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Abstract—Food safety, particularly concerning the use of illegal additives such as borax in processed meat
products like meatballs, remains a critical issue in Indonesia. This study analyzes the performance of several
lightweight deep learning models based on Convolutional Neural Networks (CNN) and Transformers to classify
images of meatballs containing borax, enabling their deployment on resource-constrained devices such as
smartphones. Data collection involved capturing 1,429 images of meatballs with and without borax using a
smartphone camera under varying lighting conditions and shooting angles. The five main architectures
evaluated were ConvNeXt-Nano, Swin-Tiny, ViT-Tiny, MobileViT-XS, and EfficientNet-B0. Hyperparameter
optimization was conducted using Optuna, followed by training with a 5-fold cross-validation scheme. Model
evaluation metrics included accuracy, precision, recall, F1 score, and inference speed. The results show that
MobileViT-XS was the best-performing architecture, achieving 65.93% accuracy, 0.703 precision, 0.706 recall,
0.659 F1 score, and efficient memory consumption (45.94 MB). These findings indicate that a hybrid approach
combining the strengths of CNNs and Transformers can achieve an optimal balance between detection
accuracy and computational efficiency. Therefore, such models have the potential to be applied as food safety
detection systems on devices with limited resources.

Keywords: Deep Learning, Food Safety, Image Classification, Lightweight Model.

Intisari—Keamanan pangan, khususnya terkait penggunaan bahan tambahan ilegal seperti boraks dalam
produk daging olahan seperti bakso, tetap menjadi masalah kritis di Indonesia. Studi ini menganalisis kinerja
beberapa model deep learning ringan berbasis Jaringan Saraf Konvolusional (CNN) dan Transformers untuk
mengklasifikasikan gambar bakso yang mengandung boraks, sehingga memungkinkan penerapan model
tersebut pada perangkat dengan sumber daya terbatas seperti smartphone. Pengumpulan data melibatkan
pengambilan 1.429 gambar bakso dengan dan tanpa boraks menggunakan kamera smartphone dalam kondisi
pencahayaan dan sudut pengambilan gambar yang bervariasi. Lima arsitektur utama yang dievaluasi adalah
ConvNeXt-Nano, Swin-Tiny, ViT-Tiny, MobileViT-XS, dan EfficientNet-B0. Optimasi hiperparameter dilakukan
menggunakan Optuna, diikuti dengan pelatihan menggunakan skema validasi silang 5-fold. Metrik evaluasi
model meliputi akurasi, presisi, recall, skor F1, dan kecepatan inferensi. Hasil menunjukkan bahwa MobileViT-
XS merupakan arsitektur dengan kinerja terbaik, mencapai akurasi 65,93%, presisi 0,703, recall 0,706, skor
F1 0,659, dan konsumsi memori yang efisien (45,94 MB). Temuan ini menunjukkan bahwa pendekatan hibrida
yang menggabungkan keunggulan CNN dan Transformers dapat mencapai keseimbangan optimal antara
akurasi deteksi dan efisiensi komputasi. Oleh karena itu, model-model semacam ini berpotensi diterapkan
sebagai sistem deteksi keamanan pangan pada perangkat dengan sumber daya terbatas.

Kata Kunci: deep learning, keamanan pangan, klasifikasi citra, model ringan.
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INTRODUCTION

Food safety has become a global concern that
cannot be overlooked, particularly in efforts to
ensure that all individuals have access to healthy
and nutritious food [1], [2]. The World Health
Organization (WHO) estimates that unsafe food
causes approximately 600 million cases of illness
and 420,000 deaths annually worldwide, primarily
due to foodborne pathogens [3]. Therefore, it is
essential for individuals and society as a whole to
understand the associated risks and collaborate to
implement effective preventive measures, ensuring
the availability of safe food for consumption.

In the modern era, shifts in lifestyle that
prioritize practicality and efficiency, combined with
the integration of technology in food production,
have made fast food and street food the primary
choices for daily consumption [4]. This trend not
only reflects a transformation in eating habits but
also significantly impacts the local economy, public
health, and culinary culture. One example of a
traditional food that remains very popular among
Indonesians is “Bakso.” Bakso is made from a
mixture of ground meat and flour, providing protein
and essential amino acids necessary for the human
body [5]. However, meat as the main ingredient is
susceptible to contamination by pathogens such as
bacteria, which accelerate spoilage [6]. This
vulnerability has led some producers to use illegal
food additives, such as sodium tetraborate (Borax),
to improve texture and extend the shelf life of
meatballs. Although this practice aims to prevent
economic losses caused by premature spoilage, it
violates government regulations.

Consumers have limited ability to visually
detect hazardous contaminants in food,
necessitating a real-time monitoring system to
protect public health. In this context, smartphones
widely owned by the public offer significant
potential as computer vision-based platforms for
food safety detection. The advantages of
smartphones in this application include high
accessibility, enabling widespread use without
reliance on specialized tools; continuously
improving processing capabilities supported by
modern processor technology; and high-quality
cameras capable of capturing the visual details
required for classification tasks. However,
implementing automatic detection systems on
smartphones presents significant challenges.
Limited computational resources such as memory
capacity, processing speed, and battery life pose
major obstacles. To run optimally on mobile
devices, an efficient and lightweight model is
essential. This model must maintain high detection
accuracy without compromising device
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performance. Therefore, the development of
smartphone-based food safety detection systems must
carefully balance technical requirements with device
limitations.

Deep learning has made significant advances in
object classification, including applications in the food
sector [7]. Improvements in computing technology
have facilitated the use of deep learning models to
analyze food composition [8]. Detection of borax
contamination in meatballs has been carried out using
various technical approaches as documented in
previous studies. Sensor-based methods, including
resistance sensors that measure changes in electrical
conductivity in meatball samples, enable direct
chemical analysis but require direct physical
interaction with the product [9]. As an alternative,
computer vision techniques offer a non-invasive and
rapid solution for screening meatballs without direct
contact.

However, most related studies rely on complex
deep learning architectures, which, although effective,
require significant computing and memory resources.
These limitations make them less suitable for low-
power devices such as smartphones [10]. Therefore,
there is a research gap in the development of efficient
deep learning models that balance high accuracy and
computational optimization for mobile applications in
borax detection in meatballs.

Convolutional Neural Networks (CNNs) have
demonstrated high effectiveness in digital image
classification, although they demand substantial
computational resources and large, diverse datasets
[11]. As an alternative, Vision Transformers (ViTs)
provide optimal performance across various scales
through self-attention mechanisms that capture global
dependencies in images [12], while hybrid models that
integrate attention mechanisms with CNNs offer
enhanced memory and parameter efficiency by
combining local feature extraction with global context
modeling [13].

This study evaluates five different deep learning
architectures for detecting borax contamination in
meatball images. The architectures studied include
Convolutional Neural Networks (CNNs), Vision
Transformers (ViTs), and hybrid models that combine
self-attention mechanisms with CNNs. The two CNN
architectures explored are EfficientNet-BO and
ConvNeXt-Nano: EfficientNet-BO uses combined
scaling (depth, width, resolution) to balance
computational complexity and efficiency, while
ConvNeXt-Nano integrates design principles from ViTs
into traditional CNN structures. For Transformer-
based architectures, ViT-Tiny was tested as a pure
model representation that processes images through
multi-head self-attention layers to capture global
dependencies. Meanwhile, hybrid models such as
Swin-Tiny and MobileViT-XS combine the advantages
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oflocal feature extraction (CNN) with global context
modeling (Transformer), with MobileViT-XS
specifically optimized for mobile and edge devices.

This study aims to evaluate 3 primary
architectures CNN, Transformers, and their hybrid
models designed for resource-limited devices. The
evaluation is based on three key criteria: (1)
detection accuracy, (2) inference speed, and (3)
memory usage efficiency. The results are expected
to provide a foundation for developing a practical,
accurate, and sustainable borax detection system
for resource-constrained devices, thereby
supporting the optimization of food safety in
Indonesia through measurable technological
solutions.

MATERIALS AND METHODS

This research was conducted through six main
stages as illustrated in Figure 1, starting from data
collection; data transformation and augmentation; deep
learning model development; hyperparameter
optimization using Optuna; model training with k-fold
validation; and performance testing and evaluation.

1 0ATA PREPARATION

Data Collection

{3} MODEL DEVELOPNENT

Data
Translormation
and
Augmentation

Model
Development
Step

Hyperparameter
Optimization

1| TRAINING AND EVALUATION

Performance
Testing and
Evaluation

Model Training
using K-Fold
{ Validation

Source: (Research Results, 2025)
Figure 1. Research Workflow

1. Data Collection

Data collection was conducted using
smartphone cameras to capture a variety of shooting
angles and lighting conditions. This approach aimed to
address the challenge of classifying meatballs
containing Borax in real-world environments, where
visual similarities between classes are often subtle, and
variations in lighting and background increase
complexity. A total of 1,429 images were collected and
meticulously labeled by category to support the
training of the classification model.
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(b)
Source: (Research Results, 2025)
Figure 2. Sample image (a) Meatballs Contain Borax (b)
Meatballs Without Contain Borax

For the training set, 600 images of meatballs
containing borax and 600 images of meatballs without
borax were utilized, resulting in a perfectly balanced
training dataset of 1,200 images. The testing set
comprised 145 images of meatballs containing borax
and 84 images of meatballs without borax, totaling 229
test images.

2. Data Transformation and Augmentation

Data transformation and dataset configuration in
this study were divided into two categories: training
and testing data. For training data, a series of
transformation processes are applied, including
resizing images to 224 x 224 pixels, as well as data
augmentation through random horizontal and vertical
flipping with a probability of 0.5. This will expand the
training data set by generating variations in image
orientation, and will help the model learn visual
features better and not easily overfit [14]. After
augmentation, normalization using mean values
[0.485, 0.456, 0.406] and standard deviations [0.229,
0.224, 0.225], based on the standard parameters of the
pre-trained model [15].

Meanwhile, the test data only underwent two
processes: resizing to 224 x 224 pixels and
normalization with identical parameters. Data
augmentation was deliberately excluded at this stage
to ensure that model evaluation was consistent and
objective, reflecting performance in a real-world
environment without artificial intervention. This
strategy is designed to validate the generalization
capabilities of models that have been improved
through augmentation in the training phase, while
avoiding bias due to excessive data modification. This
configuration ensures that models not only excel in
trained conditions but are also able to adapt effectively
to previously unseen data variations, providing an
important foundation for practical applications such as
food safety inspection or contaminant detection.
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3. Model Development

After preparing the entire dataset, the
modeling process proceeded using CNN and
Transformer architectures. In this study, five deep
learning models based on CNN and Transformer
architectures were specifically developed for
resource-limited devices.
a. ConvNeXt-Nano

ConvNeXt is a modern CNN architecture
designed to rival the performance of Vision
Transformer (ViT) models in image classification
tasks [16]. It incorporates contemporary design
elements inspired by ViT, such as patch embedding,
normalization, and depthwise convolution, while
maintaining  the  computational efficiency
characteristic of CNNs. The latest version, ConvNeXt
V2, integrates masked autoencoders and Global
Response Normalization, which enhance feature
representation and improve accuracy [17].

ConvNeXt-Nano is a lightweight variant of the
ConvNeXt architecture designed for image
classification tasks, offering high computational
efficiency without compromising accuracy. It
provides advantages such as fewer parameters, low
memory consumption, and fast inference speed,
while maintaining competitive accuracy [18].
Additionally, this model has demonstrated
effectiveness in handling limited data and small
objects.
b. Swin-Tiny

Swin Transformer is a vision transformer
architecture that employs a shifted window
mechanism to achieve high efficiency and accuracy
in image classification [19]. Swin-Tiny, a lightweight
variant of the Swin Transformer, offers advantages
in parameter efficiency and the ability to capture
extensive spatial dependencies, making it well-
suited for devices with limited resources [20].
c. ViT-Tiny

The Vision Transformer (ViT) model was

introduced by Dosovitskiy et al. [21]. ViT-Tiny is a
lightweight variant of the VIiT architecture
specifically designed for computational efficiency
and optimal performance, particularly on limited
datasets [20]. While retaining the core principles of
ViT such as processing images as sequences of patch
tokens and utilizing self-attention mechanisms ViT-
Tiny has significantly fewer parameters and lower
complexity, thereby reducing the computational
load. This design enables ViT-Tiny to balance
efficiency and accuracy, making it a practical
solution for systems with computational constraints
that still require reliable visual analysis capabilities.
d. MobileViT-XS

MobileViT is a deep learning architecture that
integrates CNN and vision transformers. It has
proven effective for implementation on mobile
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devices, delivering performance comparable to pure
transformers while remaining computationally
efficient [22]. MobileViT-XS is a lightweight variant of
MobileViT that combines the strengths of CNNs and
vision transformers for image classification on mobile
or edge devices.
e. EfficientNet-BO

EfficientNet is a Convolutional Neural Network
(CNN) model developed by Google to address challenges
in object and image recognition [23]. This model is
designed with eight different architectures, namely
EfficientNet-BO to EfficientNet-B7, where each version
has increasing complexity along with an increase in
parameters. As a consequence of the increase in the
number of parameters, the accuracy of the model also
tends to increase proportionally. It employs a
compound scaling technique that systematically
balances the network's depth, width, and resolution to
achieve high accuracy with low floating-point
operations (FLOPs), making it one of the most efficient
models for image classification with an optimal
balance between performance and computational
complexity [24].

4. Hyperparameter Optimizing

Hyperparameter optimization is a crucial factor in
developing a robust deep learning model [25].In this
study, hyperparameter tuning was conducted using
Optuna, a Sequential Model-Based Optimization
(SMBO) library that adaptively explores the
hyperparameter search space [26]. Table 2 presents
the parameters optimized for each model.

Table 2. Hyperparameter Tuning Configuration

Hyperparameter Value

Learning Rate 0.00001 - 0.01
Batch size 8,16,32

Optimizier Adam, AdamW, SGD

Weight decay 0.000001 - 0.01

Source: (Research Results, 2025)

Each experiment conducted using the Optuna
library represents a unique combination of
hyperparameters, which is then evaluated based on its
performance on the validation set.

5. Model Training

The optimal parameter configuration identified
during the hyperparameter optimization stage is used
to train the final model employing a 5-fold cross-
validation scheme with 30 epochs to ensure
convergence of model parameters. The final model
performance is evaluated based on the average
validation results across all folds.

This approach offers a more reliable estimate of
generalization performance while minimizing the bias
associated with a single data split. This study aims to
evaluate the performance of lightweight deep learning
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models in solving classification problems.
Additionally, = hyperparameter  tuning  was
performed to identify the optimal configuration for
each model tested. All experiments and analyses
were conducted using five lightweight deep
learning models designed to support computational
efficiency on resource- limited devices.

6. Testing and Evaluation

Model evaluation covers important
performance aspects such as accuracy, precision,
sensitivity, F1-score, and inference speed, thereby
providing recommendations on the most suitable
model to be implemented in resource-constrained
computing systems.

TP+TN
Accurassy = (1)
TP+FP+TN+FN
.. TP
Precision = (2)
TP+FP
TP
Recall = —— (3)
TP+FN
Precision x Recall
fl—score=2x —
Precision + Recall
Inference speed measurements were

performed to evaluate the computational efficiency
of the model. The measurement process was carried
out by calculating the difference in model execution
time in a single batch of test data. The time
difference produced in each iteration was then
converted into milliseconds and averaged to obtain
the average inference value in ms/batch.

All calculations and modeling in this study
were implemented using the PyTorch deep learning
framework. To train and evaluate the model, the
Google Colab platform was chosen as the main
computing environment, supported by an NVIDIA
Tesla T4 GPU. The use of the T4 GPU played an
important role in accelerating the computing
process, while also increasing the efficiency of the
experiment by utilizing optimal hardware
resources.

RESULTS AND DISCUSSION

Hyperparameter Optimization

Hyperparameter optimization is a crucial
factor in developing an effective classification
model. The optimal hyperparameters for each
model are presented in Table 3.
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Table 3. Optimized hyperparameters for all models

Model Learning Batch  Optimizier =~ Weight
Rate size decay

ConvNeXt- 0.000012 16 Adam 0.00096

Nano

Swin-Tiny 0.000208 32 AdamW 0.000001

ViT-Tiny 0.000024 32 Adam 0.000002

MobileViT- 0.000169 32 AdamW 0.001299

XS

EfficientNet- 0.000353 32 AdamW 0.000018

BO

Source: (Research Results, 2025)

Training Model

After  completing the  hyperparameter
optimization process, the model was trained using
cross-validation techniques.

ConvNeXt-Nano

CanvNeXt-Nano - Trairing History (K-Fold Cv)
e

[ R R T N

FARY IR
Yo |

Source: (Research Results, 2025)
Figure 3. Training history of ConvNeXt-Nano model
across 5-fold over 30 epochs

The training history of ConvNeXt-Nano in Figure
3 shows that the Training Loss graph indicates a
drastic decrease in the first five epochs, from around
0.35 to close to 0.02 across all folds. This decrease
indicates that the ConvNeXt-Nano model has excellent
learning capacity for the training dataset. After the 5th
epoch, the loss value remains stable at around zero,
indicating that the model has reached optimal
convergence on the training data. In terms of Training
Accuracy, there is a significant increase in line with the
decrease in loss. Accuracy increased rapidly from
around 88% to nearly 100% in the first five epochs,
then remained consistent at a perfect score (100%)
until the 30th epoch. This reinforces the impression
that the model is able to understand patterns in the
training data very effectively. Meanwhile, Validation
Loss shows a different pattern from training loss.
Although there was a significant decrease at the
beginning of training (epochs 0-5), considerable
fluctuations were observed throughout the process,
with values ranging from 0.01 to 0.175. These
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fluctuations, especially in Fold 4 and Fold 5, which
peaked at nearly 0.175 around epoch 10, indicate
instability in the model's generalization ability. For
Validation Accuracy, the figures ranged from 92% to
100% with an inconsistent pattern. Although some
folds (such as Fold 1 and Fold 2) showed relative
stability above 99% after epoch 10, other folds
(especially Folds 3, 4, and 5) experienced significant
volatility. Sharp declines at certain points, such as
Fold 1 dropping to 94% around epoch 10, indicate
the model's sensitivity to variations in the
validation data. Overall, these results confirm that
ConvNeXt-Nano performs strongly in training, but
still requires adjustments to improve generalization
stability on unseen data.

Swin-Tiny

Based on the Swin-Tiny model training history
graph in Figure 4, using 5-Fold Cross Validation,
several important patterns emerge in the model
learning process.

SwinTiny - Training Histary (K-Fald CV)

Source: (Research Results, 2025)
Figure 4. Training history of Swin-Tiny model across
5-fold over 30 epochs

In the training loss and training accuracy
graphs, the model shows excellent ability in learning
the training data. The training loss decreases sharply,
from about 0.45 in early epochs to nearly 0 in the 5-
10 epoch range. At the same time, training accuracy
rises rapidly from about 78% to almost 100% across
all folds. This rapid convergence shows the model can
effectively recognize patterns in the training data.
However, the model's performance on the validation
data tells a different story. The validation loss graph
shows significant fluctuations across all folds, with
several spikes indicating instability. Unlike the
smooth downward trend in training loss, validation
loss does not show a consistent pattern, but rather
tends to fluctuate throughout the training process.
Meanwhile, validation accuracy ranges from 92% to
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99%, with considerable variation between epochs.
Although these figures are generally good, there is a
clear gap between training accuracy (reaching 100%)
and validation accuracy (a maximum of 99%). These
patterns indicate overfitting, where the model is too
specific to the training data and loses its ability to
generalize to data it has never seen before. This is
reflected in the significant difference in performance
between training and validation, as well as unstable
fluctuations in validation metrics. This condition needs
to be addressed, for example, through regularization
techniques, data augmentation, or model architecture
adjustments to improve generalization capabilities.

ViT-Tiny

The training history graph of the ViT-Tiny (Vision
Transformer) model in Figure 5 shows impressive
performance in the 5-Fold Cross Validation scenario.

ViTTiny - Training History (K Fold CV)
PR

w0 T T T T e

WA TNINAT N |

Source: (Research Results, 2025)
Figure 5. Training history of ViT-Tiny model across 5-
fold over 30 epochs

The loss decreased from 0.42 to almost zero in 10
epochs. Training accuracy increased from 80% to
almost 100% and remained stable. Almost all folds show
smooth learning curves. Only Fold 3 experienced slight
fluctuations. In validation, the loss remained low (0.02-
0.08), and the accuracy was very high (98-100%) in
most folds. Fold 3 experienced a spike in loss and a drop
in accuracy to 85%, but it recovered quickly. The small
difference between training and validation accuracy
indicates strong generalization. The model did not show
significant overfitting. These results confirm the
consistency and effectiveness of the ViT-Tiny model in
rigorous evaluation.

MobileViT-XS

Based on the training history graph in Figure 6,
the MobileViT-XS model shows stable learning
dynamics during the training phase, with more
significant variations in the validation phase.

Accredited Rank 2 (Sinta 2) based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
No.225/E/KPT/2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri



JITK (JURNAL ILMU PENGETAHUAN

DAN TEKNOLOGI KOMPUTER)

VOL. 11.NO. 3 FEBRUARY 2026
P-ISSN: 2685-8223 | E-ISSN: 2527-4864
DOI: 10.33480/jitk.v11i3.7462

MobileiTXS - Training Histery {K-Fold CV)

e — 11
Rl

7 f ) 5 E) e B z T o [ an E) "

Source: (Research Results, 2025)
Figure 6. Training history of MobileViT-XS model
across 5-fold over 30 epochs

In the training loss plot, all folds experienced a
consistent decline from an initial value of around 0.5
to below 0.05 at epoch 30. This indicates an efficient
convergence process, demonstrating the model's
ability to effectively minimize training errors. The
increase in training accuracy also reflects the model's
effectiveness in understanding data patterns. The
accuracy value increases sharply from around 85% at
the beginning of training to nearly 100% after the
20th epoch and remains stable until the end of the
training phase.

This stability indicates that the model has
reached an optimal level of understanding of the
training data. During the validation phase, validation
loss showed fluctuations between folds, with most
values ranging from 0.05 to 0.15 throughout the
epoch. However, there was a temporary spike to 0.4
in several folds (mainly around epochs 10 to 15),
which may be related to differences in data
characteristics between folds. Nevertheless,
validation accuracy remained competitive, ranging
from 88% to 100%. Most folds achieved an accuracy
above 95% after epoch 10 and maintained it until the
end of training.

EfficientNet-B0

As shown in the training history graph in
Figure 7, the performance of the EfficientNet-BO
model based on the training history graph with K-
Fold Cross-Validation shows that the model
converges rapidly and efficiently.

Accredited Rank 2 (Sinta 2) based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
No.225/E/KPT/2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri

Eflicienthet-80 - Training Histary [Kk-Fold CV)

5
L

;o

Source: (Research Results, 2025)
Figure 7. Training history of EfficientNet-BO model
across 5-fold over 30 epochs

The training loss decreases sharply from around
0.9 to close to 0.0 in the first 10 epochs, while the
training accuracy reaches 98-100% from the 5th epoch
and remains stable until the end of training. This shows
that the model is able to learn the training data patterns
optimally. On the validation side, although the validation
loss is in a low range (0.0-0.3), there is higher
fluctuation compared to training, and the validation
accuracy fluctuates between 90% and 100%, with most
folds reaching 96-99% in the final epoch. The variability
between folds, especially in Fold 5, which shows
significant fluctuations, indicates sensitivity to data
partitioning and potential heterogeneity in the dataset.
The striking difference between the training and
validation metrics after the 10th epoch is an indicator of
overfitting, where the model shows near-perfect
performance in training but is less consistent in
generalizing to new data.

Table 4 presents a summary of the training
results from five model architectures using three main
indicators: average accuracy, average training time,
and average memory usage. These three metrics not
only describe the predictive capabilities of each model,
but also the computational efficiency required during
the training process.

Table 4. Model Training Results

Model Average ?Zaeil;‘naiieg Average Memory
Accuracy . Usage
Time

ConvNeXt- 99.67% 308.82s 255.96 MB
Nano

Swin-Tiny 98.92% 326.44s 451.03 MB
ViT-Tiny 99.25% 212.51s 100.64 MB
MobileViT-XS 99.58% 274.17s 45.94 MB
EfficientNet-BO  99.33% 222.43s 79.01 MB

Source: (Research Results, 2025)
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The ConvNeXt-Nano model achieved the
highest accuracy of 99.67%, with a training time of
308.82 seconds and memory usage of 255.96 MB.
Next, Swin-Tiny attained an accuracy of 98.92%
with a training time of 326.44 seconds, but
exhibited higher memory usage at 451.03 MB. The
ViT-Tiny model demonstrated balanced
performance, achieving 99.25% accuracy, a training
time of 212.51 seconds, and memory usage of
100.64 MB. In contrast, MobileViT-XS was the most
memory-efficient, using only 45.94 MB, while
maintaining an accuracy of 99.58% and a training
time of 274.17 seconds. Meanwhile, EfficientNet-B0
recorded an accuracy of 99.33% with a training time
of 222.43 seconds and memory usage of 79.01 MB.

Testing and Evaluation

After completing the model training process,
testing was conducted using a pre-prepared test
dataset consisting of 229 images samples (145 borax
samples and 84 non-borax samples).

ConvNeXt-Nano
Accuracy: 56.33%
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Figure 8. Confusion Matrix for ConvNeXt-Nano
Model

The classification results of the ConvNeXt-
Nano model are shown through the confusion
matrix in Figure 8. The model successfully classified
60 borax samples correctly as borax (true positive)
and 69 non-borax samples correctly as non-borax
(true negative). However, there were 85 borax
samples misclassified as non-borax (false negative)
and 15 non-borax samples misclassified as borax
(false positive).

Based on the confusion matrix, performance
metrics were calculated using equations (1)
through (4). Using equation (1), the overall model
accuracy was obtained at 0.563 with the calculation
(60 + 69)/229 = 129/229. For the borax class,
equation (2) yielded a precision of 0.800 from
60/(60+15)=60/75, equation (3) yielded a recall of
0.414 from 60/(60+85) = 60/145, and equation (4)
yielded an F1-score of 0.545. Meanwhile, the non-
borax class showed a precision of 0.448 from
69/(69+85) = 69/154, a recall of 0.821 from
69/(69+15) = 69/84, and an F1-score of 0.580.
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Macro-average metrics that give equal weight to
both classes yielded a macro precision of 0.624, macro
recall of 0.618, and macro F1-score of 0.563.

win-Tiny
Accuracy: 62.01%
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Figure 9. Confusion Matrix for Swin-Tiny Model

The classification results of the Swin-Tiny
model on the test dataset are shown in the confusion
matrix in Figure 9. The model successfully classified 70
borax samples correctly as borax (True Positive) and
72 non-borax samples correctly as non-borax (True
Negative). However, there were 75 borax samples
misclassified as non-borax (False Negative) and 12
non-borax samples misclassified as borax (False
Positive).

Based on the confusion matrix, performance
metrics were calculated using equations (1) through
(4). Using equation (1), the overall model accuracy was
obtained at 0.620 with the calculation (70 + 72) /229 =
142/229. For the borax class, equation (2) yielded a
precision of 85.4% or 0.854 from 70/(70+12) =70/82,
equation (3) yielded a recall of 0.483 from 70/(70+75)
= 70/145, and equation (4) yielded an F1l-score of
0.614. Meanwhile, the non-borax class showed a
precision of 0.490 from 72/(72+75) = 72/147, a recall
of 0.857 from 72/(72+12) = 72 /84, and an F1-score of
0.623.

Macro-average metrics that give equal weight to
both classes yielded a macro precision of 0.672, macro
recall of 67.0% or 0.670, and macro F1-score of 0.619.
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Figure 10. Confusion Matrix for ViT-Tiny Model
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ViT-Tiny model classification results based
on the confusion matrix in Figure 10. The model
successfully classified 53 borax samples correctly as
borax (true positive) and 81 non-borax samples
correctly as non-borax (true negative). However,
there were 92 borax samples misclassified as non-
borax (false negative) and 3 non-borax samples
misclassified as borax (false positive). Using
equation (1), the overall model accuracy was
obtained at 0.585 with the calculation (53 +
81)/229 = 134/229. For the borax class, equation
(2) yielded a precision of 94.6% or 0.946 from
53/(53+3) = 53/56, equation (3) yielded a recall of
0.366 from 53/(53+92) = 53/145, and equation (4)
yielded an F1-score of 0.527. Meanwhile, the non-
borax class showed a precision of 0.468 from
81/(81+92) = 81/173, a recall of 0.964 from
81/(81+3) = 81/84, and an F1-score of 0.631.
Macro-average metrics that give equal weight to
both classes yielded a macro precision of 0.707,
macro recall of 0.665, and macro F1-score of 0.579.

MobileViT-XS
Accuracy: 65.94%

70
60
50
- 40
- 30
- 10
-20
- 10

BORAX NON-BORAX

Actual
BORAX

NON-BORAX

Predicted

Source: (Research Results, 2025)
Figure 11. Confusion Matrix for MobileViT-XS
Model

MobileViT-XS model classification results
based on the confusion matrix in Figure 11. The
model accurately identified 77 borax samples as
borax (true positive) and 74 non-borax samples as
non-borax (true negative). Nevertheless, there were
68 borax samples incorrectly classified as non-
borax (false negative) and 10 non-borax samples
wrongly identified as borax (false positive).

Applying equation (1), the overall model
accuracy reached 659% or 0.659 with the
computation (77 + 74)/229 = 151/229. For the
borax class, equation (2) produced a precision of
0.885 from 77/(77+10) = 77/87, equation (3)
generated a recall of 0.531 from 77/(77+68) =
77/145, and equation (4) resulted in an F1-score of
0.664. Conversely, the non-borax class
demonstrated a precision of 0.521 from 74 /(74+68)
= 74/142, a recall of 0.881 from 74/(74+10) =
74/84, and an Fl-score of 0.655. Macro-average
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metrics that assign equal weight to both classes
produced a macro precision of 0.703, macro recall of
0.706, and macro F1-score of 0.659.

EfficientNet-BO
Accuracy: 60.26%
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Figure 12. Confusion Matrix for EfficientNet-B0
Model

EfficientNet-BO model classification results
based on the confusion matrix in Figure 12. The model
accurately identified 62 borax samples as borax (true
positive) and 76 non-borax samples as non-borax (true
negative). Nevertheless, there were 83 borax samples
incorrectly classified as non-borax (false negative) and
8 non-borax samples wrongly identified as borax (false
positive).

Applying equation (1), the overall model
accuracy reached 0.603, with the computation (62 +
76)/229 = 138/229. For the borax class, equation (2)
produced a precision of 0.886 from 62/(62+8) =
62/70, equation (3) generated a recall of 0.428 from
62/(62+83) = 62/145, and equation (4) resulted in an
F1l-score of 0.577. Conversely, the non-borax class
demonstrated a precision of 0.478 from 76/(76+83) =
76/159, arecall of 0.905 from 76/(76+8) = 76/84, and
an Fl-score of 0.626. Macro-average metrics that
assign equal weight to both classes produced a macro
precision of 0.682, macro recall of 0.666,and macro F1-
score of 0.601.

Table 5. Comparison of Performance of All

Models
Model Test  Precision Recall F1- Avg
Accuracy Score Inference
Time
ConvNeXt- 56.3% 0.624 0.617  0.562 126.94
Nano ms/batch
Swin-Tiny 62.0% 0.672 0.670  0.620 30.10
ms/batch
ViT-Tiny 58.5% 0.707 0.665 0.578 14.36
ms/batch
MobileViT-XS  65.9% 0.703 0.706  0.659 24.66
ms/batch
EfficientNet-BO  60.2% 0.682 0.666  0.601 26.17
ms/batch

Source: (Research Results, 2025)
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A comparative evaluation of five lightweight
deep learning models for classifying borax-
contaminated meatballs in Table 5 shows that
MobileViT-XS stands out as the model with the
highest performance, achieving an accuracy of
65.93%, surpassing  Swin-Tiny (62.00%),
EfficientNet-BO (60.27%), ViT-Tiny (58.52%), and
ConvNeXt-Nano (56.33%). The superiority of
MobileViT-XS can be explained by its hybrid
architecture, which combines local CNN
convolutions and global Transformer attention,
enabling detailed texture feature extraction and
broad semantic context understanding.

This is reflected in the highest recall (0.706)
and F1 score (0.659) achieved by this model,
demonstrating consistency in balancing specific
detection and contextual sensitivity. ViT-Tiny,
despite having lower overall accuracy (58.52%),
stands out with the highest precision (0.707), which
is critical for minimizing false positives in
hazardous contaminant detection scenarios.
However, this compromise highlights the model's
limitations in integrating high precision with
comprehensive accuracy. On the other hand,
ConvNeXt-Nano recorded the lowest performance
(56.33%), confirming that adopting Transformer
elements without systematic optimization does not
improve detection performance, even after
hyperparameter optimization with Optuna.

In terms of computational efficiency, ViT-
Tiny is the fastest with an inference time of 14.36
ms/batch, followed by MobileViT-XS (24.66
ms/batch), EfficientNet-BO (26.17 ms/batch), and
Swin-Tiny (30.10 ms/batch). ConvNeXt-Nano
shows inefficiency with an inference time of 126.94
ms/batch, in line with its low accuracy. MobileViT-
XS stands out as the most balanced solution,
combining high accuracy with competitive
computational efficiency, making it suitable for
deployment on low-power devices or real-time
applications.

Overall, despite hyperparameter optimization
across all models, MobileViT-XS consistently
demonstrates superiority across all evaluation
metrics. Model deployment recommendations
depend on the context: MobileViT-XS for mobile or
real-time applications, ViT-Tiny for systems
prioritizing extreme precision with high speed, and
Swin-Tiny for laboratory environments with
adequate computational resources. The consistent
performance of MobileViT-XS underscores its
robustness in handling data variability, a critical
aspect in food safety where classification errors can
have significant impacts on public health.

752

CONCLUSION

This study evaluates five lightweight deep
learning models for classifying images of meatballs
containing borax: ConvNeXt-Nano, Swin-Tiny, ViT-
Tiny, MobileViT-XS, and EfficientNet-BO.
Hyperparameter optimization was conducted using
Optuna, tuning parameters such as learning rate, batch
size, and weight decay. The optimization yielded
distinct optimal configurations for each model. Testing
on 229 images revealed that MobileViT-XS achieved
the best performance, withan accuracy of 65.93%,
precision of 0.703, recall of 0.706, F1-score of 0.659,
the lowest memory usage (45.94 MB), and a relatively
high inference speed (24.66 ms per batch). This model
effectively balances computational efficiency and
classification quality due to its hybrid CNN-
Transformer architecture and stable hyperparameter
settings. Swin-Tiny ranked second, with an accuracy of
62.01% and the fastest inference speed (30.10 ms per
batch), but it exhibited very high memory usage
(451.03 MB). EfficientNet-BO demonstrated a
relatively balanced profile (60.27% accuracy, 79.01 MB
memory), while ViT-Tiny achieved the highest
precision (0.707) but lower overall accuracy (58.52%).
Although ConvNeXt-Nano recorded the highest
training accuracy (99.67%), it failed to generalize well,
as indicated by its lowest test accuracy (56.33%).
Overall, the results indicate that MobileViT-XS with
optimized hyperparameters is the most suitable model
for implementing a borax detection system on
resource-limited devices such as smartphones. Future
research should expand the dataset, evaluate the
impact of extreme lighting conditions, and explore
adaptive hyperparameter optimization techniques to
enhance classification robustness in real-world
scenarios.
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