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Abstract— C(lassifying mushroom species presents a significant challenge within biological data analysis
because of the wide variety of species and their distinct attributes. This research investigates the effectiveness
of the Decision Tree classifier for mushroom categorization by comparing two splitting criteria, the Gini Index
and Entropy. Additionally, the study employs the Recursive Feature Elimination (RFE) method for
dimensionality reduction to enhance model efficiency and performance. The dataset was collected, cleaned,
and analyzed exploratorily before feature selection was conducted using RFE. The Decision Tree model was
trained and evaluated using accuracy, precision, recall, and F1-score metrics. The results showed that applying
RFE improved computational efficiency without compromising model accuracy. The Gini criterion provided
more stable results across all metrics, while Entropy demonstrated higher precision in certain cases. Model
optimization through parameter tuning produced the best parameter combination at max_depth = 5,
min_samples_leaf = 5, and min_samples_split = 10. This study concludes that integrating RFE with the Decision
Tree can significantly enhance the performance of high-dimensional dataset classification. The findings are
expected to serve as a reference for developing efficient and accurate biological data classification models.

Keywords: Decision Tree, Hyperparameter Tuning, Mushroom Classification, Recursive Feature Elimination
(RFE).

Intisari— Klasifikasi jamur merupakan salah satu tantangan penting dalam analisis data biologis, karena
beragamnya jenis dan karakteristik unik yang dimiliki. Penelitian ini bertujuan untuk mengevaluasi kinerja
algoritma Decision Tree dalam Klasifikasi jamur dengan menggunakan dua kriteria pembelahan, yaitu Gini
Index dan Entropy, serta menerapkan teknik reduksi dimensi Recursive Feature Elimination (RFE) untuk
meningkatkan efisiensi model. Dataset dikumpulkan, dibersihkan, dan dianalisis secara eksploratif sebelum
dilakukan seleksi fitur menggunakan RFE. Model Decision Tree dilatih dan dievaluasi dengan metrik akurasi,
presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa penerapan RFE mampu meningkatkan
efisiensi komputasi tanpa mengorbankan akurasi model. Kriteria Gini memberikan hasil yang lebih stabil pada
seluruh metrik, sementara Entropy menunjukkan presisi yang lebih tinggi dalam beberapa kasus. Optimisasi
model melalui tuning parameter menghasilkan kombinasi parameter terbaik pada max_depth = 5,
min_samples_leaf = 5, dan min_samples_split = 10. Penelitian ini menyimpulkan bahwa integrasi RFE dengan
Decision Tree dapat meningkatkan kinerja klasifikasi dataset berdimensi tinggi secara signifikan. Hasil
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penelitian ini diharapkan dapat menjadi referensi bagi pengembangan model klasifikasi data biologis yang

efisien dan akurat.

Kata Kunci: Decision Tree, Hyperparameter Tuning, Klasifikasi Jamur, Recursive Feature Elimination (RFE).

INTRODUCTION

The classification of mushrooms poses a
complex challenge in machine learning, particularly
when dealing with high-dimensional datasets [1].
Mushrooms are characterized by diverse
morphological and biochemical features, making
accurate classification essential for health, food
safety,  biotechnology, and environmental
applications [2]. Misclassification can result in the
consumption of toxic species or hinder scientific
research. Decision Tree algorithms are commonly
used for classification due to their interpretability
and ability to handle categorical data efficiently [3].
These models construct hierarchical decision rules
based on measures such as the Gini Index and
Entropy, which help in determining the best
attribute splits based on class impurity and
information gain [4], [5]. However, when applied to
datasets with a large number of features, Decision

Trees can suffer from overfitting, reduced
generalizability, and decreased model
interpretability.

High-dimensional data increases

computational complexity and may introduce
redundant or irrelevant features that compromise
model accuracy. To overcome this, Recursive
Feature Elimination (RFE) offers a powerful
technique for dimensionality reduction by
recursively removing the least important features
based on model performance [6], [7]. Despite its
potential, integration of RFE with Decision Tree
models in the context of mushroom classification
remains underexplored.

Several previous studies have applied
machine learning algorithms for mushroom
classification, but few have integrated RFE with
Decision Tree or evaluated performance based on
Gini Index and Entropy. Tutuncu et al. (2022)
reported the success of Decision Tree with an
accuracy of 96.82% for mushroom classification
without employing RFE or specific criteria like Gini
and Entropy [8]. Another study by Metlek and
Cetiner (2023) reported precision and recall of 0.98
for Decision Tree, butitalso did not incorporate RFE
or Gini- and Entropy-based analyses [2]. A novel
approach to Decision Tree was conducted by Lee et
al. (2022)[9], who used the Rao-Stirling index to
account for inter-class distances to improve
accuracy; however, this study also did not integrate
RFE or Gini- and Entropy-based analyses[10].
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Meanwhile, Rianasari et al (2022) applied
PCA for mushroom classification using Naive Bayes,
achieving good accuracy levels, but they did not
combine RFE with Decision Tree [11]. Other studies,
such as Wati et al. (2022), compared the C4.5 and
C5.0 algorithms, reporting high accuracy for
identifying poisonous mushrooms, but without
addressing RFE or Gini and Entropy criteria [12].
Siddique et al. (2023) highlighted the use of genetic
algorithms for feature selection and random forest
algorithms for classification, reporting that genetic
algorithms outperformed correlation-based
approaches in terms of accuracy and precision [13].
However, this research did not consider Decision
Tree with RFE using Gini and Entropy. Additionally,
Morshed et al. (2023) focused on evaluating nine
machine learning methods for mushroom
classification, highlighting k-NN as the best-
performing method with 96% accuracy and the
highest F1-score [14]. However, this study did not
include an analysis of Decision Tree performance
with RFE or criteria such as Gini and Entropy.

These gaps highlight the need for a
comprehensive study integrating Recursive Feature
Elimination with Decision Tree models and
assessing the effect of Gini Index and Entropy on
classification performance. This research aims to
address that gap by developing an optimized
Decision Tree model for high-dimensional
mushroom classification using RFE and
hyperparameter tuning. Performance evaluation
will focus on the impact of Gini and Entropy as
splitting criteria. This study not only contributes to
improving classification performance in practical
domains such as agriculture and health but also
advances theoretical insights on applying
dimensionality reduction to interpretable models.
The proposed approach leverages RFE for feature
selection, employs Decision Trees for classification,
and systematically compares splitting criteria, thus
offering a robust framework for high-dimensional
biological data classification and contributing to the
development of explainable Al-based systems.

MATERIALS AND METHODS

In this study, we evaluate the performance of
the Decision Tree algorithm for mushroom
classification by applying dimensionality reduction
techniques using Recursive Feature Elimination
(RFE). The research also compares the effectiveness
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of two splitting criteria, Gini Index and Entropy, in
producing an optimal classification model. To
achieve these objectives, a systematic and
structured research methodology was
implemented, as outlined in the flow diagram
shown in Figure 1.
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Figure 1. Research Methodology for
Interpretable Mushroom Classification using RFE
and Decision Tree

The study begins with problem formulation,
emphasizing the importance of mushroom
classification to support food safety and
biotechnological research. This is followed by data
acquisition and data cleaning to ensure dataset
quality before modeling. An Exploratory Data
Analysis (EDA) is then performed to understand
feature distributions and relationships, as well as to
identify potential irrelevant or redundant features.

To address the key issue highlighted in the
background high dimensionality of features this
study applies Recursive Feature Elimination (RFE)
for feature selection. This process aims to reduce
model complexity while maintaining performance
and interpretability. The reduced dataset is then
split into training, validation, and test sets to ensure
balanced model development and generalization.
The classification model is built using the Decision
Tree algorithm, selected for its ability to handle
categorical data and for its interpretability an
essential element of explainable Al. Two splitting
criteria, Gini Index and Entropy, are used separately
during training to observe their impact on
classifying  biological data. The model’s
performance is evaluated using metrics such as
accuracy, precision, recall, and F1-score, providing
a comprehensive understanding of its classification
effectiveness. To further optimize the model,
hyperparameter tuning is conducted using Grid
Search with Cross-Validation. The final stage
involves evaluating the model on the test set to
confirm its reliability and performance stability.
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Through this approach, the research
methodology not only aligns with the challenges of
high-dimensional mushroom classification but also
directly implements solutions outlined in the
background. The integration of RFE, Decision Tree,
and a comparative analysis of Gini and Entropy
criteria provides a meaningful contribution to the

development of accurate and interpretable
biological classification systems based on
Explainable Al

Research Dataset

This dataset originates from the UCI Machine
Learning Repository and describes the physical and
environmental characteristics of mushrooms [8], as
shown in Table 1.

Table 1. Attributes Description

Attribute Description
class Edible (e) or Poisonous (p) mushrooms
Shape of mushroom cap (e.g., bell, conical,
cap-shape

convex, flat)

Surface texture of cap (fibrous, grooves,
scaly, smooth)

Color of cap (brown, buff, cinnamon, gray,

cap-surface

cap-color
p green, etc.)
bruises Presence of bruises (yes or no)
Smell of mushroom (almond, anise,
odor

creosote, fishy, etc.)

Attachment of gills to stalk (attached,
descending, free)

Distance between gills (close, crowded,

gill-attachment

gill-spacing distant)
gill-size Size of gills (broad or narrow)
. Color of gills (black, brown, buff, chocolate,
gill-color etc)
stalk-shape Shape of stalk (enlarging or tapering)
Root type of stalk (bulbous, club, cup,
stalk-root

equal, etc.)

stalk-surface- Surface texture above ring on stalk

above-ring (fibrous, scaly, silky)
stalk-surface- Surface texture below ring on stalk (same
below-ring as above)
stalk-color- Color above ring on stalk (brown, buff,
above-ring cinnamon, etc.)
stalk-co!or- Color below ring on stalk (same as above)
below-ring
veil-type Type of veil (partial or universal)

. Color of veil (brown, orange, white,
veil-color

yellow)

Number of rings (none, one, two)

Type of ring (cobwebby, evanescent,
flaring, large, etc.)

Color of spore print (black, brown, buff,
chocolate, etc.)

Population size (abundant,
numerous, scattered)

Habitat where mushroom grows (grasses,
leaves, meadows, etc.)

ring-number
ring-type
spore-print-color

: clustered,
population

habitat

Source : (Research Results, 2025)

The dataset consists of 8,124 entries and 23
columns, all of which are of object (categorical) data
type. Each column contains no missing values (non-
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null) and includes features such as cap shape, color,
odor, gill type, ring presence, and habitat. The first
column, labeled class, serves as the target label
indicating whether the mushroom is edible or
poisonous.

Recursive Feature Elimination (RFE)

The Recursive Feature Elimination (RFE)
algorithm was initially introduced by Guyon et al.
[15] in the context of gene selection for disease
classification. The approach begins by training a
machine learning (ML) model using all available
features, followed by assessing feature relevance
based on the characteristics of the model such as
regression coefficients in linear models or feature
importance scores in tree-based classifiers.
Features with the lowest contribution to the model
are iteratively removed, and the model is retrained
using the remaining features. This elimination cycle
continues until a predefined stopping criterion is
reached, such as achieving the target number of
features or observing no further performance
improvement after feature removal [16].

This iterative procedure represents a form of
backward feature elimination [17]. RFE begins by
training a model with the complete set of features
and progressively removes the least useful ones,
retraining the model after each elimination step.
This iterative refinement enables a more reliable
assessment of feature relevance compared to
single-step selection techniques. RFE employs a
greedy search approach, choosing the most
beneficial subset of features locally at each stage in
pursuit of the best overall feature set [18].
Additionally, this greedy strategy offers greater
computational efficiency than exhaustive search
methods, which become increasingly expensive as
the dimensionality of the feature space grows [19].

Start

v

= Train a predictive model with N features

Rank features by importance

Drop the least important feature, N=N-1

No
73 N
7 Stopping "\
Criteria 7

/

Yes

Terminate

Source : (Okan, 2025)
Figure 2. Stages of the Recursive Feature
Elimination (RFE) Algorithm Process
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The flowchart in Figure 2 illustrates the
process of the Recursive Feature Elimination (RFE)
algorithm [20]. The process begins by training a
predictive model using all available features in the
dataset (N features). Once the model is built, the
next step is to determine the importance score of
each feature. Based on these importance scores, the
features are ranked from the most important to the
least important. The feature with the lowest
importance score is then removed, reducing the
number of features by one (N=N - 1).

After removing the feature, the system
checks whether the stopping criteria have been met,
such as the remaining number of features reaching
the desired minimum threshold or no further
improvement in model performance. If the criteria
are not met, the process repeats starting again with
the remaining features. This iterative process
continues until the stopping criteria are satisfied, at
which point the algorithm stops and produces the
most relevant subset of features for the predictive
model.

Decision Tree

Decision Tree is a machine learning
algorithm used for classification and regression
tasks [21]. In classification, this algorithm
constructs a decision tree by selecting the best
attribute at each node based on certain criteria[22].
Two common criteria used to split data at nodes are
the Gini Index and Entropy (Information Gain)[23].

Gini Index
The Gini Index measures the impurity of a node
using the formula (1)[24].

Gini =1-Yk  p? (1)

where p; is the probability of occurrence of the i
class at a particular node, and k is the total number
of classes in the dataset.

Nj

Pi =7 (2)

Where N; is the number of data points belonging to
the i class, and N is the total number of data points
atthat node [25].

Total Impurity at a Split:

If a node is split into m subsets(D;, D,, ..., D,,) the
total impurity is calculated as the weighted
average[26].

D)

=1 * Gini(D;) (3)

" " — m
Ginigyr =
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Entropy and Information Gain
Entropy measures the uncertainty (impurity) of the
data using formula (4)[27]

Entropy = =%, pi.loga(n) 4

Where k is the number of classes in the dataset, and
pi is the probability of a data point belonging to the
i class[28].

IG = Entropyparent —

7y, 2

Entropyparen: 1s the entropy value of the data
before the split. The data is then divided into several
subsets Dj;, each with |Djl. data points. Meanwhile,
IDjl is the total number of data points before the
split. This information is used to calculate
Information Gain in the Decision Tree[29], [30].

.entropy (D) 5)

Hyperparameter tuning

Hyperparameter tuning in a Decision Tree
refers to the process of determining the optimal
configuration of parameters such as maximum tree
depth (max_depth), the minimum number of
samples needed to split an internal node
(min_samples_split), the minimum number of
samples required at a leaf node (min_samples_leaf),
and the splitting criterion (criterion). Adjusting
these parameters helps control model complexity
and prevents issues such as overfitting or
underfitting [31], [32], [33]. The primary aim is to
enhance the model’s predictive performance and its
ability to generalize effectively to unseen data [31].

RESULTS AND DISCUSSION

Data Cleaning

In the data cleaning stage, the dataset was
cleaned by removing rows containing missing
values to ensure the quality of the data used. Next,
all categorical features in the dataset were
converted into numerical form using the Label
Encoding method so they could be processed by the
Decision Tree algorithm, as shown in Figure 2. In
this way, variables such as the shape, surface, and
color of the mushroom cap, as well as the class label
(edible or poisonous), were converted into
appropriate numerical representations, making the
data ready for training classification models using
either the Gini or Entropy criteria.
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Figure 3. Result of Label Encoding Process on the
Mushroom Dataset

Figure 3 displays the mushroom dataset after
undergoing data cleaning and transformation of
categorical features into numerical values using the
Label Encoding method. This dataset consists of
8,124 rows and 23 columns, including various
features such as the shape and color of the
mushroom cap, odor, gill color, as well as the
mushroom class indicating whether the mushroom
is edible or poisonous. All missing values have been
successfully addressed, as indicated by the absence
of any remaining missing values. The dataset is now
ready to be used in the training process of
classification models based on algorithms like
Decision Tree.

Exploratory Data Analysis (EDA)

At the Exploratory Data Analysis (EDA) stage,
a correlation analysis was conducted between the
features in the dataset and the target class (edible
or poisonous). Since all features had been converted
into numerical form using Label Encoding, the
correlations were calculated using a direct
numerical approach.

The results of the correlation analysis were
then visualized in the form of a bar plot to illustrate
the extent of influence each feature has on the
classification target, as shown in Figure 4.
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Source : (Research Results, 2025)
Figure 4. Correlation of All Features with Class
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Figure 4 shows the absolute correlation
values between each feature in the dataset and the
classification target class, indicating whether a
mushroom is edible or poisonous. It is observed that
the feature gill-size has the highest correlation at
0.54, followed by gill-color at 0.53, and bruises at
0.50. These three features exhibit the strongest
influence on mushroom classification. In contrast,
features such as veil-type, cap-color, and odor have
low correlation values, indicating relatively little
impact on predicting the mushroom class. This
result demonstrates that not all features contribute
equally in the classification process, and features
with higher correlation may be prioritized in the
feature selection process to improve model
performance.

Recursive Feature Elimination (RFE)

In this implementation, the Decision Tree is
used as the base estimator in RFE due to its ability
to assess feature importance based on data splits.
The parameter random state=42 ensures consistent
and reproducible results. RFE is then configured to
select the top 10 features out of the initial 22
features, as shown in Table 1. The fitting process is
performed only on the training data (X train and y
train) to prevent data leakage from the test or
validation sets, ensuring that the model evaluation
remains objective and valid.

Table2. Number and List of Features Before and
After RFE

Number
Stage of
Features
Before 22 cap-shape, cap-surface, cap-color,
RFE bruises, odor, gill-attachment,
gill-spacing, gill-size, gill-color,
stalk-shape, stalk-root, stalk-
surface-above-ring, stalk-surface-
below-ring, stalk-color-above-
ring, stalk-color-below-ring, veil-
type, veil-color, ring-number,
ring-type, spore-print-color,
population, habitat
After 10 cap-surface, cap-color, gill-size,
RFE gill-color, stalk-shape, stalk-root,
stalk-surface-below-ring, stalk-
color-below-ring,  spore-print-
color, population

Source : (Research Results, 2025)

Feature List

Table 2 shows the number and list of features
used before and after the RFE process. Before RFE,
there were 22 initial features covering various
mushroom characteristics such as shape, color,
odor, as well as stem and spore structures. After the
RFE process, only the 10 most relevant features
were selected, such as cap-surface, gill-size, and
spore-print-color. This selection aims to simplify
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the model without sacrificing performance, while
also reducing complexity and the risk of overfitting.

Split Data

The original data was split into two parts:
80% for the combined training and validation set,
and 20% for the test set using train test split with
random state=42 to ensure consistent results. Then,
from the train validation data, 25% was allocated
for validation and the remaining 75% for training,
resulting in an overall data split of 60% training,
20% validation, and 20% test. This splitting ensures
that the test data remains completely separate for
final evaluation, while the training and validation
sets are used for model training and tuning.

Decision Tree Model

In the model training process, Decision Tree
was applied using two main splitting criteria: Gini
Index and Entropy. The Gini Index aims to minimize
impurity to produce more homogeneous nodes,
while Entropy focuses on maximizing the reduction
of uncertainty (information gain) during data
splitting. Using both criteria allows the evaluation of
the model’'s performance based on different
splitting methods in mushroom classification. To
evaluate the performance of the Decision Tree
model, two different splitting criteria, Gini Index
and Entropy, were used. Table 2 presents the
classification results based on four main evaluation
metrics: Accuracy, Precision, Recall, and F1-Score.

Table 3. Decision Tree Performance Using Gini and
Entropy Splitting Criteria

Sp.llttl.l’lg Accuracy Precision Recall Fl-
Criterion Score
Gini 0.79 0.80 0.79 0.79
Entropy 0.72 0.82 0.72 0.70

Source : (Research Results, 2025)

Table 3 shows a performance comparison of
the Decision Tree model based on two splitting
criteria, namely Gini and Entropy. The model using
the Gini criterion achieved an accuracy of 0.79, with
precision, recall, and F1-Score balanced around
0.79-0.80. This indicates that the model is fairly
stable in classification. On the other hand, the model
using the Entropy criterion produced a higher
precision of 0.82, but its accuracy, recall, and F1-
Score were lower, at 0.72, 0.72, and 0.70
respectively. This suggests that although Entropy
can identify positive predictions more accurately,
the model is less balanced in recognizing the overall
data. Overall, the Gini criterion provides more
consistent and balanced performance compared to
Entropy.
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The model performance evaluation was also
conducted based on the combination of splitting
methods (Gini and Entropy) and the application of
the feature selection technique (Recursive Feature
Elimination). Table 4 summarizes the test results
based on the number of features used, training time,
as well as four main evaluation metrics: accuracy,
precision, recall, and F1-Score.

Table 4. Decision Tree Performance: Gini vs
Entropy with/without RFE

Train
Model Criterion #Features Time Acc Prec Rec F1
(s)

DT Gini 22 0.0099 0.79 0.80 0.79 0.79
DT Entropy 22 0.0213 0.72 0.82 0.72 0.70
RFE Gini 10 0.0056 0.79 0.80 0.79 0.79
+DT

RFE

+DT Entropy 10 0.0086 0.72 0.82 0.72 0.70

Source : (Research Results, 2025)

The results show that the model using the
Gini criterion delivers more stable and balanced
performance across all evaluation metrics, with
accuracy, precision, recall, and F1-Score ranging
between 0.79 and 0.80. In contrast, the model with
the Entropy criterion records a higher precision
value (0.82), but its accuracy, recall, and F1-Score
are lower, at 0.72, 0.72, and 0.70 respectively. This
indicates that although Entropy is better at
specifically identifying the positive class, its overall
ability to recognize the entire dataset is less
balanced.

The application of RFE demonstrates that
reducing the number of features from 22 to 10 does
not significantly decrease the model’s performance.
Training time becomes shorter, especially for the
model using the Gini criterion, without sacrificing
accuracy or prediction quality. This shows that
feature selection can improve computational
efficiency while maintaining model performance.

Hyperparameter Tuning with Grid Search Cross-
Validation

To obtain the best performance from the
Decision Tree model, hyperparameter optimization
is conducted using the Grid Search with Cross-
Validation  (GridSearchCV)  approach.  This
optimization is carried out on the dataset after the
feature selection stage using Recursive Feature
Elimination (RFE). The objective of this procedure
is to identify the optimal configuration of three key
hyperparameters: the maximum depth of the tree
(max_depth), the minimum number of samples
allowed in a leaf node (min_samples_leaf), and the
minimum number of samples necessary to split a
node (min_samples_split). Adjustments are made for
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two splitting criteria, namely Gini and Entropy, to
evaluate the effectiveness of each in producing an
accurate and balanced classification model. The
details of the parameter combination scenarios
tested are shown in table 5.

Table 5. Hyperparameter Tuning Scenarios for
Decision Tree with RFE

min_samples min_samples, Number of
Criteria max_depth - p - ples. Combinatio
leaf split
ns
Gini 1-5 1,510,20 2,10,20,40 °* ‘;S 4=
Entropy  1-5 1,510,20 2,10,20,40 °* ‘;S 4=

Source : (Research Results, 2025)

Table 5 presents the hyperparameter tuning
scenarios applied to the Decision Tree model after
feature selection using the Recursive Feature
Elimination (RFE) method. The tuning process was
conducted for two splitting criteria, Gini and
Entropy, by testing combinations of three main
hyperparameters: max_depth (1-5),
min_samples_leaf (1, 5, 10, 20), and
min_samples_split (2, 10, 20, 40). Each criterion
resulted in a total of 80 parameter combinations,
evaluated using 5-fold cross-validation.

The results of the tuning process, including
the best model performance for each criterion, are
visualized in Figure 5 for the Decision Tree with the
Gini criterion and Figure 6 for the Decision Tree
with the Entropy criterion. These visualizations aim
to facilitate the analysis and comparison of model
performance.

Tty sl o G Crterion i, seenples splil=2 Tt Revalis for G Crilerian - mir,_sscupies spit=10

Source : (Research Results, 2025)
Figure 5. Hyperparameter Tuning Results for
Decision Tree (Gini)

The hyperparameter tuning results in Figure
5 for the Decision Tree model with the Gini criterion
are visualized as a heatmap. This visualization
illustrates the impact of the parameter
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combinations of max_depth and min_samples_leafon
the average validation accuracy across four
different values of min_samples_split (2, 10, 20, and
40). Overall, the model's performance tends to
improve with increasing tree depth (max_depth) up
to a certain point, with the optimal configuration
achieved at max_depth =5, min_samples_leaf=5, and
min_samples_split =10 or 20, resulting in the highest
validation accuracy, approaching 0.98.

Turing s o Enteupy Deterion - swin_sempies pil=Z

Source : (Research Results, 2025)
Figure 6. Hyperparameter Tuning Results for
Decision Tree (Entropy)

The hyperparameter tuning results shown in
Figure 6 pertain to the Decision Tree model with the
Entropy criterion. Each heatmap depicts the
average validation accuracy for combinations of
max_depth and min_samples_leaf values across four
different min_samples_split values (2, 10, 20, and
40).

In general, the performance of the model
with the Entropy criterion tends to be lower
compared to the Gini criterion (see Figure 7). The
highest accuracy achieved is approximately 0.97,
which remains stable at configurations of
max_depth = 5 and min_samples_leaf = 5-10. This
indicates that while the model using Entropy can
identify patterns, its classification effectiveness is
inferior to the Gini-based model, particularly in
terms of average validation accuracy.

After hyperparameter tuning was performed
using the GridSearchCV method for the Decision
Tree model with two splitting criteria approaches—
Gini and Entropy—the best parameters yielding
optimal performance were obtained. Further
evaluation was conducted on the test data to
measure the model's effectiveness in real-world
predictions. Table 6 presents a comprehensive
comparison between the two models based on the
best parameters, cross-validation accuracy, and key
evaluation metrics such as precision, recall, and F1-
score.
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Table 6. Comparison of Tuning Results and
Evaluation of Decision Tree Models

Criteria Gini Entropy
max_depth =5 max_depth =5
Best . )
min_samples_leaf =1 min_samples_leaf =1
Parameters . . . .
min_samples_split = 2 min_samples_split = 2
CV Accuracy 0.9809 0.9777
Test Accuracy 0.9766 0.9711
Precision
0.99 / 0.96 1.00 / 0.94
©0/1) / /
Recall (0 /1) 0.97 /0.99 0.94 /1.00
F1-Score
0.98 /0.98 0.97 / 0.97
0/1) / /
Accuracy 0.98 0.97

Source : (Research Results, 2025)

Based on Table 6, the Decision Tree model
using the Gini criterion demonstrates slightly better
performance compared to the Entropy criterion.
Although both models utilize the same optimal
parameters, the Gini-based model achieves a higher
cross-validation accuracy (0.9809) and test
accuracy (0.9766) than the Entropy-based model
(0.9777 and 0.9711, respectively).

Furthermore, the evaluation metrics —
precision, recall, and F1-score — are more balanced
across the classes in the Gini model. Precision
represents the proportion of correctly identified
positive instances among all instances predicted as
positive. A high precision value indicates a low
number of false positives, which is essential in
contexts where incorrect classification of negative
instances as positive may lead to harmful
consequences. Recall, in contrast, measures the
model’s ability to correctly identify all actual
positive instances. A high recall value means fewer
false negatives, which is crucial when missing
positive cases (e.g., poisonous mushrooms) could be
dangerous.

In this case, the Gini-based model not only
delivers high values of precision and recall but also
maintains a good balance between them, as
reflected in its F1-score. This balance suggests that
the model is capable of making accurate predictions
without significantly favoring one class over
another. Consequently, the Gini-based Decision
Tree is recommended for use, as it provides more
consistent and reliable classification performance
across all evaluation metrics.

The performance metrics of various Decision
Tree models were evaluated with different
configurations. The models used include the basic
Decision Tree (DT), Decision Tree combined with
Recursive Feature Elimination (DT+RFE), and
Decision Tree with RFE and hyperparameter tuning
(DT+RFE+Tuning). Two splitting criteria, Gini and
Entropy, were employed to observe their impact on
model performance. The reported evaluation
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metrics include accuracy, precision, recall, and F1-
score for class 0 and class 1, providing a
comprehensive view of each model's effectiveness,
as shown in Table 7.

Table 7. Performance Metrics of Decision
Tree Models with Feature Selection and

Hyperparameter Tuning
Model Criterion  Acc Prec Rec F1
Category o/ (/1) (0/1)
o an e U5 0oy
DT Entropy 0.7231 01605 0/ 1(')(.)23/ 00769 0/
DT+RFE  Gini  0.7914 0(')_754/ 0(')?771/ 0(')?717/
DT+RFE Entropy 0.7231 016(;; 0/ 1(')(.);)3/ 007: 0/
T o 0 O 0%
T vy 0 10 0%4] 0%

Source : (Research Results, 2025)

From Table 7, it can be observed that
applying Recursive Feature Elimination (RFE) alone
does not significantly improve the model’s
performance compared to the basic Decision Tree.
The accuracy, precision, recall, and F1-scores of DT
and DT+RFE under both Gini and Entropy criteria
remain similar, indicating that feature selection by
itself does not sufficiently enhance predictive
ability.

In  contrast, combining RFE  with
hyperparameter tuning significantly improves all
evaluation metrics. The Gini-based model achieves
the highest accuracy (97.66%), followed closely by
the Entropy-based model (97.11%). Notably,
precision and recall are well-balanced across both
classes, which indicates that the models are not
biased toward either class. For instance, the Gini
model achieves precision scores of 0.99 and 0.96 for
class 0 and class 1, with corresponding recall scores
of 0.97 and 0.99. This balance reduces the risk of
misclassifying minority classes and ensures both
sensitivity and specificity in predictions.

However, the consistently high performance
of the DT+RFE+Tuning models raises potential
concerns of overfitting, especially since training and
test accuracies are both near-perfect. This could
mean the models are capturing noise along with the
patterns in the training data. Future work should
include validation on external datasets or through
k-fold cross-validation with more folds to confirm
the model’s generalizability. Additionally, since
Decision Tree models are prone to overfitting by
design, especially with deep trees and numerous
features, regularization techniques or ensemble

Aceredited Rank 2 (Sinta 2 based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
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methods could be
considered.

Overall, the findings emphasize the
importance of combining feature selection with
thorough  hyperparameter optimization to
construct a well-performing and generalizable
Decision Tree model, while also remaining cautious
of potential overfitting and class imbalance bias.

(e.g, Random Forests)

CONCLUSION

This study was motivated by the need for an
accurate, reliable, and interpretable classification
model for high-dimensional biological data,
particularly in distinguishing between edible and
poisonous mushrooms based on categorical
features. Considering the importance of
transparency and interpretability, the Decision Tree
algorithm was chosen as the foundation for model
development, in line with the growing demand for
explainable Al in critical domains such as food
safety. The findings indicate that the Decision Tree
algorithm, when combined with proper data
preprocessing techniques (such as data cleaning
and label encoding), feature selection using
Recursive Feature Elimination (RFE), and
hyperparameter tuning via Grid Search Cross-
Validation, can produce a highly accurate and well-
balanced classification model. The use of the Gini
Index as the splitting criterion yielded slightly
better performance stability than Entropy,
confirming its suitability for categorical biological
data classification.

The final model achieved an accuracy above
97%, demonstrating strong potential for practical
applications. These results confirm that integrating
dimensionality reduction techniques such as RFE
with interpretable models like Decision Trees is an
effective approach to handling high-dimensional
data challenges, while also supporting the
development of explainable classification systems.
Although the findings are encouraging, this study is
not without limitations. The work relies on a single
classification model and does not incorporate
validation using an external dataset. Future studies
should consider combining RFE with ensemble
learning techniques, such as Random Forest or
XGBoost, to improve performance and model
stability. Moreover, evaluating the method on
additional biological datasets and including
external validation would be valuable for assessing
the model’s generalizability and reducing the
likelihood of overfitting.

Overall, the methods and findings presented
in this study provide not only a robust approach for
mushroom classification but also contribute both
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theoretically and practically to the development of
transparent and reliable Al models in the biological
domain. As such, this study serves as a relevant
foundation for advancing explainable Al-based

classification

systems, particularly for high-

dimensional categorical data such as mushrooms.
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