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Abstract—Mango (Mangifera indica Linn.) is a nutrient-rich fruit, yet leaf diseases caused by microorganisms 
can significantly reduce crop productivity. Early detection is essential to prevent further damage and support 
effective disease management. This study proposes an optimized mango leaf disease prediction model using a 
multi-layer perceptron neural network (MLP-NN). Image-based feature extraction is performed using the 
Inception v3 architecture to obtain high-level color and texture features that improve classification 
performance. Unlike previous studies that rely solely on manually engineered features or full CNN training, this 
research introduces a hybrid approach that integrates deep feature extraction with MLP-NN optimization, 
offering a lightweight yet highly accurate alternative. Several hyperparameter combinations, including 
activation functions (ReLU, tanh, sigmoid) and optimization algorithms (Adam and SGD), were evaluated using 
the Orange platform. The optimized MLP-NN model with ReLU and Adam achieved the highest accuracy of 
93.5%, demonstrating better stability and training efficiency compared to other configurations. These findings 
highlight the novelty and advantages of the proposed method, showing improved accuracy with lower 
computational cost relative to many existing approaches. This study provides an efficient solution for mango 
leaf disease prediction and supports future development of automated plant disease detection systems. 

 
Keywords: Adam, Inception v3, Mango leaf disease, Neural network, Optimization. 

 
Intisari—Mangga (Mangifera indica Linn.) merupakan buah yang kaya nutrisi, namun penyakit pada daun 
yang disebabkan oleh mikroorganisme dapat menurunkan produktivitas secara signifikan. Deteksi dini sangat 
penting untuk mencegah kerusakan lebih lanjut dan mendukung pengelolaan penyakit yang efektif. Penelitian 
ini mengusulkan model prediksi penyakit daun mangga yang dioptimalkan menggunakan algoritma multi-
layer perceptron neural network (MLP-NN). Ekstraksi fitur berbasis citra dilakukan menggunakan arsitektur 
Inception v3 untuk memperoleh fitur warna dan tekstur tingkat tinggi yang meningkatkan kinerja klasifikasi. 
Berbeda dari penelitian sebelumnya yang hanya mengandalkan fitur buatan secara manual atau pelatihan 
CNN secara penuh, penelitian ini menawarkan pendekatan hibrida yang mengintegrasikan ekstraksi fitur 
deep learning dengan optimasi MLP-NN, sehingga memberikan alternatif yang lebih ringan namun tetap 
akurat. Berbagai kombinasi hiperparameter, termasuk fungsi aktivasi (ReLU, tanh, sigmoid) dan algoritma 
optimasi (Adam dan SGD), diuji menggunakan platform Orange. Model MLP-NN teroptimasi dengan ReLU dan 
Adam mencapai akurasi tertinggi sebesar 93,5%, menunjukkan stabilitas dan efisiensi pelatihan yang lebih 
baik dibandingkan konfigurasi lainnya. Temuan ini menegaskan kebaruan dan keunggulan metode yang 
diusulkan, dengan akurasi lebih tinggi dan biaya komputasi lebih rendah dibanding banyak pendekatan 
terdahulu. Penelitian ini memberikan solusi yang efisien untuk prediksi penyakit daun mangga serta 
mendukung pengembangan sistem deteksi penyakit tanaman otomatis di masa depan. 
  
Kata Kunci: Adam, Inception v3, Penyakit daun mangga, Jaringan saraf tiruan, Optimasi. 
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INTRODUCTION 
 

The agricultural sector in Indonesia supports 
the livelihoods of approximately 30–40% of the 
population, with farming serving as the primary 
source of income for many. However, climate 
change poses significant challenges, affecting crop 
yields and contributing to the increasing prevalence 
of plant diseases. These diseases are primarily 
caused by microorganisms such as bacteria, fungi, 
and viruses, which have a substantial impact on 
crop production. Plant disease identification has 
conventionally been carried out using manual 
approaches, which require significant time, are 
susceptible to human mistakes, and frequently 
result in inconsistent or inaccurate diagnoses [1]. At 
present, the lack of professional and reliable plant 
disease diagnostic tools results in inefficiencies, 
including the improper application of insecticides 
[2]. 

Mango (Mangifera indica), a popular fruit in 
Indonesia, faces significant threats from 
microorganisms such as fungi, bacteria, and 
parasites that reduce productivity. As the second-
largest mango producer in the world, Indonesia’s 
mango farming sector would benefit from early 
disease detection to stabilize and enhance 
production. According to the Food and Agriculture 
Organization (FAO), early-stage detection is 
essential for sustaining consistent levels of mango 
production. 

Recent developments in machine learning 
(ML) have led to disease classification models that 
can automatically derive important features from 
segmented image data. Nevertheless, many 
conventional ML approaches still rely on manually 
engineered features and small, highly curated 
datasets, limiting automation and reducing 
generalization ability [3] [4]. Deep learning 
approaches, especially Convolutional Neural 
Networks (CNNs), extracts image features 
automatically in a hierarchical manner and 
demonstrates high performance on well-controlled 
datasets. However, CNN-based systems are often 
constrained by the need for large, diverse, and well-
labeled datasets and remain susceptible to 
overfitting and reduced robustness under variable 
real-world conditions [5]. These practical 
limitations have driven research toward hybrid 
architectures and transfer strategies to improve 
adaptability and resilience in real operational 
environments. 

Other studies have combined multilayer 
Artificial Neural Networks (ANNs) with feature-
selection techniques such as genetic algorithms 
(GAs) to reduce dimensionality and improve 

accuracy. Nevertheless, these processing pipelines 
tend to raise computational demands and are 
frequently unsuitable for real-time applications or 
devices with limited resources [6].  In response to 
these challenges, deep learning (DL) techniques 
particularly CNNs have grown increasingly popular, 
as DL can overcome the limitations of traditional ML 
by leveraging large datasets to improve accuracy 

and minimize overfitting [7]. CNNs, widely used in 

agriculture and bioinformatics, have been shown to 
be highly effective in image-recognition tasks due to 
their ability to extract features automatically 
without manual input [8]. Nevertheless, CNN 
performance remains heavily dependent on large, 
diverse, and well-annotated datasets [9]. 

On the other hand, several studies have 
explored plant disease detection by integrating 
multilayer ANNs with GA-based feature selection 
[10]. These approaches are designed to enhance 
both the precision and effectiveness of plant disease 
detection through the application of machine 
learning techniques. The combination of ANN and 
GA is considered innovative because GA can 
optimize feature selection, reduce data redundancy, 
and enhance classification accuracy. However, these 
studies also indicate that GA-driven feature 
elimination increases computational overhead, 
making the ANN–GA integration less suitable for 
real-time detection. 

In response to these challenges, this study 
proposes a hybrid solution that employs Inception 
v3 for automated image-based feature extraction 
and an optimized MLP-NN for classification. This 
strategy aims to (1) leverage deep features 
extracted by a well-established CNN architecture, 
while (2) reducing computational load by 
delegating the classification stage to a more 
lightweight MLP, thereby improving feasibility for 
deployment in resource-limited environments. 
Initial experimental results indicate that the 
proposed hybrid setup delivers comparable 
accuracy while requiring reduced computational 
resources relative to end-to-end CNN training on 
small-scale datasets, effectively addressing key 
research gaps related to accuracy, robustness, and 
deployability under real-world conditions. 

Prior to integrating optimization techniques, 
the dataset was evaluated using various 
hyperparameter combinations, such as activation 
functions ReLU, tanh, and sigmoid as well as 
optimization methods like Adam and SGD, to 
determine the most effective hybrid configuration 
[11]. In contrast to earlier studies that relied on 
limited datasets or manual feature extraction, this 
work proposes an automated image-based feature-
extraction approach to reduce human dependency 
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and enhance detection efficiency. Early results 
confirm the efficacy of this approach in identifying 
mango leaf diseases by means of automated image 
recognition and feature extraction [12]. 

 
MATERIALS AND METHODS 

 
THEORETICAL BACKGROUND 
Artificial Neural Network Model 

The potential gap between human and 
machine capabilities has been filled through the 
development of Artificial Intelligence [AI] 
technology. Artificial Neural Networks is a 
computational model that imitates the way the 
human brain works to learn from data through 
mathematical models that describe the function of 
the brain, neurons, synapses, and their 
interconnections. With a structure consisting of 
neurons, layers, and connections, and the use of 
activation functions and training processes, ANN 
can solve various machine learning problems and 
provide predictions or classifications based on 
complex data. The notion of machine learning that 
mimics human cognition serves as a fundamental 
motivation in this domain, supporting tasks such as 
image analysis, classification, and related 
applications.  

Humans acquire knowledge through 
perceptual processes, whereas machines are 
trained using supervised learning, enabling them to 
function as powerful tools comparable to the human 
brain [13][14]. Several studies have been 
conducted, including research by Mona Jamjoom et 
al. [15] which proposed a segmentation method 
using K-means clustering, followed by texture 
feature extraction (GLCM & LBP), and classification 
using SVM, achieving 97% accuracy in plant leaf 
disease classification. This study explains the 
effectiveness of combining segmentation processes 
and feature extraction for machine learning–based 
classification. Demilie W. B. [16] explained the 
evaluation of several classifiers (including ANN and 
SVM) on features automatically extracted from 
plant leaves using image segmentation and feature 
engineering, demonstrating that ANN can 
outperform other classical methods. 

 
Convolution Neural Network 

Convolutional Neural Network (CNN) is 
widely used in various studies for the purpose of 
identifying, classifying, and recognizing plant 
diseases that involve large-scale image processing, 
achieving high validation accuracy, and enabling the 
discovery of specific patterns within recognition 
frameworks [17]. Mathematical operations in CNN 
called convolution, in extracting image features the 

concept of convolution uses a kernel that starts 
from the top left to the bottom right [18]. The 
convolutional layer + ReLU is the first of CNN's four 
layers, followed by the max-pooling layer, the fully 
connected layer, and the output layer. The chosen 
characteristics are dispersed throughout the image 
in the convolutional layer. ReLU, the activation for 
this layer, substitutes zero for every negative value 
such that the total of all values is not zero. The image 
size is then decreased by the pooling layer. The 
completely connected layer transforms the image 
into a single layer or vector using Softmax activation 
[19]. CNN is a very flexible model, depending on the 
requirements of the task to be met. 

 

 
Source: (Research Results, 2025) 

Figure 1 CNN Architecture Approach 
 

Figure 1 illustrates several CNN 
architectures widely adopted by researchers 
worldwide, including VGG, GoogLeNet, AlexNet, 
ResNet, and Inception V3. Although these models 
share similar structural characteristics, they vary in 
parameter settings such as the number of units, 
learning rate, and dropout rate. 

For this study, Inception v3 was selected 
over other CNN architectures like VGG and ResNet 
due to its superior performance in handling large 
and complex datasets, which is crucial for image 
classification tasks in plant disease detection [20]. 
Inception v3 utilizes a more efficient design by 
employing 'factorized convolutions,' which allow 
for a deeper network without a significant increase 
in computational cost. This design not only 
enhances the model's ability to learn fine-grained 
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patterns but also optimizes the use of 
computational resources. Compared to VGG, which 
tends to be computationally expensive due to its 
deep architecture with a large number of 
parameters, Inception v3 achieves high accuracy 
while reducing overfitting by using a smaller 
number of parameters [21]. Additionally, Inception 
v3 has shown better generalization ability over 
ResNet for tasks involving fine-grained image 
features, such as distinguishing between different 
types of plant diseases. Its architecture, which 
combines multiple convolutional filters at different 
levels, makes it particularly suited for extracting 
diverse features from complex images [22]. 

 
Inception V3 

In this study, we employ the Inception v3 
architecture as the feature extraction backbone for 
the image recognition and classification process. 
Inception v3 integrates multiple convolutional 
kernels of different sizes within the same module, 
enabling the model to capture both fine-grained and 
high-level features efficiently. To reduce overfitting, 
the architecture incorporates dimensionality 
reduction through 1×11 \times 11×1 convolutions, 
grid-size reduction, and regularization strategies 
such as factorized convolutions and auxiliary 
classifiers, which collectively minimize 
computational cost while maintaining high 
representational power [23].  

The selection of Inception v3 over other 
widely used CNN architectures such as VGG or 
ResNet is based on several technical considerations.  
Compared to VGG, which requires a significantly 
larger number of parameters and higher 
computational cost, Inception v3 achieves 
comparable or better accuracy with far greater 
efficiency due to its multi-branch architecture and 
factorized convolutions.  

Meanwhile, although ResNet offers strong 
performance through residual connections, it 
typically requires deeper networks and larger 
training datasets to reach optimal performance. 
Inception v3 provides a balanced trade-off between 
depth, computational efficiency, and feature 
richness, making it more suitable for medium-sized 
datasets such as mango leaf images used in this 
study. Additionally, the availability of a robust pre-
trained model enhances its ability to generalize well 
when used for transfer learning in agricultural 
image analysis tasks [24]. 

Figure 2 presents the detailed architecture of 
the Inception v3 model. 

 

 
Source: (Research Results, 2025) 

Figure 2 Inception V3 Model 
 

The introduced model has sequential 
modeling with a series of layers that process the 
input image. Starting from the first and second 
layers are convolution layers with 64 filters 
followed by Batch normalization and ReLU 
activation. The max pooling layer is the third layer 
with a pool size of 1x1, which reduces the size of the 
given image. Then followed by the max pooling 
layer, which is with a pool size of 1x1. The next layer 
is the convolution layer with 512 filters, which is 
followed by the batch normalization function and 
ReLU. This is followed by the max pooling layer with 
a pool size of 3x3 and 5x5, which is the sixth layer 
with a pool size of 1x1. The output layer is a fully 
connected layer that uses four output neurons to 
generate accurate class labels for the expected class. 
 
Optimizer Algorithm 

The application of various machine 
learning optimization techniques, such as Adam 
(Adaptive Moment Estimation) and SGD (Stochastic 
Gradient Descent), depends on the nature of the 
issue, the amount of data, and the complexity of the 
model. Although they have different features, both 
optimizers are often employed in machine learning 
and deep learning model training. 
 
Adam Optimizer 

In the learning process, weight is the main 
factor in determining the good and bad results of 
machine learning, adaptive learning rate is needed 
because the data set is changing. Adam optimizer is 
one of the optimization algorithms that has the 
ability to update weight values and adaptive 
learning rate [25].  

Adam optimizer can provide solutions to 
complex problems in sparse gradients and can 
provide good performance by utilizing the first and 
second moments of the gradient so that it can adapt 
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to the learning rate [26]. The first and second 
moments in this case are symbolized by the 
variables 𝑚 and 𝑣 by calculating the moment 
estimation gradient, the biased moment estimation 
will be corrected at each moment (𝑡) [27], with the 
following equation: 

Adam uses two momenta: 𝑚𝑡  : The first 
average of the gradients, which helps speed up 
convergence to consistent gradients. 𝑣𝑡  : The second 
average of the squares of the gradients, which helps 
adjust the update step to the gradient variance, 
reducing large updates in directions with high 
variance. 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡  (1) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (2) 

 
From equations (1) and (2) 𝑔𝑡  is the gradient 

at iteration t and 𝛽1 and 𝛽2 are parameters that 
control the level of influence of the first and second 
moments usually (𝛽1=0.9 and 𝛽2=0.999). 
Calculating the corrected bias (since the initial 
estimates of 𝑚𝑡  and 𝑣𝑡  may be very biased towards 
0) then the bias can be corrected with the following 
equation: 

 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡 (3) 

𝑣̂𝑡 =
𝑣𝑡

1−𝛽2
𝑡 (4) 

 
Parameter update: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+𝜖
 (5) 

 
From equation (5) it is clear that 𝜃𝑡  is the 

parameter being optimized, 𝜂 is the learning rate, 𝜖 
is a small value (e.g. 10−8) to prevent division by 
zero. Adam is an efficient optimizer algorithm in 
handling various kinds of problems because it can 
handle gradients with rare values or large variances 
and can work well on varied data or parameters that 
have different scales [18]. 
 
SGD (Stochastic Gradient Descent) Optimizer 

Within machine learning, Stochastic Gradient 
Descent (SGD) is commonly employed as an 
optimization technique to train models by 
iteratively adjusting parameters, including weights 
and biases, in order to reduce the value of the loss 
function [28]. 

How SGD works is 1) Take one random data 
sample (or mini-batch) from the dataset. 2) 
Calculate model predictions and loss values based 
on the data. 3) Calculate the gradient (derivative) of 

the loss against the model parameters. 4) Update 
the parameters using the formula: 
 

 (6) 

 (7) 
5) Repeat this process for all data for several epochs 
(full iterations over the dataset). 

SGD is a very suitable optimization algorithm 
for fundamentals and is widely used in machine 
learning model training, especially for neural 
network, regression/classification and logistic 
based models [29]. 

 
METHODS 

The method used to detect plant diseases is 
by using the characteristics of mango leaves. Data 
classification is carried out with a collection of 
various changes in mango leaves infected with the 
disease, different leaf characteristics will be the 
coefficient values learned by the machine learning 
algorithm, with efforts to find the right learning 
parameters, it will produce an optimal prediction 
model and then the accuracy of the diagnosis of 
disease in mango leaves will be obtained, so in this 
study the framework is divided into several stages: 

a) Step 1 We use a mango leaf image dataset 
imported from the "MangoLeafBD Dataset" 
archive 

b) Step 2 The mango leaf image dataset is 
extracted with the "inception v3" extra 
feature model which adopts the CNN 
convolutional neural network architecture to 
embed images into coefficient value data 

c) Step 3 we select features that are considered 
not to have a major contribution to learning 
data patterns such as image dimensions and 
image names 

d) Step 4 then, determining the ratio of training 
data and test data and here we use k-flods 
with a value of 10 

e) Step 5 performs a comparison of 
hyperparameter tuning by comparing 
combinations of algorithms for activation 
and optimization parameters, to produce the 
best parameters for the problem. 

f) Step 6 finally our work by inputting the data 
set into the NN model to predict mango 
disease through leaves. 
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Source: (Research Results, 2025) 

Figure 3 Block Diagram of Mango Plant Leaf 
Disease Classification Methodology 

 
This block diagram shows the steps in 

optimizing the prediction model and classifying 
mango plant diseases through leaves with a 
collection of image data that is processed before 
being entered into the learning model shown in 
Figure 3. 

 
Data Distribution 

The data distribution used in this study 
consists of 800 mango leaf images categorized into 
eight disease classes, namely: Anthracnose, Sooty 
Spot, Gall Midge, Powdery Mildew, Bacterial Canker, 
Dieback, Beetle Damage, and Healthy. To provide a 
clearer understanding of the dataset composition, 
the number of images for each class is as follows: 
Anthracnose (100 images), Sooty Spot (100 
images), Gall Midge (100 images), Powdery Mildew 
(100 images), Bacterial Canker (100 images), 
Dieback (100 images), Beetle Damage (100 images), 
and Healthy (100 images). 

 

 
Source: (Research Results, 2025) 

Figure 4 Frequency Distribution 
 

As illustrated in Figure 4, the frequency 
distribution chart confirms that the dataset is 
perfectly balanced, with each category receiving an 
equal number of samples. This balanced 
distribution is advantageous during model training, 
as it ensures that the model learns distinguishing 
features fairly from all classes, prevents bias toward 

majority categories, and improves the model’s 
ability to generalize and make accurate predictions 
across all disease types. 
Image Feature Extraction and Data Per-
Processing 

The mango leaf dataset is obtained from the 
MangoLeafBD Dataset Kaggle dataset, this image 
consists of various colors of Red, Green, and Blue 
(RGB) with variations in resolution and format, here 
we extract image features from 800 image files by 
producing 2048 image features, to produce 
coefficient values from image features we propose 
an extra feature model "inception v3" which adopts 
a CNN convolutional neural network architecture 
for embedding images into coefficient value data, 
inception v3 is designed for image recognition tasks 
in the form of deep neural network architecture 
built using a base layer with convolution operations. 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾) 𝑖,𝑗 =

∑ ∑ 𝐼𝑖+𝑚,𝑗+𝑛
𝐹−1
𝑛=0 . 𝐾𝑚,𝑛

𝐹−1
𝑚=0  (8) 

 
From equation 8 which is the basis of 

convolution where  𝑆 is the convolution result, 
(𝐼 ∗ 𝐾) 𝑖,𝑗  is the pixel value at position (𝑖, 𝑗) of the 

resulting feature map, 𝐼𝑖+𝑚,𝑗+𝑛 is the input image 

pixel value at position (𝑖 + 𝑚, 𝑗 + 𝑛),  𝐾𝑚,𝑛 is the 
value of the kernel at position (𝑚, 𝑛). Convolution 
involves calculating the pixel value of the feature 
map by summing the results of the multiplication 
between the kernel and the input image patch. To 
reduce the training time, we do feature selection by 
selecting features that do not provide a strong 
contribution to the classification. 

 

 
Source: (Research Results, 2025) 

Figure 5 Example Image Dataset 

 
RESULTS AND DISCUSSION 

 
Model Training and Testing 

As seen in Figure 5, this study used a dataset 
of 800 photos of mango leaves from nine classes 
(eight diseases and one healthy), including Bacterial 
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Canker, Cutting Weevil, Die Back, Sooty Mold, 
Anthracnose, Gall Midge, Powdery Mildew, Beetle 
Damage, and Healthy. One of Indonesia's main 
mango-producing regions, North Sumatra, is where 
the photos were gathered. Infected leaves were 
photographed without background from various 
angles under uniform lighting conditions to capture 
feature variations while maintaining image clarity. 

To guarantee uniformity in image processing 
and strike the best possible balance between 
feature retention and computational efficiency, all 
images were standardized to a resolution of 240 × 
320 pixels. This resolution was selected because 
medium-scale image sizes (ranging from 224 × 224 
to 256 × 256 pixels) are widely adopted in plant 
disease classification studies, as they provide 
sufficient visual detail for identifying lesions, 
textures, and color variations while reducing 
computational overhead. Recent studies such [30] 
demonstrate that resolutions within this range yield 
high classification performance in CNN-based 
agricultural disease detection tasks while 
minimizing memory and training time 
requirements. 

Thus, the use of 240 × 320 pixels aligns with 
recommended practices for deep learning–based 
plant disease recognition capturing critical features 
on mango leaves without introducing unnecessary 
computational cost. The dataset was then organized 
into the MangoLeafBD Dataset [31]. 

The process steps are shown in the figure. 
The initial step starts with rescaling the mango 
images to a lower resolution and equalizing the 
dimensions between images. The image contrast is 
increased to uniform the pixel intensity. Next, 
vector embedding is performed using the CNN 
Inception V3 architecture to convert the images into 
numerical representations, resulting in 2048 
features per image. 

 

 
Source: (Research Results, 2025) 

Figure 6 Block Diagram of Training and Testing 
Model 

Proposed MLP-NN Algorithm 
In this study, the mango leaf disease 

classification model was developed using a Multi-
Layer Perceptron Neural Network (MLP-NN) on the 
Orange platform, which enables visual data 
processing, training, and evaluation without manual 
coding. Feature extraction was performed using the 
Inception V3 CNN architecture, producing 2048-
dimensional feature vectors that serve as the input 
to the MLP classifier.  The MLP model consists of 
three hidden layers with 100, 50, and 30 neurons. 
The selection of these neuron counts is based on 
both empirical evaluation and established neural 
network design principles. The first hidden layer 
with 100 neurons provides sufficient 
representational capacity to process the high-
dimensional input features generated by Inception 
V3. The second and third layers, with 50 and 30 
neurons respectively, progressively reduce the 
dimensionality and help the network learn more 
abstract representations while mitigating the risk of 
overfitting.  

This “funnel-shaped” architecture is 
commonly used to encourage hierarchical feature 
compression and improve generalization. The 
configuration was not chosen arbitrarily; it was 
validated through systematic hyperparameter 
exploration in which multiple architectures (e.g., 
256-128-64, 128-64-32, 80-40-20) were tested. The 
100-50-30 structure consistently produced the best 
balance between accuracy, training stability, and 
computational efficiency during cross-validation 
experiments. Eight neurons with Softmax activity, 
which correspond to the eight illness types, make up 
the output layer. Accuracy, precision, recall, F1-
score, and the confusion matrix were used to assess 
the model's performance after it was trained using 
the categorical cross-entropy loss function and the 
Adam optimizer. Overall, the selected architecture 
ensures an optimal trade-off between model 
capacity and computational cost. 

 

 
Source: (Research Results, 2025) 

Figure 7 Orange Tools for Building Machine 
Learning Models 
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Split of Training And Test Data 
Using a random sample strategy, the dataset 

was split into 80% training data and 20% test data 
for the purpose of training and testing the MLP-NN 
model on the Orange application. The Repeat 
Train/Test approach, which automatically splits 
and retrains the model, was used ten times to 
increase the evaluation's dependability. While 
identifying possible overfitting or data integration, 
evaluation scores like accuracy, precision, recall, 
and F1-score are averaged to give a consistent view 
of model performance.  

 

 
Source: (Research Results, 2025) 

Figure 8 Split of Training Data and Test Data 
 

Measuring Machine Learning Model 
Performance 

Here, we evaluate how effectively a machine 
learning model predicts new data by using 
performance indicators. Metrics including accuracy, 
precision, recall, and F1-score are used in this 
assessment. 

 
Classification Accuracy 

The total number of successfully identified 
samples divided by the total number of samples 
used in the assessment yields a ratio that indicates 
the model's degree of effectiveness in categorizing 
data.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐶𝐴) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 
Precision 

Quantitatively, it represents the proportion 
of sample units that are actually classified into the 
positive class compared to the total number of 
sample units, and is often used to describe the 
characteristics of class distribution in evaluating the 
performance of a classification model. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (P) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

 
Recall 

Formally, this metric represents the 
proportion of samples that actually belong to the 

positive class out of all samples predicted as 
positive by the system, thus reflecting the level of 
accuracy of the model in providing positive 
predictions. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

 
F1-score 

F1 Score is a composite metric obtained from 
the harmonic mean of precision and recall, two key 
indicators in evaluating classification models. This 
metric is particularly useful in situations where the 
class distribution is uneven, as it provides a fairer 
representation of model performance than a simple 
accuracy metric. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 x 
Presisi x Recall 

Presisi+ Recall
  (12) 

 
Model Optimization 

In order to find the best configuration for the 
MLP-based mango leaf disease classification model, 
this work uses a comparative hyperparameter 
tuning strategy. The learning rate, batch size, 
activation function, and optimizer method are the 
main hyperparameters taken into account. These 
factors all have a big impact on the model's capacity 
for generalization, training stability, and 
convergence speed. 

The step size during gradient descent is 
controlled by the learning rate, which is ultimately 
set at 0.01. While a higher learning rate runs the 
danger of overshooting the ideal answer, a lower 
learning rate can offer consistent but delayed 
convergence. The batch size, set to 32, determines 
the number of training samples used to update the 
model weights in one iteration. Smaller batch sizes 
typically lead to more frequent updates that 
improve generalization, while larger batch sizes 
produce smoother gradient estimates but may 
reduce the model’s ability to generalize. The chosen 
values were determined empirically through 
systematic evaluation, which tested multiple 
learning rates and batch sizes to identify the 
combination that achieved optimal performance for 
this dataset. 

Additionally, we compared three activation 
functions (ReLU, Tanh, and Logistic) and two 
optimizer algorithms (SGD and Adam). This 
systematic hyperparameter comparison enabled 
the identification of the configuration that best 
balances convergence speed, accuracy, and 
generalization. The results are analyzed by 
considering the combined effects of activation 
function, learning rate, batch size, and optimizer 
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choice, ensuring that the final model configuration 
achieves stable and robust performance across all 
eight disease classes. 
 
Experimental Results 

This test was conducted using the Orange 
application by implementing the Multi-Layer 
Perceptron (MLP-NN) type Neural Networks 
algorithm. The testing process begins by preparing 
a dataset that has been cleaned and processed 
previously, then entered into the Orange workflow. 
An input layer, one or more hidden layers, and an 
output layer are among the layers of neurons that 
make up the MLP-NN method, which is used as a 
machine learning model. To optimize model 
performance, network parameters including the 
number of neurons and activation functions are 
changed in this test. To assess accuracy, precision, 
recall, and F1-score, the model is trained using 
training data and evaluated using test data. The test 
results show the extent to which the MLP-NN 
algorithm is able to effectively classify the dataset 
used. 

 
Source: (Research Results, 2025) 

Figure 9 Neural Networks with Multi-Layer 
Perceptron (MLP-NN) for Mango Leaf Disease 

Classification 
 

Figure 9 shows a prototype of a mango leaf 
disease classification model using the Neural 
Network Multi-Layer Perceptron (MLP-NN) 
algorithm. This model imitates the way the human 
brain works in recognizing patterns from image 
features such as color, texture, and symptom shape. 
Features are extracted using the CNN Inception V3 
architecture and fed into the input layer in numeric 
form. Data is processed through three hidden layers 
(100, 50, 30 neurons) using activation functions 
(ReLU, Tanh, Logistic). Before processing, a 
selection of 2048 feature data and one category 
label is carried out. 

 
Model Optimization Results with 
Hyperparameter Tuning 

Hyperparameter tuning on the MLP-NN 
model for mango leaf disease prediction was carried 

out to improve accuracy and generalization. This 
process involved testing various combinations of 
activation functions (tanh, ReLU, and sigmoid) and 
optimization algorithms (Adam and SGD). 
Additionally, we set the number of epochs to 4-5, 
which was determined based on cross-validation 
results to achieve a balance between model 
convergence and overfitting. The batch size was set 
to 32, a typical choice in deep learning applications, 
to ensure efficient training and stable gradient 
updates. To improve the model's generalization and 
prevent overfitting, we applied L2 regularization 
with a regularization coefficient (alpha) of 0.1, 
which helps penalize large weights during training. 
These hyperparameters were fine-tuned to 
optimize performance and ensure the training 
process is replicable, providing transparency and 
reproducibility for future experiments. The final 
configuration of the hyperparameters, including 
epoch, batch size, and regularization, was selected 
after thorough testing and evaluation of the model's 
performance on validation data.  

 

 
Source: (Research Results, 2025) 
Figure 10 Comparison of Hyperparameter Tuning 

on Mango Leaf Disease Prediction Model 
 

Figure 10 shows a comparison comparative 
results show that the combination of ReLU and 
Adam produces the best performance. ReLU is 
effective in processing non-linear features of mango 
leaf images, while Adam is adaptive in adjusting the 
learning rate, accelerating convergence, and 
avoiding local minima traps. 

 

 
Source: (Research Results, 2025) 
Figure 11 Comparison of Hyperparameter Tuning 
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The analysis shows that the combination of 
ReLU activation and the Adam optimizer provides 
the best balance of accuracy, training speed, and 
stability for the MLP-NN mango leaf disease 
classification model. While Tanh + Adam is stable, it 
converges more slowly, and ReLU + SGD is effective 
but requires more careful tuning. Logistic + Adam or 
SGD is not recommended due to slow convergence 
and susceptibility to vanishing gradients. 

 

 
Source: (Research Results, 2025) 
Figure 12 Confusion matrix of MLP-NN Model with 

Relu Activation parameter tuning and Adam 
Optimization 

 
Figure 12 presents the confusion matrix of 

the MLP-NN model using ReLU + Adam, showing an 
overall low error rate. Out of 1,600 test samples, 
only 7 predictions were incorrect. A closer 
inspection reveals that the misclassifications are 
concentrated in specific class pairs. For example, 
errors between Kanker Bakteri and Mati Kembali 
suggest that these classes share highly similar visual 
features, such as lesion color, texture, or shape, 
which likely confused the model. Similarly, 
misclassifications between Bintik Jelaga and Gall 
Midge indicate overlapping leaf damage patterns, 
possibly making these classes difficult to 
distinguish. 

Additionally, the confusion matrix indicates 
minor misclassifications in other categories, such as 
a single Mati Kembali sample predicted as Bintik 
Jelaga. These errors may arise from subtle intra-
class variations, limited data per class, or feature 
representations that do not fully capture 
distinguishing patterns. Improving the dataset 
diversity, augmenting features, or incorporating 
attention-based mechanisms could help the model 
better discriminate between visually similar 
classes. 

Overall, these insights emphasize that while 
ReLU + Adam is optimal for overall performance, 
targeted interventions such as additional feature 
engineering or fine-tuning for specific class pairs 
may further enhance classification accuracy and 
generalization. 

 
Source: (Research Results, 2025) 
Figure 13 Confusion Matrix of MLP-NN Model with 
Logistic Activation (sigmoid) parameter tuning and 

SGD Optimization 
 

Figure 13 shows the confusion matrix of 
MLP-NN Logistic+SGD with the highest error rate. 
Out of 1600 test data, 1,343 prediction errors were 
recorded, the rest were predicted correctly. 

 
CONCLUSION 

 
This study demonstrates that the Neural 

Networks algorithm with the Multi-Layer 
Perceptron (MLP-NN) architecture is effective in 
building a mango leaf disease prediction model. 
Through hyperparameter tuning, it was found that 
the combination of the ReLU activation function and 
the Adam optimizer provided the best results in 
terms of accuracy, stability, and training speed, 
highlighting the potential of the optimized MLP-NN 
for predicting plant diseases based on visual 
symptoms. However, this study has several 
limitations, the dataset used is relatively small, 
consisting of [insert number] images, which may 
limit generalization to unseen data; environmental 
factors such as lighting, background, and leaf 
orientation were not considered; image noise and 
varying image quality were not explicitly addressed 
and only the MLP-NN architecture was evaluated 
without comparison to more complex models such 
as Convolutional Neural Networks (CNN) or 
ensemble-based approaches. From a practical 
standpoint, the results indicate potential for 
integrating the model into a user-friendly disease 
detection system for farmers to support better crop 
management practices. For future research, it is 
recommended to expand the dataset with more 
diverse images, employ data augmentation 
techniques to enhance model robustness, explore 
more complex deep learning architectures like 
CNNs or hybrid models, automate hyperparameter 
tuning for more efficient optimization, and conduct 
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comparative studies between MLP-NN and other 
algorithms such as Random Forest, SVM, and CNN to 
assess their relative accuracy and efficiency in plant 
disease prediction. By explicitly addressing these 
limitations and providing targeted 
recommendations, this study establishes a 
foundation for developing more accurate, 
generalizable, and practical models for plant 
disease detection. 
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