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Abstract—Food safety, particularly concerning the use of illegal additives such as borax in processed meat 
products like meatballs, remains a critical issue in Indonesia. This study analyzes the performance of several 
lightweight deep learning models based on Convolutional Neural Networks (CNN) and Transformers to classify 
images of meatballs containing borax, enabling their deployment on resource-constrained devices such as 
smartphones. Data collection involved capturing 1,429 images of meatballs with and without borax using a 
smartphone camera under varying lighting conditions and shooting angles. The five main architectures 
evaluated were ConvNeXt-Nano, Swin-Tiny, ViT-Tiny, MobileViT-XS, and EfficientNet-B0. Hyperparameter 
optimization was conducted using Optuna, followed by training with a 5-fold cross-validation scheme. Model 
evaluation metrics included accuracy, precision, recall, F1 score, and inference speed. The results show that 
MobileViT-XS was the best-performing architecture, achieving 65.93% accuracy, 0.703 precision, 0.706 recall, 
0.659 F1 score, and efficient memory consumption (45.94 MB). These findings indicate that a hybrid approach 
combining the strengths of CNNs and Transformers can achieve an optimal balance between detection 
accuracy and computational efficiency. Therefore, such models have the potential to be applied as food safety 
detection systems on devices with limited resources. 

 
Keywords: Deep Learning, Food Safety, Image Classification, Lightweight Model. 

 
Intisari—Keamanan pangan, khususnya terkait penggunaan bahan tambahan ilegal seperti boraks dalam 
produk daging olahan seperti bakso, tetap menjadi masalah kritis di Indonesia. Studi ini menganalisis kinerja 
beberapa model deep learning ringan berbasis Jaringan Saraf Konvolusional (CNN) dan Transformers untuk 
mengklasifikasikan gambar bakso yang mengandung boraks, sehingga memungkinkan penerapan model 
tersebut pada perangkat dengan sumber daya terbatas seperti smartphone. Pengumpulan data melibatkan 
pengambilan 1.429 gambar bakso dengan dan tanpa boraks menggunakan kamera smartphone dalam kondisi 
pencahayaan dan sudut pengambilan gambar yang bervariasi. Lima arsitektur utama yang dievaluasi adalah 
ConvNeXt-Nano, Swin-Tiny, ViT-Tiny, MobileViT-XS, dan EfficientNet-B0. Optimasi hiperparameter dilakukan 
menggunakan Optuna, diikuti dengan pelatihan menggunakan skema validasi silang 5-fold. Metrik evaluasi 
model meliputi akurasi, presisi, recall, skor F1, dan kecepatan inferensi. Hasil menunjukkan bahwa MobileViT- 
XS merupakan arsitektur dengan kinerja terbaik, mencapai akurasi 65,93%, presisi 0,703, recall 0,706, skor 
F1 0,659, dan konsumsi memori yang efisien (45,94 MB). Temuan ini menunjukkan bahwa pendekatan hibrida 
yang menggabungkan keunggulan CNN dan Transformers dapat mencapai keseimbangan optimal antara 
akurasi deteksi dan efisiensi komputasi. Oleh karena itu, model-model semacam ini berpotensi diterapkan 
sebagai sistem deteksi keamanan pangan pada perangkat dengan sumber daya terbatas. 

 
Kata Kunci: deep learning, keamanan pangan, klasifikasi citra, model ringan. 
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INTRODUCTION 
 

Food safety has become a global concern that 
cannot be overlooked, particularly in efforts to 
ensure that all individuals have access to healthy 
and nutritious food [1], [2]. The World Health 
Organization (WHO) estimates that unsafe food 
causes approximately 600 million cases of illness 
and 420,000 deaths annually worldwide, primarily 
due to foodborne pathogens [3]. Therefore, it is 
essential for individuals and society as a whole to 
understand the associated risks and collaborate to 
implement effective preventive measures, ensuring 
the availability of safe food for consumption. 

In the modern era, shifts in lifestyle that 
prioritize practicality and efficiency, combined with 
the integration of technology in food production, 
have made fast food and street food the primary 
choices for daily consumption [4]. This trend not 
only reflects a transformation in eating habits but 
also significantly impacts the local economy, public 
health, and culinary culture. One example of a 
traditional food that remains very popular among 
Indonesians is “Bakso.” Bakso is made from a 
mixture of ground meat and flour, providing protein 
and essential amino acids necessary for the human 
body [5]. However, meat as the main ingredient is 
susceptible to contamination by pathogens such as 
bacteria, which accelerate spoilage [6]. This 
vulnerability has led some producers to use illegal 
food additives, such as sodium tetraborate (Borax), 
to improve texture and extend the shelf life of 
meatballs. Although this practice aims to prevent 
economic losses caused by premature spoilage, it 
violates government regulations. 

Consumers have limited ability to visually 
detect hazardous contaminants in food, 
necessitating a real-time monitoring system to 
protect public health. In this context, smartphones 
widely owned by the public offer significant 
potential as computer vision-based platforms for 
food safety detection. The advantages of 
smartphones in this application include high 
accessibility, enabling widespread use without 
reliance on specialized tools; continuously 
improving processing capabilities supported by 
modern processor technology; and high-quality 
cameras capable of capturing the visual details 
required for classification tasks. However, 
implementing automatic detection systems on 
smartphones presents significant challenges. 
Limited computational resources such as memory 
capacity, processing speed, and battery life pose 
major obstacles. To run optimally on mobile 
devices, an efficient and lightweight model is 
essential. This model must maintain high detection 
accuracy without compromising device 

performance. Therefore, the development of 
smartphone-based food safety detection systems must 
carefully balance technical requirements with device 
limitations. 

Deep learning has made significant advances in 
object classification, including applications in the food 
sector [7]. Improvements in computing technology 
have facilitated the use of deep learning models to 
analyze food composition [8]. Detection of borax 
contamination in meatballs has been carried out using 
various technical approaches as documented in 
previous studies. Sensor-based methods, including 
resistance sensors that measure changes in electrical 
conductivity in meatball samples, enable direct 
chemical analysis but require direct physical 
interaction with the product [9]. As an alternative, 
computer vision techniques offer a non-invasive and 
rapid solution for screening meatballs without direct 
contact.  

However, most related studies rely on complex 
deep learning architectures, which, although effective, 
require significant computing and memory resources. 
These limitations make them less suitable for low-
power devices such as smartphones [10]. Therefore, 
there is a research gap in the development of efficient 
deep learning models that balance high accuracy and 
computational optimization for mobile applications in 
borax detection in meatballs. 

Convolutional Neural Networks (CNNs) have 
demonstrated high effectiveness in digital image 
classification, although they demand substantial 
computational resources and large, diverse datasets 
[11]. As an alternative, Vision Transformers (ViTs) 
provide optimal performance across various scales 
through self-attention mechanisms that capture global 
dependencies in images [12], while hybrid models that 
integrate attention mechanisms with CNNs offer 
enhanced memory and parameter efficiency by 
combining local feature extraction with global context 
modeling [13]. 

This study evaluates five different deep learning 
architectures for detecting borax contamination in 
meatball images. The architectures studied include 
Convolutional Neural Networks (CNNs), Vision 
Transformers (ViTs), and hybrid models that combine 
self-attention mechanisms with CNNs. The two CNN 
architectures explored are EfficientNet-B0 and 
ConvNeXt-Nano: EfficientNet-B0 uses combined 
scaling (depth, width, resolution) to balance 
computational complexity and efficiency, while 
ConvNeXt-Nano integrates design principles from ViTs 
into traditional CNN structures. For Transformer-
based architectures, ViT-Tiny was tested as a pure 
model representation that processes images through 
multi-head self-attention layers to capture global 
dependencies. Meanwhile, hybrid models such as 
Swin-Tiny and MobileViT-XS combine the advantages 
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of local feature extraction (CNN) with global context 
modeling (Transformer), with MobileViT-XS 
specifically optimized for mobile and edge devices. 

This study aims to evaluate 3 primary 
architectures CNN, Transformers, and their hybrid 
models designed for resource-limited devices. The 
evaluation is based on three key criteria: (1) 
detection accuracy, (2) inference speed, and (3) 
memory usage efficiency. The results are expected 
to provide a foundation for developing a practical, 
accurate, and sustainable borax detection system 
for resource-constrained devices, thereby 
supporting the optimization of food safety in 
Indonesia through measurable technological 
solutions. 

 
MATERIALS AND METHODS 

 
This research was conducted through six main 

stages as illustrated in Figure 1, starting from data 
collection; data transformation and augmentation; deep 
learning model development; hyperparameter 
optimization using Optuna; model training with k-fold 
validation; and performance testing and evaluation. 

 
Source: (Research Results, 2025) 

Figure 1. Research Workflow 

1. Data Collection 

Data collection was conducted using 
smartphone cameras to capture a variety of shooting 
angles and lighting conditions. This approach aimed to 
address the challenge of classifying meatballs 
containing Borax in real-world environments, where 
visual similarities between classes are often subtle, and 
variations in lighting and background increase 
complexity. A total of 1,429 images were collected and 
meticulously labeled by category to support the 
training of the classification model. 

 

   

(a) 

   

(b) 
Source: (Research Results, 2025) 
Figure 2. Sample image (a) Meatballs Contain Borax (b) 

Meatballs Without Contain Borax 
 
For the training set, 600 images of meatballs 

containing borax and 600 images of meatballs without 
borax were utilized, resulting in a perfectly balanced 
training dataset of 1,200 images. The testing set 
comprised 145 images of meatballs containing borax 
and 84 images of meatballs without borax, totaling 229 
test images.  

 
2. Data Transformation and Augmentation 

Data transformation and dataset configuration in 
this study were divided into two categories: training 
and testing data. For training data, a series of 
transformation processes are applied, including 
resizing images to 224 × 224 pixels, as well as data 
augmentation through random horizontal and vertical 
flipping with a probability of 0.5. This will expand the 
training data set by generating variations in image 
orientation, and will help the model learn visual 
features better and not easily overfit [14]. After 
augmentation, normalization using mean values 
[0.485, 0.456, 0.406] and standard deviations [0.229, 
0.224, 0.225], based on the standard parameters of the 
pre-trained model [15]. 

Meanwhile, the test data only underwent two 
processes: resizing to 224 × 224 pixels and 
normalization with identical parameters. Data 
augmentation was deliberately excluded at this stage 
to ensure that model evaluation was consistent and 
objective, reflecting performance in a real-world 
environment without artificial intervention. This 
strategy is designed to validate the generalization 
capabilities of models that have been improved 
through augmentation in the training phase, while 
avoiding bias due to excessive data modification. This 
configuration ensures that models not only excel in 
trained conditions but are also able to adapt effectively 
to previously unseen data variations, providing an 
important foundation for practical applications such as 
food safety inspection or contaminant detection. 
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3. Model Development 
After preparing the entire dataset, the 

modeling process proceeded using CNN and 
Transformer architectures. In this study, five deep 
learning models based on CNN and Transformer 
architectures were specifically developed for 
resource-limited devices. 
a. ConvNeXt-Nano 

ConvNeXt is a modern CNN architecture 
designed to rival the performance of Vision 
Transformer (ViT) models in image classification 
tasks [16]. It incorporates contemporary design 
elements inspired by ViT, such as patch embedding, 
normalization, and depthwise convolution, while 
maintaining the computational efficiency 
characteristic of CNNs. The latest version, ConvNeXt 
V2, integrates masked autoencoders and Global 
Response Normalization, which enhance feature 
representation and improve accuracy [17]. 

ConvNeXt-Nano is a lightweight variant of the 
ConvNeXt architecture designed for image 
classification tasks, offering high computational 
efficiency without compromising accuracy. It 
provides advantages such as fewer parameters, low 
memory consumption, and fast inference speed, 
while maintaining competitive accuracy [18]. 
Additionally, this model has demonstrated 
effectiveness in handling limited data and small 
objects. 
b. Swin-Tiny 

Swin Transformer is a vision transformer 
architecture that employs a shifted window 
mechanism to achieve high efficiency and accuracy 
in image classification [19]. Swin-Tiny, a lightweight 
variant of the Swin Transformer, offers advantages 
in parameter efficiency and the ability to capture 
extensive spatial dependencies, making it well- 
suited for devices with limited resources [20]. 
c. ViT-Tiny 

The Vision Transformer (ViT) model was 
introduced by Dosovitskiy et al. [21]. ViT-Tiny is a 
lightweight variant of the ViT architecture 
specifically designed for computational efficiency 
and optimal performance, particularly on limited 
datasets [20]. While retaining the core principles of 
ViT such as processing images as sequences of patch 
tokens and utilizing self-attention mechanisms ViT- 
Tiny has significantly fewer parameters and lower 
complexity, thereby reducing the computational 
load. This design enables ViT-Tiny to balance 
efficiency and accuracy, making it a practical 
solution for systems with computational constraints 
that still require reliable visual analysis capabilities. 
d. MobileViT-XS 

MobileViT is a deep learning architecture that 
integrates CNN and vision transformers. It has 
proven effective for implementation on mobile 

devices, delivering performance comparable to pure 
transformers while remaining computationally 
efficient [22].  MobileViT-XS is a lightweight variant of 
MobileViT that combines the strengths of CNNs and 
vision transformers for image classification on mobile 
or edge devices. 
e. EfficientNet-B0 

EfficientNet is a Convolutional Neural Network 
(CNN) model developed by Google to address challenges 
in object and image recognition [23]. This model is 
designed with eight different architectures, namely 
EfficientNet-B0 to EfficientNet-B7, where each version 
has increasing complexity along with an increase in 
parameters. As a consequence of the increase in the 
number of parameters, the accuracy of the model also 
tends to increase proportionally. It employs a 
compound scaling technique that systematically 
balances the network's depth, width, and resolution to 
achieve high accuracy with low floating-point 
operations (FLOPs), making it one of the most efficient 
models for image classification with an optimal 
balance between performance and computational 
complexity [24]. 

 
4. Hyperparameter Optimizing 

Hyperparameter optimization is a crucial factor in 
developing a robust deep learning model [25].In this 
study, hyperparameter tuning was conducted using 
Optuna, a Sequential Model-Based Optimization 
(SMBO) library that adaptively explores the 
hyperparameter search space [26]. Table 2 presents 
the parameters optimized for each model. 

 
Table 2. Hyperparameter Tuning Configuration 

Hyperparameter Value 
Learning Rate 0.00001 - 0.01 
Batch size 8, 16, 32 
Optimizier Adam, AdamW, SGD 
Weight decay 0.000001 - 0.01 

Source: (Research Results, 2025) 
 
Each experiment conducted using the Optuna 

library represents a unique combination of 
hyperparameters, which is then evaluated based on its 
performance on the validation set. 

5. Model Training 
The optimal parameter configuration identified 

during the hyperparameter optimization stage is used 
to train the final model employing a 5-fold cross-
validation scheme with 30 epochs to ensure 
convergence of model parameters. The final model 
performance is evaluated based on the average 
validation results across all folds.  

This approach offers a more reliable estimate of 
generalization performance while minimizing the bias 
associated with a single data split. This study aims to 
evaluate the performance of lightweight deep learning 
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models in solving classification problems. 
Additionally, hyperparameter tuning was 
performed to identify the optimal configuration for 
each model tested. All experiments and analyses 
were conducted using five lightweight deep 
learning models designed to support computational 
efficiency on resource- limited devices. 

6. Testing and Evaluation 
Model evaluation covers important 

performance aspects such as accuracy, precision, 
sensitivity, F1-score, and inference speed, thereby 
providing recommendations on the most suitable 
model to be implemented in resource-constrained 
computing systems. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑠𝑠𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 
Inference speed measurements were 

performed to evaluate the computational efficiency 
of the model. The measurement process was carried 
out by calculating the difference in model execution 
time in a single batch of test data. The time 
difference produced in each iteration was then 
converted into milliseconds and averaged to obtain 
the average inference value in ms/batch. 

All calculations and modeling in this study 
were implemented using the PyTorch deep learning 
framework. To train and evaluate the model, the 
Google Colab platform was chosen as the main 
computing environment, supported by an NVIDIA 
Tesla T4 GPU. The use of the T4 GPU played an 
important role in accelerating the computing 
process, while also increasing the efficiency of the 
experiment by utilizing optimal hardware 
resources. 

 
RESULTS AND DISCUSSION 

 
Hyperparameter Optimization  

Hyperparameter optimization is a crucial 
factor in developing an effective classification 
model. The optimal hyperparameters for each 
model are presented in Table 3.  

 
 

Table 3. Optimized hyperparameters for all models 
Model Learning 

Rate 
Batch 
size 

Optimizier Weight 
decay 

ConvNeXt-
Nano 

0.000012 16 Adam 0.00096 

Swin-Tiny 0.000208 32 AdamW 0.000001 
ViT-Tiny 0.000024 32 Adam 0.000002 
MobileViT-
XS 

0.000169 32 AdamW 0.001299 

EfficientNet-
B0 

0.000353 32 AdamW 0.000018 

Source: (Research Results, 2025) 
 

Training Model  
After completing the hyperparameter 

optimization process, the model was trained using 
cross-validation techniques.  

 
ConvNeXt-Nano 

 
Source: (Research Results, 2025) 

Figure 3. Training history of ConvNeXt-Nano model 
across 5-fold over 30 epochs 

 
The training history of ConvNeXt-Nano in Figure 

3 shows that the Training Loss graph indicates a 
drastic decrease in the first five epochs, from around 
0.35 to close to 0.02 across all folds. This decrease 
indicates that the ConvNeXt-Nano model has excellent 
learning capacity for the training dataset. After the 5th 
epoch, the loss value remains stable at around zero, 
indicating that the model has reached optimal 
convergence on the training data.  In terms of Training 
Accuracy, there is a significant increase in line with the 
decrease in loss. Accuracy increased rapidly from 
around 88% to nearly 100% in the first five epochs, 
then remained consistent at a perfect score (100%) 
until the 30th epoch. This reinforces the impression 
that the model is able to understand patterns in the 
training data very effectively. Meanwhile, Validation 
Loss shows a different pattern from training loss. 
Although there was a significant decrease at the 
beginning of training (epochs 0–5), considerable 
fluctuations were observed throughout the process, 
with values ranging from 0.01 to 0.175. These 
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fluctuations, especially in Fold 4 and Fold 5, which 
peaked at nearly 0.175 around epoch 10, indicate 
instability in the model's generalization ability. For 
Validation Accuracy, the figures ranged from 92% to 
100% with an inconsistent pattern. Although some 
folds (such as Fold 1 and Fold 2) showed relative 
stability above 99% after epoch 10, other folds 
(especially Folds 3, 4, and 5) experienced significant 
volatility. Sharp declines at certain points, such as 
Fold 1 dropping to 94% around epoch 10, indicate 
the model's sensitivity to variations in the 
validation data. Overall, these results confirm that 
ConvNeXt-Nano performs strongly in training, but 
still requires adjustments to improve generalization 
stability on unseen data. 

 
Swin-Tiny 

Based on the Swin-Tiny model training history 
graph in Figure 4, using 5-Fold Cross Validation, 
several important patterns emerge in the model 
learning process. 

 

 
Source: (Research Results, 2025) 
Figure 4. Training history of Swin-Tiny model across 

5-fold over 30 epochs 
 
In the training loss and training accuracy 

graphs, the model shows excellent ability in learning 
the training data. The training loss decreases sharply, 
from about 0.45 in early epochs to nearly 0 in the 5–
10 epoch range. At the same time, training accuracy 
rises rapidly from about 78% to almost 100% across 
all folds. This rapid convergence shows the model can 
effectively recognize patterns in the training data.  
However, the model's performance on the validation 
data tells a different story. The validation loss graph 
shows significant fluctuations across all folds, with 
several spikes indicating instability. Unlike the 
smooth downward trend in training loss, validation 
loss does not show a consistent pattern, but rather 
tends to fluctuate throughout the training process. 
Meanwhile, validation accuracy ranges from 92% to 

99%, with considerable variation between epochs. 
Although these figures are generally good, there is a 
clear gap between training accuracy (reaching 100%) 
and validation accuracy (a maximum of 99%). These 
patterns indicate overfitting, where the model is too 
specific to the training data and loses its ability to 
generalize to data it has never seen before. This is 
reflected in the significant difference in performance 
between training and validation, as well as unstable 
fluctuations in validation metrics. This condition needs 
to be addressed, for example, through regularization 
techniques, data augmentation, or model architecture 
adjustments to improve generalization capabilities. 

 
ViT-Tiny 

The training history graph of the ViT-Tiny (Vision 
Transformer) model in Figure 5 shows impressive 
performance in the 5-Fold Cross Validation scenario. 

 
Source: (Research Results, 2025) 
Figure 5. Training history of ViT-Tiny model across 5-

fold over 30 epochs 
 
The loss decreased from 0.42 to almost zero in 10 

epochs. Training accuracy increased from 80% to 
almost 100% and remained stable. Almost all folds show 
smooth learning curves. Only Fold 3 experienced slight 
fluctuations. In validation, the loss remained low (0.02–
0.08), and the accuracy was very high (98–100%) in 
most folds. Fold 3 experienced a spike in loss and a drop 
in accuracy to 85%, but it recovered quickly. The small 
difference between training and validation accuracy 
indicates strong generalization. The model did not show 
significant overfitting. These results confirm the 
consistency and effectiveness of the ViT-Tiny model in 
rigorous evaluation. 

 
MobileViT-XS 

Based on the training history graph in Figure 6, 
the MobileViT-XS model shows stable learning 
dynamics during the training phase, with more 
significant variations in the validation phase. 
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Source: (Research Results, 2025) 

Figure 6. Training history of MobileViT-XS model 
across 5-fold over 30 epochs 

 
In the training loss plot, all folds experienced a 

consistent decline from an initial value of around 0.5 
to below 0.05 at epoch 30. This indicates an efficient 
convergence process, demonstrating the model's 
ability to effectively minimize training errors. The 
increase in training accuracy also reflects the model's 
effectiveness in understanding data patterns. The 
accuracy value increases sharply from around 85% at 
the beginning of training to nearly 100% after the 
20th epoch and remains stable until the end of the 
training phase.  

This stability indicates that the model has 
reached an optimal level of understanding of the 
training data. During the validation phase, validation 
loss showed fluctuations between folds, with most 
values ranging from 0.05 to 0.15 throughout the 
epoch. However, there was a temporary spike to 0.4 
in several folds (mainly around epochs 10 to 15), 
which may be related to differences in data 
characteristics between folds. Nevertheless, 
validation accuracy remained competitive, ranging 
from 88% to 100%. Most folds achieved an accuracy 
above 95% after epoch 10 and maintained it until the 
end of training. 

 
EfficientNet-B0 

As shown in the training history graph in 
Figure 7, the performance of the EfficientNet-B0 
model based on the training history graph with K-
Fold Cross-Validation shows that the model 
converges rapidly and efficiently. 

  
Source: (Research Results, 2025) 

Figure 7. Training history of EfficientNet-B0 model 
across 5-fold over 30 epochs 

 
The training loss decreases sharply from around 

0.9 to close to 0.0 in the first 10 epochs, while the 
training accuracy reaches 98–100% from the 5th epoch 
and remains stable until the end of training. This shows 
that the model is able to learn the training data patterns 
optimally. On the validation side, although the validation 
loss is in a low range (0.0–0.3), there is higher 
fluctuation compared to training, and the validation 
accuracy fluctuates between 90% and 100%, with most 
folds reaching 96–99% in the final epoch. The variability 
between folds, especially in Fold 5, which shows 
significant fluctuations, indicates sensitivity to data 
partitioning and potential heterogeneity in the dataset. 
The striking difference between the training and 
validation metrics after the 10th epoch is an indicator of 
overfitting, where the model shows near-perfect 
performance in training but is less consistent in 
generalizing to new data. 

Table 4 presents a summary of the training 
results from five model architectures using three main 
indicators: average accuracy, average training time, 
and average memory usage. These three metrics not 
only describe the predictive capabilities of each model, 
but also the computational efficiency required during 
the training process. 

 
Table 4. Model Training Results 

Model 
Average 
Accuracy 

Average 
Training 
Time 

Average Memory 
Usage 

ConvNeXt-
Nano 

99.67% 308.82s 255.96 MB 

Swin-Tiny 98.92% 326.44s 451.03 MB 
ViT-Tiny 99.25% 212.51s 100.64 MB 
MobileViT-XS 99.58% 274.17s 45.94 MB 
EfficientNet-B0 99.33% 222.43s 79.01 MB 

Source: (Research Results, 2025) 
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The ConvNeXt-Nano model achieved the 
highest accuracy of 99.67%, with a training time of 
308.82 seconds and memory usage of 255.96 MB. 
Next, Swin-Tiny attained an accuracy of 98.92% 
with a training time of 326.44 seconds, but 
exhibited higher memory usage at 451.03 MB. The 
ViT-Tiny model demonstrated balanced 
performance, achieving 99.25% accuracy, a training 
time of 212.51 seconds, and memory usage of 
100.64 MB. In contrast, MobileViT-XS was the most 
memory-efficient, using only 45.94 MB, while 
maintaining an accuracy of 99.58% and a training 
time of 274.17 seconds. Meanwhile, EfficientNet-B0 
recorded an accuracy of 99.33% with a training time 
of 222.43 seconds and memory usage of 79.01 MB. 
 
Testing and Evaluation  

After completing the model training process, 
testing was conducted using a pre-prepared test 
dataset consisting of 229 images samples (145 borax 
samples and 84 non-borax samples).  

 

 
Source: (Research Results, 2025) 

Figure 8. Confusion Matrix for ConvNeXt-Nano 
Model 

 
The classification results of the ConvNeXt-

Nano model are shown through the confusion 
matrix in Figure 8. The model successfully classified 
60 borax samples correctly as borax (true positive) 
and 69 non-borax samples correctly as non-borax 
(true negative). However, there were 85 borax 
samples misclassified as non-borax (false negative) 
and 15 non-borax samples misclassified as borax 
(false positive). 

Based on the confusion matrix, performance 
metrics were calculated using equations (1) 
through (4). Using equation (1), the overall model 
accuracy was obtained at 0.563 with the calculation 
(60 + 69)/229 = 129/229. For the borax class, 
equation (2) yielded a precision of 0.800 from 
60/(60+15) = 60/75, equation (3) yielded a recall of 
0.414 from 60/(60+85) = 60/145, and equation (4) 
yielded an F1-score of 0.545. Meanwhile, the non-
borax class showed a precision of 0.448 from 
69/(69+85) = 69/154, a recall of 0.821 from 
69/(69+15) = 69/84, and an F1-score of 0.580. 

Macro-average metrics that give equal weight to 
both classes yielded a macro precision of 0.624, macro 
recall of 0.618, and macro F1-score of 0.563.  

 

 
Source: (Research Results, 2025) 

Figure 9. Confusion Matrix for Swin-Tiny Model 
 

The classification results of the Swin-Tiny 
model on the test dataset are shown in the confusion 
matrix in Figure 9. The model successfully classified 70 
borax samples correctly as borax (True Positive) and 
72 non-borax samples correctly as non-borax (True 
Negative). However, there were 75 borax samples 
misclassified as non-borax (False Negative) and 12 
non-borax samples misclassified as borax (False 
Positive). 

Based on the confusion matrix, performance 
metrics were calculated using equations (1) through 
(4). Using equation (1), the overall model accuracy was 
obtained at 0.620 with the calculation (70 + 72)/229 = 
142/229. For the borax class, equation (2) yielded a 
precision of 85.4% or 0.854 from 70/(70+12) = 70/82, 
equation (3) yielded a recall of 0.483 from 70/(70+75) 
= 70/145, and equation (4) yielded an F1-score of 
0.614. Meanwhile, the non-borax class showed a 
precision of 0.490 from 72/(72+75) = 72/147, a recall 
of 0.857 from 72/(72+12) = 72/84, and an F1-score of 
0.623. 

Macro-average metrics that give equal weight to 
both classes yielded a macro precision of 0.672, macro 
recall of 67.0% or 0.670, and macro F1-score of 0.619.  

 

 
Source: (Research Results, 2025) 

Figure 10. Confusion Matrix for ViT-Tiny Model 
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ViT-Tiny model classification results based 
on the confusion matrix in Figure 10. The model 
successfully classified 53 borax samples correctly as 
borax (true positive) and 81 non-borax samples 
correctly as non-borax (true negative). However, 
there were 92 borax samples misclassified as non-
borax (false negative) and 3 non-borax samples 
misclassified as borax (false positive).  Using 
equation (1), the overall model accuracy was 
obtained at 0.585 with the calculation (53 + 
81)/229 = 134/229. For the borax class, equation 
(2) yielded a precision of 94.6% or 0.946 from 
53/(53+3) = 53/56, equation (3) yielded a recall of 
0.366 from 53/(53+92) = 53/145, and equation (4) 
yielded an F1-score of 0.527. Meanwhile, the non-
borax class showed a precision of 0.468 from 
81/(81+92) = 81/173, a recall of 0.964 from 
81/(81+3) = 81/84, and an F1-score of 0.631. 
Macro-average metrics that give equal weight to 
both classes yielded a macro precision of 0.707, 
macro recall of 0.665, and macro F1-score of 0.579. 

 

 
Source: (Research Results, 2025) 

Figure 11. Confusion Matrix for MobileViT-XS 
Model 

MobileViT-XS model classification results 
based on the confusion matrix in Figure 11. The 
model accurately identified 77 borax samples as 
borax (true positive) and 74 non-borax samples as 
non-borax (true negative). Nevertheless, there were 
68 borax samples incorrectly classified as non-
borax (false negative) and 10 non-borax samples 
wrongly identified as borax (false positive). 

Applying equation (1), the overall model 
accuracy reached 65.9% or 0.659 with the 
computation (77 + 74)/229 = 151/229. For the 
borax class, equation (2) produced a precision of 
0.885 from 77/(77+10) = 77/87, equation (3) 
generated a recall of 0.531 from 77/(77+68) = 
77/145, and equation (4) resulted in an F1-score of 
0.664. Conversely, the non-borax class 
demonstrated a precision of 0.521 from 74/(74+68) 
= 74/142, a recall of 0.881 from 74/(74+10) = 
74/84, and an F1-score of 0.655. Macro-average 

metrics that assign equal weight to both classes 
produced a macro precision of 0.703, macro recall of 
0.706, and macro F1-score of 0.659. 

 

 
Source: (Research Results, 2025) 

Figure 12. Confusion Matrix for EfficientNet-B0 
Model 

 
EfficientNet-B0 model classification results 

based on the confusion matrix in Figure 12. The model 
accurately identified 62 borax samples as borax (true 
positive) and 76 non-borax samples as non-borax (true 
negative). Nevertheless, there were 83 borax samples 
incorrectly classified as non-borax (false negative) and 
8 non-borax samples wrongly identified as borax (false 
positive). 

Applying equation (1), the overall model 
accuracy reached 0.603, with the computation (62 + 
76)/229 = 138/229. For the borax class, equation (2) 
produced a precision of 0.886 from 62/(62+8) = 
62/70, equation (3) generated a recall of 0.428 from 
62/(62+83) = 62/145, and equation (4) resulted in an 
F1-score of 0.577. Conversely, the non-borax class 
demonstrated a precision of 0.478 from 76/(76+83) = 
76/159, a recall of 0.905 from 76/(76+8) = 76/84, and 
an F1-score of 0.626.  Macro-average metrics that 
assign equal weight to both classes produced a macro 
precision of 0.682, macro recall of 0.666, and macro F1-
score of 0.601. 

 
Table 5. Comparison of Performance of All 

Models 
Model Test 

Accuracy 
Precision Recall F1-

Score 
Avg 

Inference 
Time 

ConvNeXt-
Nano 

56.3% 0.624 0.617 0.562 126.94 
ms/batch 

Swin-Tiny 62.0% 0.672 0.670 0.620 30.10 
ms/batch 

ViT-Tiny 58.5% 0.707 0.665 0.578 14.36 
ms/batch 

MobileViT-XS 65.9% 0.703 0.706 0.659 24.66 
ms/batch 

EfficientNet-B0 60.2% 0.682 0.666 0.601 26.17 
ms/batch 

Source: (Research Results, 2025) 
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A comparative evaluation of five lightweight 
deep learning models for classifying borax-
contaminated meatballs in Table 5 shows that 
MobileViT-XS stands out as the model with the 
highest performance, achieving an accuracy of 
65.93%, surpassing Swin-Tiny (62.00%), 
EfficientNet-B0 (60.27%), ViT-Tiny (58.52%), and 
ConvNeXt-Nano (56.33%). The superiority of 
MobileViT-XS can be explained by its hybrid 
architecture, which combines local CNN 
convolutions and global Transformer attention, 
enabling detailed texture feature extraction and 
broad semantic context understanding.  

This is reflected in the highest recall (0.706) 
and F1 score (0.659) achieved by this model, 
demonstrating consistency in balancing specific 
detection and contextual sensitivity. ViT-Tiny, 
despite having lower overall accuracy (58.52%), 
stands out with the highest precision (0.707), which 
is critical for minimizing false positives in 
hazardous contaminant detection scenarios. 
However, this compromise highlights the model's 
limitations in integrating high precision with 
comprehensive accuracy. On the other hand, 
ConvNeXt-Nano recorded the lowest performance 
(56.33%), confirming that adopting Transformer 
elements without systematic optimization does not 
improve detection performance, even after 
hyperparameter optimization with Optuna. 

In terms of computational efficiency, ViT-
Tiny is the fastest with an inference time of 14.36 
ms/batch, followed by MobileViT-XS (24.66 
ms/batch), EfficientNet-B0 (26.17 ms/batch), and 
Swin-Tiny (30.10 ms/batch). ConvNeXt-Nano 
shows inefficiency with an inference time of 126.94 
ms/batch, in line with its low accuracy. MobileViT-
XS stands out as the most balanced solution, 
combining high accuracy with competitive 
computational efficiency, making it suitable for 
deployment on low-power devices or real-time 
applications. 

Overall, despite hyperparameter optimization 
across all models, MobileViT-XS consistently 
demonstrates superiority across all evaluation 
metrics. Model deployment recommendations 
depend on the context: MobileViT-XS for mobile or 
real-time applications, ViT-Tiny for systems 
prioritizing extreme precision with high speed, and 
Swin-Tiny for laboratory environments with 
adequate computational resources. The consistent 
performance of MobileViT-XS underscores its 
robustness in handling data variability, a critical 
aspect in food safety where classification errors can 
have significant impacts on public health. 

 
 
 

CONCLUSION 
 

This study evaluates five lightweight deep 
learning models for classifying images of meatballs 
containing borax: ConvNeXt-Nano, Swin-Tiny, ViT- 
Tiny, MobileViT-XS, and EfficientNet-B0. 
Hyperparameter optimization was conducted using 
Optuna, tuning parameters such as learning rate, batch 
size, and weight decay. The optimization yielded 
distinct optimal configurations for each model. Testing 
on 229 images revealed that MobileViT-XS achieved 
the best performance, withan accuracy of 65.93%, 
precision of 0.703, recall of 0.706, F1-score of 0.659, 
the lowest memory usage (45.94 MB), and a relatively 
high inference speed (24.66 ms per batch). This model 
effectively balances computational efficiency and 
classification quality due to its hybrid CNN–
Transformer architecture and stable hyperparameter 
settings. Swin-Tiny ranked second, with an accuracy of 
62.01% and the fastest inference speed (30.10 ms per 
batch), but it exhibited very high memory usage 
(451.03 MB). EfficientNet-B0 demonstrated a 
relatively balanced profile (60.27% accuracy, 79.01 MB 
memory), while ViT-Tiny achieved the highest 
precision (0.707) but lower overall accuracy (58.52%). 
Although ConvNeXt-Nano recorded the highest 
training accuracy (99.67%), it failed to generalize well, 
as indicated by its lowest test accuracy (56.33%). 
Overall, the results indicate that MobileViT-XS with 
optimized hyperparameters is the most suitable model 
for implementing a borax detection system on 
resource-limited devices such as smartphones. Future 
research should expand the dataset, evaluate the 
impact of extreme lighting conditions, and explore 
adaptive hyperparameter optimization techniques to 
enhance classification robustness in real-world 
scenarios. 
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