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Abstract— Classifying mushroom species presents a significant challenge within biological data analysis 
because of the wide variety of species and their distinct attributes. This research investigates the effectiveness 
of the Decision Tree classifier for mushroom categorization by comparing two splitting criteria, the Gini Index 
and Entropy. Additionally, the study employs the Recursive Feature Elimination (RFE) method for 
dimensionality reduction to enhance model efficiency and performance. The dataset was collected, cleaned, 
and analyzed exploratorily before feature selection was conducted using RFE. The Decision Tree model was 
trained and evaluated using accuracy, precision, recall, and F1-score metrics. The results showed that applying 
RFE improved computational efficiency without compromising model accuracy. The Gini criterion provided 
more stable results across all metrics, while Entropy demonstrated higher precision in certain cases. Model 
optimization through parameter tuning produced the best parameter combination at max_depth = 5, 
min_samples_leaf = 5, and min_samples_split = 10. This study concludes that integrating RFE with the Decision 
Tree can significantly enhance the performance of high-dimensional dataset classification. The findings are 
expected to serve as a reference for developing efficient and accurate biological data classification models. 
 
Keywords: Decision Tree, Hyperparameter Tuning, Mushroom Classification, Recursive Feature Elimination 
(RFE). 
 
Intisari— Klasifikasi jamur merupakan salah satu tantangan penting dalam analisis data biologis, karena 
beragamnya jenis dan karakteristik unik yang dimiliki. Penelitian ini bertujuan untuk mengevaluasi kinerja 
algoritma Decision Tree dalam klasifikasi jamur dengan menggunakan dua kriteria pembelahan, yaitu Gini 
Index dan Entropy, serta menerapkan teknik reduksi dimensi Recursive Feature Elimination (RFE) untuk 
meningkatkan efisiensi model. Dataset dikumpulkan, dibersihkan, dan dianalisis secara eksploratif sebelum 
dilakukan seleksi fitur menggunakan RFE. Model Decision Tree dilatih dan dievaluasi dengan metrik akurasi, 
presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa penerapan RFE mampu meningkatkan 
efisiensi komputasi tanpa mengorbankan akurasi model. Kriteria Gini memberikan hasil yang lebih stabil pada 
seluruh metrik, sementara Entropy menunjukkan presisi yang lebih tinggi dalam beberapa kasus. Optimisasi 
model melalui tuning parameter menghasilkan kombinasi parameter terbaik pada max_depth = 5, 
min_samples_leaf = 5, dan min_samples_split = 10. Penelitian ini menyimpulkan bahwa integrasi RFE dengan 
Decision Tree dapat meningkatkan kinerja klasifikasi dataset berdimensi tinggi secara signifikan. Hasil 
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penelitian ini diharapkan dapat menjadi referensi bagi pengembangan model klasifikasi data biologis yang 
efisien dan akurat. 
 
Kata Kunci: Decision Tree, Hyperparameter Tuning, Klasifikasi Jamur, Recursive Feature Elimination (RFE).  
 

INTRODUCTION 
 

The classification of mushrooms poses a 
complex challenge in machine learning, particularly 
when dealing with high-dimensional datasets [1]. 
Mushrooms are characterized by diverse 
morphological and biochemical features, making 
accurate classification essential for health, food 
safety, biotechnology, and environmental 
applications [2]. Misclassification can result in the 
consumption of toxic species or hinder scientific 
research. Decision Tree algorithms are commonly 
used for classification due to their interpretability 
and ability to handle categorical data efficiently [3]. 
These models construct hierarchical decision rules 
based on measures such as the Gini Index and 
Entropy, which help in determining the best 
attribute splits based on class impurity and 
information gain [4], [5]. However, when applied to 
datasets with a large number of features, Decision 
Trees can suffer from overfitting, reduced 
generalizability, and decreased model 
interpretability. 

High-dimensional data increases 
computational complexity and may introduce 
redundant or irrelevant features that compromise 
model accuracy. To overcome this, Recursive 
Feature Elimination (RFE) offers a powerful 
technique for dimensionality reduction by 
recursively removing the least important features 
based on model performance [6], [7]. Despite its 
potential, integration of RFE with Decision Tree 
models in the context of mushroom classification 
remains underexplored. 

Several previous studies have applied 
machine learning algorithms for mushroom 
classification, but few have integrated RFE with 
Decision Tree or evaluated performance based on 
Gini Index and Entropy. Tutuncu et al. (2022) 
reported the success of Decision Tree with an 
accuracy of 96.82% for mushroom classification 
without employing RFE or specific criteria like Gini 
and Entropy [8]. Another study by Metlek and 
Cetiner (2023) reported precision and recall of 0.98 
for Decision Tree, but it also did not incorporate RFE 
or Gini- and Entropy-based analyses [2]. A novel 
approach to Decision Tree was conducted by Lee et 
al. (2022)[9], who used the Rao-Stirling index to 
account for inter-class distances to improve 
accuracy; however, this study also did not integrate 
RFE or Gini- and Entropy-based analyses[10]. 

Meanwhile, Rianasari et al. (2022) applied 
PCA for mushroom classification using Naïve Bayes, 
achieving good accuracy levels, but they did not 
combine RFE with Decision Tree [11]. Other studies, 
such as Wati et al. (2022), compared the C4.5 and 
C5.0 algorithms, reporting high accuracy for 
identifying poisonous mushrooms, but without 
addressing RFE or Gini and Entropy criteria [12]. 
Siddique et al. (2023) highlighted the use of genetic 
algorithms for feature selection and random forest 
algorithms for classification, reporting that genetic 
algorithms outperformed correlation-based 
approaches in terms of accuracy and precision [13]. 
However, this research did not consider Decision 
Tree with RFE using Gini and Entropy. Additionally, 
Morshed et al. (2023) focused on evaluating nine 
machine learning methods for mushroom 
classification, highlighting k-NN as the best-
performing method with 96% accuracy and the 
highest F1-score [14]. However, this study did not 
include an analysis of Decision Tree performance 
with RFE or criteria such as Gini and Entropy. 

These gaps highlight the need for a 
comprehensive study integrating Recursive Feature 
Elimination with Decision Tree models and 
assessing the effect of Gini Index and Entropy on 
classification performance. This research aims to 
address that gap by developing an optimized 
Decision Tree model for high-dimensional 
mushroom classification using RFE and 
hyperparameter tuning. Performance evaluation 
will focus on the impact of Gini and Entropy as 
splitting criteria. This study not only contributes to 
improving classification performance in practical 
domains such as agriculture and health but also 
advances theoretical insights on applying 
dimensionality reduction to interpretable models. 
The proposed approach leverages RFE for feature 
selection, employs Decision Trees for classification, 
and systematically compares splitting criteria, thus 
offering a robust framework for high-dimensional 
biological data classification and contributing to the 
development of explainable AI-based systems. 

 
MATERIALS AND METHODS 

 
In this study, we evaluate the performance of 

the Decision Tree algorithm for mushroom 
classification by applying dimensionality reduction 
techniques using Recursive Feature Elimination 
(RFE). The research also compares the effectiveness 
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of two splitting criteria, Gini Index and Entropy, in 
producing an optimal classification model. To 
achieve these objectives, a systematic and 
structured research methodology was 
implemented, as outlined in the flow diagram 
shown in Figure 1. 
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Source : (Research Results, 2025) 

Figure 1. Research Methodology for 
Interpretable Mushroom Classification using RFE 

and Decision Tree 
 

The study begins with problem formulation, 
emphasizing the importance of mushroom 
classification to support food safety and 
biotechnological research. This is followed by data 
acquisition and data cleaning to ensure dataset 
quality before modeling. An Exploratory Data 
Analysis (EDA) is then performed to understand 
feature distributions and relationships, as well as to 
identify potential irrelevant or redundant features. 

To address the key issue highlighted in the 
background high dimensionality of features this 
study applies Recursive Feature Elimination (RFE) 
for feature selection. This process aims to reduce 
model complexity while maintaining performance 
and interpretability. The reduced dataset is then 
split into training, validation, and test sets to ensure 
balanced model development and generalization. 
The classification model is built using the Decision 
Tree algorithm, selected for its ability to handle 
categorical data and for its interpretability an 
essential element of explainable AI. Two splitting 
criteria, Gini Index and Entropy, are used separately 
during training to observe their impact on 
classifying biological data. The model’s 
performance is evaluated using metrics such as 
accuracy, precision, recall, and F1-score, providing 
a comprehensive understanding of its classification 
effectiveness. To further optimize the model, 
hyperparameter tuning is conducted using Grid 
Search with Cross-Validation. The final stage 
involves evaluating the model on the test set to 
confirm its reliability and performance stability. 

Through this approach, the research 
methodology not only aligns with the challenges of 
high-dimensional mushroom classification but also 
directly implements solutions outlined in the 
background. The integration of RFE, Decision Tree, 
and a comparative analysis of Gini and Entropy 
criteria provides a meaningful contribution to the 
development of accurate and interpretable 
biological classification systems based on 
Explainable AI. 
 
Research Dataset 

This dataset originates from the UCI Machine 
Learning Repository and describes the physical and 
environmental characteristics of mushrooms [8], as 
shown in Table 1. 

 
Table 1. Attributes Description 

Attribute Description 
class Edible (e) or Poisonous (p) mushrooms 

cap-shape 
Shape of mushroom cap (e.g., bell, conical, 
convex, flat) 

cap-surface 
Surface texture of cap (fibrous, grooves, 
scaly, smooth) 

cap-color 
Color of cap (brown, buff, cinnamon, gray, 
green, etc.) 

bruises Presence of bruises (yes or no) 

odor 
Smell of mushroom (almond, anise, 
creosote, fishy, etc.) 

gill-attachment 
Attachment of gills to stalk (attached, 
descending, free) 

gill-spacing 
Distance between gills (close, crowded, 
distant) 

gill-size Size of gills (broad or narrow) 

gill-color 
Color of gills (black, brown, buff, chocolate, 
etc.) 

stalk-shape Shape of stalk (enlarging or tapering) 

stalk-root 
Root type of stalk (bulbous, club, cup, 
equal, etc.) 

stalk-surface-
above-ring 

Surface texture above ring on stalk 
(fibrous, scaly, silky) 

stalk-surface-
below-ring 

Surface texture below ring on stalk (same 
as above) 

stalk-color-
above-ring 

Color above ring on stalk (brown, buff, 
cinnamon, etc.) 

stalk-color-
below-ring 

Color below ring on stalk (same as above) 

veil-type Type of veil (partial or universal) 

veil-color 
Color of veil (brown, orange, white, 
yellow) 

ring-number Number of rings (none, one, two) 

ring-type 
Type of ring (cobwebby, evanescent, 
flaring, large, etc.) 

spore-print-color 
Color of spore print (black, brown, buff, 
chocolate, etc.) 

population 
Population size (abundant, clustered, 
numerous, scattered) 

habitat 
Habitat where mushroom grows (grasses, 
leaves, meadows, etc.) 

Source : (Research Results, 2025) 
 
The dataset consists of 8,124 entries and 23 

columns, all of which are of object (categorical) data 
type. Each column contains no missing values (non-
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null) and includes features such as cap shape, color, 
odor, gill type, ring presence, and habitat. The first 
column, labeled class, serves as the target label 
indicating whether the mushroom is edible or 
poisonous. 
 
Recursive Feature Elimination (RFE) 

The Recursive Feature Elimination (RFE) 
algorithm was initially introduced by Guyon et al. 
[15] in the context of gene selection for disease 
classification. The approach begins by training a 
machine learning (ML) model using all available 
features, followed by assessing feature relevance 
based on the characteristics of the model such as 
regression coefficients in linear models or feature 
importance scores in tree-based classifiers. 
Features with the lowest contribution to the model 
are iteratively removed, and the model is retrained 
using the remaining features. This elimination cycle 
continues until a predefined stopping criterion is 
reached, such as achieving the target number of 
features or observing no further performance 
improvement after feature removal [16]. 

This iterative procedure represents a form of 
backward feature elimination [17]. RFE begins by 
training a model with the complete set of features 
and progressively removes the least useful ones, 
retraining the model after each elimination step. 
This iterative refinement enables a more reliable 
assessment of feature relevance compared to 
single-step selection techniques. RFE employs a 
greedy search approach, choosing the most 
beneficial subset of features locally at each stage in 
pursuit of the best overall feature set [18]. 
Additionally, this greedy strategy offers greater 
computational efficiency than exhaustive search 
methods, which become increasingly expensive as 
the dimensionality of the feature space grows [19]. 

 
Source : (Okan, 2025) 

Figure 2. Stages of the Recursive Feature 
Elimination (RFE) Algorithm Process 

The flowchart in Figure 2 illustrates the 
process of the Recursive Feature Elimination (RFE) 
algorithm [20]. The process begins by training a 
predictive model using all available features in the 
dataset (N features). Once the model is built, the 
next step is to determine the importance score of 
each feature. Based on these importance scores, the 
features are ranked from the most important to the 
least important. The feature with the lowest 
importance score is then removed, reducing the 
number of features by one (N = N - 1). 

After removing the feature, the system 
checks whether the stopping criteria have been met, 
such as the remaining number of features reaching 
the desired minimum threshold or no further 
improvement in model performance. If the criteria 
are not met, the process repeats starting again with 
the remaining features. This iterative process 
continues until the stopping criteria are satisfied, at 
which point the algorithm stops and produces the 
most relevant subset of features for the predictive 
model. 
 
Decision Tree 

Decision Tree is a machine learning 
algorithm used for classification and regression 
tasks [21]. In classification, this algorithm 
constructs a decision tree by selecting the best 
attribute at each node based on certain criteria[22]. 
Two common criteria used to split data at nodes are 
the Gini Index and Entropy (Information Gain)[23]. 
 
Gini Index 
The Gini Index measures the impurity of a node 
using the formula (1)[24]. 

 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1              (1) 

 
where 𝑝𝑖 is the probability of occurrence of the i 
class at a particular node, and k is the total number 
of classes in the dataset. 

𝑝𝑖 =
𝑁𝑖

𝑁
               (2) 

 
Where Ni is the number of data points belonging to 
the i class, and N is the total number of data points 
at that node [25]. 
 
Total Impurity at a Split: 
If a node is split into m subsets(𝐷1, 𝐷2 , … , 𝐷𝑚) the 
total impurity is calculated as the weighted 
average[26]. 

𝐺𝑖𝑛𝑖𝑆𝑝𝑙𝑖𝑡 = ∑
|𝐷𝑗|

|𝐷|

𝑚
𝑗=1 . 𝐺𝑖𝑛𝑖(𝐷𝑗)            (3) 
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Entropy and Information Gain 
Entropy measures the uncertainty (impurity) of the 
data using formula (4)[27]  

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 . log2(𝑝𝑖)𝑘
𝑖=1             (4) 

 
Where k is the number of classes in the dataset, and 
pi is the probability of a data point belonging to the 
i class[28]. 
 

𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑟𝑒𝑛𝑡 −

∑
|𝐷𝑗|

|𝐷|
𝑛
𝑗=1 . 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷𝑗)               (5) 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑟𝑒𝑛𝑡  is the entropy value of the data 

before the split. The data is then divided into several 
subsets Dj, each with ∣Dj∣. data points. Meanwhile, 
∣Dj∣ is the total number of data points before the 
split. This information is used to calculate 
Information Gain in the Decision Tree[29], [30]. 
 
Hyperparameter tuning 

Hyperparameter tuning in a Decision Tree 
refers to the process of determining the optimal 
configuration of parameters such as maximum tree 
depth (max_depth), the minimum number of 
samples needed to split an internal node 
(min_samples_split), the minimum number of 
samples required at a leaf node (min_samples_leaf), 
and the splitting criterion (criterion). Adjusting 
these parameters helps control model complexity 
and prevents issues such as overfitting or 
underfitting [31], [32], [33]. The primary aim is to 
enhance the model’s predictive performance and its 
ability to generalize effectively to unseen data [31]. 
 

RESULTS AND DISCUSSION 
 

Data Cleaning 
In the data cleaning stage, the dataset was 

cleaned by removing rows containing missing 
values to ensure the quality of the data used. Next, 
all categorical features in the dataset were 
converted into numerical form using the Label 
Encoding method so they could be processed by the 
Decision Tree algorithm, as shown in Figure 2. In 
this way, variables such as the shape, surface, and 
color of the mushroom cap, as well as the class label 
(edible or poisonous), were converted into 
appropriate numerical representations, making the 
data ready for training classification models using 
either the Gini or Entropy criteria. 

 

 
Source : (Research Results, 2025) 

Figure 3. Result of Label Encoding Process on the 
Mushroom Dataset 

 
Figure 3 displays the mushroom dataset after 

undergoing data cleaning and transformation of 
categorical features into numerical values using the 
Label Encoding method. This dataset consists of 
8,124 rows and 23 columns, including various 
features such as the shape and color of the 
mushroom cap, odor, gill color, as well as the 
mushroom class indicating whether the mushroom 
is edible or poisonous. All missing values have been 
successfully addressed, as indicated by the absence 
of any remaining missing values. The dataset is now 
ready to be used in the training process of 
classification models based on algorithms like 
Decision Tree. 
 
Exploratory Data Analysis (EDA) 

At the Exploratory Data Analysis (EDA) stage, 
a correlation analysis was conducted between the 
features in the dataset and the target class (edible 
or poisonous). Since all features had been converted 
into numerical form using Label Encoding, the 
correlations were calculated using a direct 
numerical approach. 

The results of the correlation analysis were 
then visualized in the form of a bar plot to illustrate 
the extent of influence each feature has on the 
classification target, as shown in Figure 4. 

 

 
Source : (Research Results, 2025) 

Figure 4. Correlation of All Features with Class 
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Figure 4 shows the absolute correlation 
values between each feature in the dataset and the 
classification target class, indicating whether a 
mushroom is edible or poisonous. It is observed that 
the feature gill-size has the highest correlation at 
0.54, followed by gill-color at 0.53, and bruises at 
0.50. These three features exhibit the strongest 
influence on mushroom classification. In contrast, 
features such as veil-type, cap-color, and odor have 
low correlation values, indicating relatively little 
impact on predicting the mushroom class. This 
result demonstrates that not all features contribute 
equally in the classification process, and features 
with higher correlation may be prioritized in the 
feature selection process to improve model 
performance. 
 
Recursive Feature Elimination (RFE) 

In this implementation, the Decision Tree is 
used as the base estimator in RFE due to its ability 
to assess feature importance based on data splits. 
The parameter random state=42 ensures consistent 
and reproducible results. RFE is then configured to 
select the top 10 features out of the initial 22 
features, as shown in Table 1. The fitting process is 
performed only on the training data (X train and y 
train) to prevent data leakage from the test or 
validation sets, ensuring that the model evaluation 
remains objective and valid. 
 

Table2. Number and List of Features Before and 
After RFE 

Stage 
Number 

of 
Features 

Feature List 

Before 
RFE 

22 cap-shape, cap-surface, cap-color, 
bruises, odor, gill-attachment, 
gill-spacing, gill-size, gill-color, 
stalk-shape, stalk-root, stalk-
surface-above-ring, stalk-surface-
below-ring, stalk-color-above-
ring, stalk-color-below-ring, veil-
type, veil-color, ring-number, 
ring-type, spore-print-color, 
population, habitat 

After 
RFE 

10 cap-surface, cap-color, gill-size, 
gill-color, stalk-shape, stalk-root, 
stalk-surface-below-ring, stalk-
color-below-ring, spore-print-
color, population 

Source : (Research Results, 2025) 
 

Table 2 shows the number and list of features 
used before and after the RFE process. Before RFE, 
there were 22 initial features covering various 
mushroom characteristics such as shape, color, 
odor, as well as stem and spore structures. After the 
RFE process, only the 10 most relevant features 
were selected, such as cap-surface, gill-size, and 
spore-print-color. This selection aims to simplify 

the model without sacrificing performance, while 
also reducing complexity and the risk of overfitting. 
 
Split Data 

The original data was split into two parts: 
80% for the combined training and validation set, 
and 20% for the test set using train test split with 
random state=42 to ensure consistent results. Then, 
from the train validation data, 25% was allocated 
for validation and the remaining 75% for training, 
resulting in an overall data split of 60% training, 
20% validation, and 20% test. This splitting ensures 
that the test data remains completely separate for 
final evaluation, while the training and validation 
sets are used for model training and tuning. 
 
Decision Tree Model 

In the model training process, Decision Tree 
was applied using two main splitting criteria: Gini 
Index and Entropy. The Gini Index aims to minimize 
impurity to produce more homogeneous nodes, 
while Entropy focuses on maximizing the reduction 
of uncertainty (information gain) during data 
splitting. Using both criteria allows the evaluation of 
the model’s performance based on different 
splitting methods in mushroom classification. To 
evaluate the performance of the Decision Tree 
model, two different splitting criteria, Gini Index 
and Entropy, were used. Table 2 presents the 
classification results based on four main evaluation 
metrics: Accuracy, Precision, Recall, and F1-Score. 
 
Table 3. Decision Tree Performance Using Gini and 

Entropy Splitting Criteria 
Splitting 
Criterion 

Accuracy Precision Recall 
F1-
Score 

Gini 0.79 0.80 0.79 0.79 
Entropy 0.72 0.82 0.72 0.70 

Source : (Research Results, 2025) 
 

Table 3 shows a performance comparison of 
the Decision Tree model based on two splitting 
criteria, namely Gini and Entropy. The model using 
the Gini criterion achieved an accuracy of 0.79, with 
precision, recall, and F1-Score balanced around 
0.79–0.80. This indicates that the model is fairly 
stable in classification. On the other hand, the model 
using the Entropy criterion produced a higher 
precision of 0.82, but its accuracy, recall, and F1-
Score were lower, at 0.72, 0.72, and 0.70 
respectively. This suggests that although Entropy 
can identify positive predictions more accurately, 
the model is less balanced in recognizing the overall 
data. Overall, the Gini criterion provides more 
consistent and balanced performance compared to 
Entropy. 
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The model performance evaluation was also 
conducted based on the combination of splitting 
methods (Gini and Entropy) and the application of 
the feature selection technique (Recursive Feature 
Elimination). Table 4 summarizes the test results 
based on the number of features used, training time, 
as well as four main evaluation metrics: accuracy, 
precision, recall, and F1-Score. 

 
Table 4. Decision Tree Performance: Gini vs 

Entropy with/without RFE 

Model Criterion #Features 
Train 
Time 

(s) 
Acc Prec Rec F1 

DT Gini 22 0.0099 0.79 0.80 0.79 0.79 
DT Entropy 22 0.0213 0.72 0.82 0.72 0.70 

RFE 
+ DT 

Gini 10 0.0056 0.79 0.80 0.79 0.79 

RFE 
+ DT 

Entropy 10 0.0086 0.72 0.82 0.72 0.70 

Source : (Research Results, 2025) 
 

The results show that the model using the 
Gini criterion delivers more stable and balanced 
performance across all evaluation metrics, with 
accuracy, precision, recall, and F1-Score ranging 
between 0.79 and 0.80. In contrast, the model with 
the Entropy criterion records a higher precision 
value (0.82), but its accuracy, recall, and F1-Score 
are lower, at 0.72, 0.72, and 0.70 respectively. This 
indicates that although Entropy is better at 
specifically identifying the positive class, its overall 
ability to recognize the entire dataset is less 
balanced. 

The application of RFE demonstrates that 
reducing the number of features from 22 to 10 does 
not significantly decrease the model’s performance. 
Training time becomes shorter, especially for the 
model using the Gini criterion, without sacrificing 
accuracy or prediction quality. This shows that 
feature selection can improve computational 
efficiency while maintaining model performance. 

 
Hyperparameter Tuning with Grid Search Cross-
Validation 

To obtain the best performance from the 
Decision Tree model, hyperparameter optimization 
is conducted using the Grid Search with Cross-
Validation (GridSearchCV) approach. This 
optimization is carried out on the dataset after the 
feature selection stage using Recursive Feature 
Elimination (RFE). The objective of this procedure 
is to identify the optimal configuration of three key 
hyperparameters: the maximum depth of the tree 
(max_depth), the minimum number of samples 
allowed in a leaf node (min_samples_leaf), and the 
minimum number of samples necessary to split a 
node (min_samples_split). Adjustments are made for 

two splitting criteria, namely Gini and Entropy, to 
evaluate the effectiveness of each in producing an 
accurate and balanced classification model. The 
details of the parameter combination scenarios 
tested are shown in table 5. 
 

Table 5. Hyperparameter Tuning Scenarios for 
Decision Tree with RFE 

Criteria max_depth 
min_samples 

leaf 
min_samples_

split 

Number of 
Combinatio

ns 

Gini 1–5 1, 5, 10, 20 2, 10, 20, 40 
5 × 4 × 4 = 

80 

Entropy 1–5 1, 5, 10, 20 2, 10, 20, 40 
5 × 4 × 4 = 

80 

Source : (Research Results, 2025) 
 

Table 5 presents the hyperparameter tuning 
scenarios applied to the Decision Tree model after 
feature selection using the Recursive Feature 
Elimination (RFE) method. The tuning process was 
conducted for two splitting criteria, Gini and 
Entropy, by testing combinations of three main 
hyperparameters: max_depth (1–5), 
min_samples_leaf (1, 5, 10, 20), and 
min_samples_split (2, 10, 20, 40). Each criterion 
resulted in a total of 80 parameter combinations, 
evaluated using 5-fold cross-validation. 

The results of the tuning process, including 
the best model performance for each criterion, are 
visualized in Figure 5 for the Decision Tree with the 
Gini criterion and Figure 6 for the Decision Tree 
with the Entropy criterion. These visualizations aim 
to facilitate the analysis and comparison of model 
performance. 

 

 
Source : (Research Results, 2025) 

Figure 5. Hyperparameter Tuning Results for 
Decision Tree (Gini) 

 
The hyperparameter tuning results in Figure 

5 for the Decision Tree model with the Gini criterion 
are visualized as a heatmap. This visualization 
illustrates the impact of the parameter 
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combinations of max_depth and min_samples_leaf on 
the average validation accuracy across four 
different values of min_samples_split (2, 10, 20, and 
40). Overall, the model's performance tends to 
improve with increasing tree depth (max_depth) up 
to a certain point, with the optimal configuration 
achieved at max_depth = 5, min_samples_leaf = 5, and 
min_samples_split = 10 or 20, resulting in the highest 
validation accuracy, approaching 0.98. 

 

 
Source : (Research Results, 2025) 

Figure 6. Hyperparameter Tuning Results for 
Decision Tree (Entropy) 

 
The hyperparameter tuning results shown in 

Figure 6 pertain to the Decision Tree model with the 
Entropy criterion. Each heatmap depicts the 
average validation accuracy for combinations of 
max_depth and min_samples_leaf values across four 
different min_samples_split values (2, 10, 20, and 
40). 

In general, the performance of the model 
with the Entropy criterion tends to be lower 
compared to the Gini criterion (see Figure 7). The 
highest accuracy achieved is approximately 0.97, 
which remains stable at configurations of 
max_depth = 5 and min_samples_leaf = 5–10. This 
indicates that while the model using Entropy can 
identify patterns, its classification effectiveness is 
inferior to the Gini-based model, particularly in 
terms of average validation accuracy. 

After hyperparameter tuning was performed 
using the GridSearchCV method for the Decision 
Tree model with two splitting criteria approaches—
Gini and Entropy—the best parameters yielding 
optimal performance were obtained. Further 
evaluation was conducted on the test data to 
measure the model's effectiveness in real-world 
predictions. Table 6 presents a comprehensive 
comparison between the two models based on the 
best parameters, cross-validation accuracy, and key 
evaluation metrics such as precision, recall, and F1-
score. 

Table 6. Comparison of Tuning Results and 
Evaluation of Decision Tree Models 

 
Criteria Gini Entropy 

Best 
Parameters 

max_depth = 5 max_depth = 5 
min_samples_leaf = 1 min_samples_leaf = 1 
min_samples_split = 2 min_samples_split = 2 

CV Accuracy 0.9809 0.9777 
Test Accuracy 0.9766 0.9711 

Precision 
 (0 / 1) 

0.99 / 0.96 1.00 / 0.94 

Recall (0 / 1) 0.97 / 0.99 0.94 / 1.00 
F1-Score  

(0 / 1) 
0.98 / 0.98 0.97 / 0.97 

Accuracy 0.98 0.97 

Source : (Research Results, 2025) 
 

Based on Table 6, the Decision Tree model 
using the Gini criterion demonstrates slightly better 
performance compared to the Entropy criterion. 
Although both models utilize the same optimal 
parameters, the Gini-based model achieves a higher 
cross-validation accuracy (0.9809) and test 
accuracy (0.9766) than the Entropy-based model 
(0.9777 and 0.9711, respectively). 

Furthermore, the evaluation metrics — 
precision, recall, and F1-score — are more balanced 
across the classes in the Gini model. Precision 
represents the proportion of correctly identified 
positive instances among all instances predicted as 
positive. A high precision value indicates a low 
number of false positives, which is essential in 
contexts where incorrect classification of negative 
instances as positive may lead to harmful 
consequences. Recall, in contrast, measures the 
model’s ability to correctly identify all actual 
positive instances. A high recall value means fewer 
false negatives, which is crucial when missing 
positive cases (e.g., poisonous mushrooms) could be 
dangerous. 

In this case, the Gini-based model not only 
delivers high values of precision and recall but also 
maintains a good balance between them, as 
reflected in its F1-score. This balance suggests that 
the model is capable of making accurate predictions 
without significantly favoring one class over 
another. Consequently, the Gini-based Decision 
Tree is recommended for use, as it provides more 
consistent and reliable classification performance 
across all evaluation metrics. 

The performance metrics of various Decision 
Tree models were evaluated with different 
configurations. The models used include the basic 
Decision Tree (DT), Decision Tree combined with 
Recursive Feature Elimination (DT+RFE), and 
Decision Tree with RFE and hyperparameter tuning 
(DT+RFE+Tuning). Two splitting criteria, Gini and 
Entropy, were employed to observe their impact on 
model performance. The reported evaluation 
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metrics include accuracy, precision, recall, and F1-
score for class 0 and class 1, providing a 
comprehensive view of each model's effectiveness, 
as shown in Table 7. 

 
Table 7. Performance Metrics of Decision 

Tree Models with Feature Selection and 
Hyperparameter Tuning 

Model 
Category 

Criterion Acc 
Prec 

(0 / 1) 
Rec 

(0 / 1) 
F1 

(0 / 1) 

DT Gini 0.7914 
0.76 / 
0.84 

0.87 / 
0.71 

0.81 / 
0.77 

DT Entropy 0.7231 
0.65 / 
1.00 

1.00 / 
0.43 

0.79 / 
0.60 

DT+RFE Gini 0.7914 
0.76 / 
0.84 

0.87 / 
0.71 

0.81 / 
0.77 

DT+RFE Entropy 0.7231 
0.65 / 
1.00 

1.00 / 
0.43 

0.79 / 
0.60 

DT+RFE+ 
Tuning 

Gini 0.9766 
0.99 / 
0.96 

0.97 / 
0.99 

0.98 / 
0.98 

DT+RFE+ 
Tuning 

Entropy 0.9711 
1.00 / 
0.94 

0.94 / 
1.00 

0.97 / 
0.97 

Source : (Research Results, 2025) 
 

From Table 7, it can be observed that 
applying Recursive Feature Elimination (RFE) alone 
does not significantly improve the model’s 
performance compared to the basic Decision Tree. 
The accuracy, precision, recall, and F1-scores of DT 
and DT+RFE under both Gini and Entropy criteria 
remain similar, indicating that feature selection by 
itself does not sufficiently enhance predictive 
ability. 

In contrast, combining RFE with 
hyperparameter tuning significantly improves all 
evaluation metrics. The Gini-based model achieves 
the highest accuracy (97.66%), followed closely by 
the Entropy-based model (97.11%). Notably, 
precision and recall are well-balanced across both 
classes, which indicates that the models are not 
biased toward either class. For instance, the Gini 
model achieves precision scores of 0.99 and 0.96 for 
class 0 and class 1, with corresponding recall scores 
of 0.97 and 0.99. This balance reduces the risk of 
misclassifying minority classes and ensures both 
sensitivity and specificity in predictions. 

However, the consistently high performance 
of the DT+RFE+Tuning models raises potential 
concerns of overfitting, especially since training and 
test accuracies are both near-perfect. This could 
mean the models are capturing noise along with the 
patterns in the training data. Future work should 
include validation on external datasets or through 
k-fold cross-validation with more folds to confirm 
the model’s generalizability. Additionally, since 
Decision Tree models are prone to overfitting by 
design, especially with deep trees and numerous 
features, regularization techniques or ensemble 

methods (e.g., Random Forests) could be 
considered. 

Overall, the findings emphasize the 
importance of combining feature selection with 
thorough hyperparameter optimization to 
construct a well-performing and generalizable 
Decision Tree model, while also remaining cautious 
of potential overfitting and class imbalance bias. 

 
CONCLUSION 

 
This study was motivated by the need for an 

accurate, reliable, and interpretable classification 
model for high-dimensional biological data, 
particularly in distinguishing between edible and 
poisonous mushrooms based on categorical 
features. Considering the importance of 
transparency and interpretability, the Decision Tree 
algorithm was chosen as the foundation for model 
development, in line with the growing demand for 
explainable AI in critical domains such as food 
safety. The findings indicate that the Decision Tree 
algorithm, when combined with proper data 
preprocessing techniques (such as data cleaning 
and label encoding), feature selection using 
Recursive Feature Elimination (RFE), and 
hyperparameter tuning via Grid Search Cross-
Validation, can produce a highly accurate and well-
balanced classification model. The use of the Gini 
Index as the splitting criterion yielded slightly 
better performance stability than Entropy, 
confirming its suitability for categorical biological 
data classification. 

The final model achieved an accuracy above 
97%, demonstrating strong potential for practical 
applications. These results confirm that integrating 
dimensionality reduction techniques such as RFE 
with interpretable models like Decision Trees is an 
effective approach to handling high-dimensional 
data challenges, while also supporting the 
development of explainable classification systems. 
Although the findings are encouraging, this study is 
not without limitations. The work relies on a single 
classification model and does not incorporate 
validation using an external dataset. Future studies 
should consider combining RFE with ensemble 
learning techniques, such as Random Forest or 
XGBoost, to improve performance and model 
stability. Moreover, evaluating the method on 
additional biological datasets and including 
external validation would be valuable for assessing 
the model’s generalizability and reducing the 
likelihood of overfitting. 

Overall, the methods and findings presented 
in this study provide not only a robust approach for 
mushroom classification but also contribute both 
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theoretically and practically to the development of 
transparent and reliable AI models in the biological 
domain. As such, this study serves as a relevant 
foundation for advancing explainable AI-based 
classification systems, particularly for high-
dimensional categorical data such as mushrooms. 
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