceptance among pathologists, practical 
and philosoph,” Diagn. Pathol., vol. 16, no. 1, 
pp. 1–16, 2021, doi: 10.1186/s13000-021-
01085-4. 

[7] M. Caminati et al., “Biologics and global 
burden of asthma: A worldwide portrait and 
a call for action,” World Allergy Organ. J., vol. 
14, no. 2, p. 100502, 2021, doi: 
10.1016/j.waojou.2020.100502. 

[8] P. M. Pitrez, “The challenges of asthma care 
in low-and middle-income countries: what’s 
next?,” J. Bras. Pneumol., vol. 49, no. 3, pp. 2–
3, 2023, doi: 10.36416/1806-
3756/e20230215. 

[9] A. S. Listyoko, R. Okazaki, T. Harada, G. Inui, 
and A. Yamasaki, “Exploring the association 
between asthma and chronic comorbidities: 
impact on clinical outcomes,” Front. Med., 
vol. 11, no. January, 2024, doi: 
10.3389/fmed.2024.1305638. 

[10] A. A. Faniyi et al., “Addressing the asthma 
crisis in Africa: challenges, strategies, and 
recommendations for improved 
management,” Egypt. J. Intern. Med., vol. 36, 
no. 1, 2024, doi: 10.1186/s43162-024-
00340-6. 

[11] R. Hurtado-Ruzza et al., “Asthma, much 
more than a respiratory disease: Influence 
of depression and anxiety,” Rev. Assoc. Med. 
Bras., vol. 67, no. 4, pp. 571–576, 2021, doi: 
10.1590/1806-9282.20201066. 

[12] S. Sharma, N. Tasnim, K. Agadi, U. Asfeen, 
and J. Kanda, “Vulnerability for Respiratory 
Infections in Asthma Patients: A Systematic 
Review,” Cureus, vol. 14, no. 9, pp. 6–11, 
2022, doi: 10.7759/cureus.28839. 

[13] R. D. Wagh, P. Khade, and Hingane, “Asthma: 
A Comprehensive Outlook,” Int. J. Res. Appl. 
Sci. Eng. Technol., vol. 10, no. 1, pp. 691–698, 
2022, doi: 10.22214/ijraset.2022.39893. 

[14] D. Toumpanakis and O. S. Usmani, “Small 
airways in asthma: Pathophysiology, 
identification and management,” Chinese 
Med. J. Pulm. Crit. Care Med., vol. 1, no. 3, pp. 
171–180, 2023, doi: 
10.1016/j.pccm.2023.07.002. 

[15] E. Y. A. Qaid and I. Long, “Asthma unravelled: 
a comprehensive review of epidemiology, 
phenotypes, pathophysiology, and emerging 
therapies,” Egypt. J. Bronchol., vol. 19, no. 1, 
2025, doi: 10.1186/s43168-025-00443-w. 

[16] V. E. Georgakopoulou, D. A. Spandidos, and 
A. Corlateanu, “Diagnostic tools in 
respiratory medicine (Review),” Biomed. 
Reports, vol. 23, no. 1, pp. 1–13, 2025, doi: 
10.3892/br.2025.1990. 

[17] R. Nooreldeen and H. Bach, “Current and 
future development in lung cancer 
diagnosis,” Int. J. Mol. Sci., vol. 22, no. 16, 
2021, doi: 10.3390/ijms22168661. 

[18] S. Sarkar, U. Jadhav, B. Ghewade, S. Sarkar, 
and P. Wagh, “Oscillometry in Lung Function 
Assessment: A Comprehensive Review of 
Current Insights and Challenges,” Cureus, 
vol. 15, no. 10, 2023, doi: 
10.7759/cureus.47935. 

[19] M. A. Almeshari, J. Stockley, and E. Sapey, 
“The diagnosis of asthma. Can physiological 
tests of small airways function help?,” Chron. 
Respir. Dis., vol. 18, pp. 1–12, 2021, doi: 
10.1177/14799731211053332. 

[20] M. Xia et al., “Expert consensus on difficult 
airway assessment,” Hepatobiliary Surg. 
Nutr., vol. 12, no. 4, pp. 545–566, 2023, doi: 
10.21037/hbsn-23-46. 

[21] Y. Lyu et al., “Non-invasive acoustic 



 

 

VOL. 11. NO. 2 NOVEMBER 2025. 
 . 

DOI: 10.33480/jitk.v11i2.7369. 
 

  

469 

classification of adult asthma using an 
XGBoost model with vocal biomarkers,” Sci. 
Rep., vol. 15, no. 1, pp. 1–28, 2025, doi: 
10.1038/s41598-025-14645-1. 

[22] Q. Qian, J. Wu, J. Wang, H. Sun, and L. Yang, 
“Prediction models for aki in icu: A 
comparative study,” Int. J. Gen. Med., vol. 14, 
pp. 623–632, 2021, doi: 
10.2147/IJGM.S289671. 

[23] X. Qi, S. Wang, C. Fang, J. Jia, L. Lin, and T. 
Yuan, “Machine learning and SHAP value 
interpretation for predicting comorbidity of 
cardiovascular disease and cancer with 
dietary antioxidants,” Redox Biol., vol. 79, no. 
12, p. 103470, 2025, doi: 
10.1016/j.redox.2024.103470. 

[24] L. H. Lai et al., “The Use of Machine Learning 
Models with Optuna in Disease Prediction,” 
Electron., vol. 13, no. 23, pp. 1–20, 2024, doi: 
10.3390/electronics13234775. 

[25] X. Wang et al., “A Joint Ensemble Framework 
for the Detection of Acute Exacerbations in 
Chronic Obstructive Pulmonary Disease,” 
Res. Sq., pp. 1–19, 2023, doi: 
10.21203/rs.3.rs-3712629/v1. 

[26] A. K. Muthevi and V. M. Mutyam, “Using an 
Enhanced LightGBM Model to Predict 
Coronary Heart Disease: Performance 
Evaluation and Comparison,” Nanotechnol. 
Perceptions, vol. 20, no. S14, pp. 2446–2457, 
2024, doi: 10.62441/nano-ntp.v20is14.164. 

[27] K.-T. Nguyen, T.-N. Tran, and H.-T. Nguyen, 
“Research on the Influence of Genetic 

Algorithm Parameters on XGBoost in Load 
Forecasting,” Eng. Technol. Appl. Sci. Res., vol. 
14, no. 6, pp. 18849–18854, 2024, doi: 
10.48084/etasr.8863. 

[28] R. Sibindi, R. W. Mwangi, and A. G. Waititu, 
“A boosting ensemble learning based hybrid 
light gradient boosting machine and 
extreme gradient boosting model for 
predicting house prices,” Eng. Reports, vol. 5, 
no. 4, pp. 1–19, 2023, doi: 
10.1002/eng2.12599. 

[29] H. Yang, Z. Chen, H. Yang, and M. Tian, 
“Predicting Coronary Heart Disease Using an 
Improved LightGBM Model: Performance 
Analysis and Comparison,” IEEE Access, vol. 
11, no. February, pp. 23366–23380, 2023, 
doi: 10.1109/ACCESS.2023.3253885. 

[30] P. K. Sahu and T. Fatma, “Optimized Breast 
Cancer Classification Using PCA-LASSO 
Feature Selection and Ensemble Learning 
Strategies with Optuna Optimization,” IEEE 
Access, vol. 13, no. February, pp. 35645–
35661, 2025, doi: 
10.1109/ACCESS.2025.3539746. 

[31] M. Khaldi, Z. Alilat, H. Bendoubba, and N. 
Mahammed, “Hyperparameter Optimization 
for Malicious URL Detection: Leveraging 
Optuna and Random Search in Machine 
Learning and Deep Learning Models,” 
Informatica, vol. 49, no. 27, pp. 57–68, 2025, 
doi: 10.31449/inf.v49i27.9106. 

 


