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Abstract— Arrhythmia is a common cardiac disorder that requires early detection to prevent serious 
complications. This study applied the Random Forest algorithm to enhance electrocardiogram (ECG) analysis 
and enable accurate arrhythmia classification. Unlike prior studies that focused primarily on resting ECG 
signals, this research incorporated dynamic data collected from 26 participants performing three physical 
activities for three minutes each, capturing physiological variations across multiple activity states. The 
Random Forest model was constructed and evaluated using ECG-derived temporal and morphological features 
to detect potential arrhythmias. Experimental results showed that the model achieved an accuracy of 97.4%, 
with precision, recall, and F1-score each reaching 98%, and an AUC of 0.97. However, several limitations 
remain, including the relatively small and homogeneous sample, as well as the short recording duration. 
Nonetheless, the proposed approach demonstrates strong potential to support early cardiac screening and 
real-time monitoring, particularly in portable and resource-limited healthcare applications. 
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Intisari— Aritmia merupakan gangguan jantung yang umum terjadi dan memerlukan deteksi dini untuk 
mencegah komplikasi serius. Penelitian ini menerapkan algoritma Random Forest untuk meningkatkan 
analisis sinyal elektrokardiogram (ECG) dan memungkinkan klasifikasi aritmia secara akurat. Berbeda 
dengan penelitian sebelumnya yang berfokus pada sinyal ECG dalam kondisi istirahat, penelitian ini 
mengintegrasikan data dinamis yang dikumpulkan dari 26 partisipan yang masing-masing melakukan tiga 
aktivitas fisik selama tiga menit, sehingga mampu menangkap variasi fisiologis pada berbagai kondisi 
aktivitas. Model Random Forest dibangun dan dievaluasi menggunakan fitur temporal dan morfologis yang 
diturunkan dari sinyal ECG untuk mendeteksi potensi aritmia. Hasil eksperimen menunjukkan bahwa model 
mencapai akurasi sebesar 97.4%, dengan nilai presisi, recall, dan F1-score masing-masing sebesar 98%, serta 
nilai AUC sebesar 0.97. Namun, beberapa keterbatasan tetap ada, termasuk sampel yang relatif kecil dan 
homogen, serta durasi perekaman yang singkat. Meskipun demikian, pendekatan yang diusulkan 
menunjukkan potensi yang kuat untuk mendukung skrining jantung dini dan pemantauan secara waktu 
nyata, terutama pada aplikasi kesehatan portabel dan di lingkungan dengan sumber daya terbatas. 
 
Keywords: aritmia, elektrokardiogram, random forest. 
 

INTRODUCTION 
 

The heart is a vital organ in the 
cardiovascular system, responsible for maintaining 
overall health which early detection of it’s 
abnormalities also essential to prevent 

cardiovascular diseases [1]. According to the World 
Health Organization (WHO), cardiovascular disease 
(CVD) remains the leading cause of mortality 
worldwide, accounting for approximately 17.9 
million deaths in 2021 [2]. In Indonesia, a similar 
situation was observed, where the prevalence of 
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diagnosed heart disease among individuals of all 
ages rose from 1.5% in 2018 to 1.7% in 2021 [3]. 
Despite its high prevalence, early detection of heart 
disease is still hindered by the lack of practical, 
accessible, and adaptive diagnostic tools [4]. In 
many communities, access to cardiac diagnostic 
resources is further constrained by economic, 
educational, infrastructural, and awareness-related 
factors [5]. 

Electrocardiography (ECG) is the primary 
method used to detect heart disease, particularly 
arrhythmia, due to its ability to record electrical 
activity of the heart in real-time. However, 
conventional ECG systems such as the 12-lead ECG 
and Holter monitors are often limited by their 
dependence on clinical settings, short monitoring 
durations, and patient discomfort. These 
constraints reduce their effectiveness in capturing 
sporadic or asymptomatic events and limit their 
applicability for long-term monitoring. To address 
these limitations, recent technological 
developments have led to more advanced and user-
friendly ECG systems. Contemporary solutions 
include digital ECG devices, mobile applications, and 
wearable technologies that enable more accessible 
and continuous cardiac monitoring. AliveCor, for 
example, is a mobile application approved by the 
Food and Drug Administration that allows users to 
transmit ECG signals via smartphones and stores 
the data on an online server [6]. Similarly, the Apple 
Watch has been designed to measure heart rate 
using embedded sensors, offering a convenient and 
non-invasive method of cardiac monitoring [7]. 

While these mobile and wearable 
technologies provide flexibility and ease of use, 
their diagnostic performance may be compromised 
by limitations in signal quality and accuracy. Mobile 
ECGs have been widely used to monitor various 
heart problems [8], but they often exhibit 
inconsistencies when analyzing heart signals. To 
overcome this, more sophisticated systems such as 
the Wireless Monitoring Holter have been 
developed. This device connects to a cloud-based 
platform and leverages deep learning algorithms for 
real-time data analysis [9]. The collected ECG 
signals can be transmitted continuously, even 
during daily activities or sleep, and analyzed 
through an application such as Vigo using artificial 
intelligence (AI). Additionally, studies have 
explored combining Holter monitoring with 
continuous photoplethysmography (PPG) signal 
collection [10]. In such cases, subjects were fitted 
with a Holter monitor and a Garmin smartwatch for 
a 24-hour period. These two devices were used 
together to enhance arrhythmia detection by 
integrating different signal sources. This approach 

exemplifies the growing trend toward multimodal 
monitoring for improved diagnostic accuracy. 

Signal noise remains a common challenge in 
ECG monitoring, particularly in ambulatory 
settings. Previous research has explored several 
algorithms to address this problem. For instance, 
the K-Nearest Neighbors (KNN) method with 
wavelet scattering coefficients from three-axis 
accelerometer sensors was able to reduce motion-
related artifacts in wearable ECG devices [11], and 
KNN has also been applied to filter abnormal signals 
on 12-lead ECGs [12]. Deep learning approaches 
such as Convolutional Neural Network (CNN) and 
Bi-directional Gated Recurrent Unit (BiGRU) have 
been employed to classify heartbeat sounds in 
elderly individuals [13], while Deep Neural 
Networks (DNNs) have increasingly been used to 
detect specific cardiac conditions from ECG data 
[14]. Other approaches include Complex Support 
Vector Machine (CSVM) for arrhythmia detection 
[15], Analysis of Variance (ANOVA) with entropy 
cross-sampling applied to RR intervals [16], multi-
layered Artificial Neural Networks (ANNs) for 
arrhythmia detection [17], and Naïve Bayes for 
early identification of heart disease [18].  

In previous research, an evaluation was 
conducted on four classification algorithms for 
detecting heart disease based on clinical data. The 
results showed that Random Forest achieved the 
best performance with an accuracy of 87.2%, 
precision of 85.9%, recall of 86.4%, F1-score of 
86.1%, and ROC-AUC value of 0.90. Meanwhile, the 
SVM algorithm achieved an accuracy of 85.7%, 
precision of 84%, recall of 83.5%, F1-score of 
83.7%, and ROC-AUC of 0.88. In addition, KNN 
achieved 81.4% of accuracy, a precision of 79.5%, 
recall of 80.2%, F1-score of 79.8%, and ROC-AUC of 
0.84 [19]. These results shows that method such as 
Random Forest are not only better in accuracy but 
also offers greater reliability and consistency with 
improved robustness against overfitting. 

Integrating Random Forest into web-based 
medical systems has demonstrated practical 
benefits in the early detection of arrhythmia, which 
is particularly important considering the high 
mortality rate associated with arrhythmia in 
Indonesia [20]. Beyond its theoretical strengths, 
Random Forest has shown consistent performance 
in clinical applications. When combined with 
morphological features extracted from ECG signals, 
the classification of arrhythmias and other cardiac 
conditions can be further enhanced [21]. This 
integration of feature engineering with machine 
learning contributes to improved diagnostic 
precision and reliability. Random Forest provides 
several strengths, including the ability to capture 
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complex non-linear relationships, effectively 
manage missing or imperfect data, and maintain a 
level of interpretability that is crucial in clinical 
decision-making, as it allows healthcare 
professionals to understand the reasoning behind 
the model’s predictions [22]. 

Despite these advantages, there remain gaps 
in how Random Forest has been applied in previous 
studies. Most existing work has evaluated its 
performance primarily on ECG data recorded under 
resting or single-condition states, without 
considering the physiological variations induced by 
different physical activities. This omission is critical, 
as physical activity significantly influences ECG 
signal characteristics and may affect diagnostic 
outcomes. 

To address this gap, the present study 
investigates the performance of Random Forest in 
classifying arrhythmia using ECG data collected 
across multiple physical conditions, including 
sitting, walking, and running. The objective is to 
evaluate whether Random Forest can maintain high 
classification performance under varying 
physiological states, thereby providing a more 
realistic and generalizable diagnostic framework. 

Furthermore, this research emphasizes the 
role of robust signal preprocessing in improving 
classification outcomes. By integrating 
preprocessing, feature extraction, and Random 
Forest classification into a low-cost, portable, and 
web-based system, the study aims to support early 
arrhythmia detection in practical settings. This 
approach is particularly intended for deployment in 
underserved or remote regions with limited access 
to specialized diagnostics. Especially country like 
Indonesia with many small developing villages, 
offering an accessible tool to improve patient care. 
 

MATERIALS AND METHODS 
 

This study was conducted at one of the 
Vocational High Schools in Medan in collaboration 
with Universitas Padjadjaran Bandung. A total of 26 
male students aged 17 to 20 years voluntarily 
participated in the study. Participants were 
included based on their willingness to participate, 
absence of prior cardiovascular disease, and ability 
to provide informed consent. Students with a 
history of chronic illness or those undergoing 
treatment for heart-related conditions were 
excluded. Prior to data collection, all participants 
were informed about the objectives and procedures 
of the study, and written informed consent was 
obtained. Ethical approval was secured before the 
commencement of the study to ensure compliance 
with institutional and ethical research standards. 

Nonetheless, the relatively small and homogeneous 
sample, consisting solely of male participants within 
a narrow age range, constituted a limitation of the 
study. Future research was recommended to 
involve a larger and more diverse population in 
terms of gender, age, and health status to enhance 
the external validity and generalizability of the 
findings. The tools used included an ECG, AD8232, 
ESP32, an SD card, a Raspberry Pi, Bluetooth, and 
Wi-Fi, which were selected for their cost-
effectiveness, portability, and compatibility with 
real-time ECG signal acquisition and processing. 
ECG signals and heart rate patterns were recorded 
to identify potential arrhythmias across different 
physical activity levels. Each participant performed 
sitting, walking, and running tasks for three minutes 
each. 

To capture the signal, the AD8232 module 
was utilized. The AD8232 received weak analog 
signals from the body, filtered noise, and amplified 
them for accurate reading by the microcontroller. 
After amplification, the ESP32 microcontroller, 
which featured Bluetooth and Wi-Fi connectivity, 
captured the amplified signals through its analog-
to-digital converter (ADC) input for further digital 
processing. The converted digital data was then 
transmitted to the Raspberry Pi, which served as the 
primary processing unit. The Raspberry Pi managed 
data storage, display, and subsequent processing 
and analysis of the incoming ECG signal. The 
processed data was stored on an SD card for local 
backup and could be accessed through the ESP32 or 
directly via the Raspberry Pi. For reliable data 
transmission, the system supported both Wi-Fi and 
physical data-cable connections, ensuring flexibility 
and stability across deployment scenarios. Through 
Wi-Fi, the Raspberry Pi was also capable of sending 
the data to a web server for real-time remote 
monitoring. This integrated setup provided a 
compact, efficient, and reliable system for 
continuous heart-rate monitoring.  

ECG signals were often affected by various 
types of noise, including motion artifacts, muscle 
activity (EMG), and environmental interference. To 
suppress these components while preserving 
diagnostic morphology, the raw signals were 
preprocessed using a fourth-order Butterworth 
band-pass filter with cutoff frequencies of 0.5 Hz 
and 40 Hz. This passband retained the P wave (0.5–
10 Hz), the QRS complex (10–40 Hz), and the T wave 
(1–7 Hz), while attenuating baseline wander and 
high-frequency noise. The Butterworth design was 
selected because it provided a maximally flat 
frequency response within the passband, 
minimizing amplitude distortion and maintaining 
waveform fidelity. Its smooth response 
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characteristics made it highly effective for 
preserving clinically relevant ECG features during 
noise reduction and signal conditioning. 

After filtering, the R peaks of the ECG 
waveform were automatically detected using the 
Pan–Tompkins algorithm, a widely recognized 
method for reliable real-time QRS detection. The 
algorithm operated through a sequence of 
processes, including signal differentiation to 
highlight rapid transitions, squaring to amplify 
significant changes and ensure positive values, 
moving-window integration to represent the energy 
of the QRS complex, and adaptive thresholding to 
accurately identify R-peak positions. This algorithm 
was selected because it provided an optimal balance 
between detection accuracy and computational 
efficiency, maintaining robust performance even 
under noisy or motion-affected conditions, which 
made it suitable for real-time and portable ECG 
systems. Once R peaks were detected, RR intervals 
were obtained from consecutive R peaks, and heart 
rate (HR) was computed in beats per minute as: 

𝐻𝑅 =
60

𝑅𝑅 (𝑠)
               (1) 

Following R-peak detection, additional 
fiducial points were extracted to enable the 
computation of key ECG intervals. The Q point was 
determined by identifying the first local minimum 
to the left of each R peak, while the S point was 
located as the next minimum to the right. The onset 
of the P wave was identified within 150–250 
milliseconds before the R peak by detecting the 
earliest upward deflection and slope change. The T 
wave was detected within 150–400 milliseconds 
after the S point using a combination of amplitude 
thresholding and morphological pattern matching. 
In cases where the T wave was indistinct, wavelet-
based smoothing was applied to improve the 
accuracy of endpoint detection. 

Once all fiducial points were established, 
temporal intervals were calculated using their 
relative positions. The PR interval was measured 
from the onset of the P wave to the beginning of the 
QRS complex (Q point), the QRS duration (QS 
interval) was measured from the Q to the S point, 
and the QT interval was calculated from the Q point 
to the end of the T wave. The ST segment was 
determined from the S point to the onset of the T 
wave. Additionally, the corrected QT interval (QTc) 
was calculated using Bazett’s formula to account for 
variations in heart rate:  

𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅(𝑠)
              (2) 

All extracted features were compiled into a 
structured dataset consisting of seven predictor 
variables. The detailed outcomes of the feature 
extraction process for each subject are presented in 
Table 1, which provides the interval measurements 
and derived parameters obtained from the ECG 
signals. 

 
Table 1. Result of Feature Extraction by Subject 
Subj
ect 

RR PR QS QT ST 
Heart
rate 

QTc 

S1 
731.
83 

137.
72 

65.
72 

398.
06 

203.
01 

95.29 
508.
25 

S2 
649.
30 

114.
55 

72.
26 

352.
39 

167.
54 

106.2
7 

472.
99 

S3 
653.
04 

144.
60 

59.
99 

290.
38 

196.
91 

98.62 
364.
61 

S4 
551.
25 

124.
42 

61.
46 

244.
25 

159.
54 

116.0
5 

329.
92 

S5 
521.
42 

123.
19 

65.
81 

294.
40 

152.
74 

117.8
3 

413.
10 

S6 
580.
22 

133.
50 

58.
17 

354.
58 

172.
56 

107.4
2 

483.
74 

S7 
560.
94 

121.
74 

65.
05 

304.
53 

154.
63 

116.5
0 

425.
93 

S8 
618.
17 

123.
53 

71.
52 

320.
79 

170.
52 

100.6
8 

415.
96 

S9 
640.
41 

130.
42 

61.
88 

290.
57 

180.
23 

101.1
2 

369.
54 

S10 
531.
64 

117.
94 

76.
83 

391.
08 

159.
96 

116.1
1 

538.
48 

S11 
540.
89 

125.
50 

59.
55 

246.
69 

154.
82 

114.5
4 

338.
33 

S12 
672.
95 

141.
93 

64.
07 

304.
22 

175.
27 

94.86 
380.
21 

S13 
549.
25 

119.
87 

84.
91 

285.
80 

138.
58 

118.5
8 

399.
37 

S14 
599.
44 

127.
77 

67.
17 

247.
01 

151.
78 

104.0
5 

322.
28 

S15 
666.
25 

132.
65 

66.
83 

269.
52 

171.
63 

94.50 
335.
66 

S16 
538.
60 

128.
10 

72.
86 

290.
72 

130.
82 

115.6
7 

404.
27 

S17 
498.
70 

105.
17 

66.
16 

267.
96 

159.
14 

123.2
5 

383.
16 

S18 
580.
06 

118.
32 

72.
60 

242.
86 

157.
68 

108.3
9 

326.
24 

S19 
576.
52 

108.
41 

70.
39 

314.
25 

177.
34 

106.1
1 

419.
50 

S20 
447.
50 

102.
39 

64.
72 

440.
18 

129.
33 

137.9
7 

678.
67 

S21 
483.
54 

107.
48 

55.
88 

207.
21 

92.2
7 

126.6
6 

302.
28 

S22 
524.
50 

102.
57 

70.
88 

255.
98 

140.
11 

115.5
2 

354.
81 

S23 
581.
44 

114.
16 

60.
82 

263.
75 

169.
58 

104.4
2 

347.
22 

S24 
497.
40 

105.
54 

57.
59 

202.
91 

108.
85 

123.5
8 

289.
05 

S25 
531.
94 

116.
30 

72.
15 

319.
65 

151.
95 

116.1
4 

445.
77 

S26 
457.
18 

97.3
3 

79.
61 

336.
76 

106.
88 

132.3
6 

503.
85 

Source: (Research Results, 2025) 
 
In addition, the overall distribution of the 

dataset across the five arrhythmia-risk categories 
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was summarized in Table 2, providing a 
comprehensive overview of how the subjects were 
classified based on the extracted features. In this 
study, a total of 26 subjects participated, each 
contributed three ECG recordings, resulting in a 
total of 78 recordings. 

 
Table 2. Class Distribution Table 

No. Value Range Total 
1 High potential 

arrhythmia 
2099.66 - 2317.53 6 

2 Moderately 
potential 
arrhythmia 

1881.79 - 2099.65 13 

3 Potential 
arrhythmia 

1663.92 - 1881.78 26 

4 Normal 1446.04 - 1663.91 28 
5 Abnormal 1228.16 - 1446.03 5 

Source: (Research Results, 2025) 
 

The classification task was performed 
using a supervised learning approach with the 
Random Forest algorithm. This ensemble method 
combined multiple decision trees trained on 
different subsets of the dataset via bootstrap 
sampling (bagging). In this study, the model was 
constructed with 30 decision trees, a number that 
was chosen to provide sufficient diversity among 
learners while maintaining computational 
efficiency. At each decision node, all available 
predictors were evaluated to determine the optimal 
split, which allowed the model to fully explore the 
feature space. The trees were allowed to grow 
without predefined depth limits and continued 
splitting until terminal nodes were reached in 
accordance with node-purity criteria. A 5-fold 
cross-validation strategy was employed during 
model development to ensure robustness and 
reduce the risk of overfitting. The final prediction 𝑦̂ 
for an input instance 𝑥 was obtained through 
majority voting across all trees in the ensemble. 
Mathematically, this is defined as: 

𝑦̂ = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑇(𝑥)}(3) 

Where ℎ𝑡(𝑥) represented the predicted 
class label produced by the 𝑡-th decision tree in the 
ensemble, and 𝑇 denoted the total number of trees 
in the Random Forest. The final prediction 𝑦̂ was 
determined by taking the mode, or the most 
frequently predicted class label, among all 
individual tree outputs. In this study, the classifier 
was designed to categorize ECG signals into five 
predefined classes: normal, abnormal, potential 
arrhythmia, moderately potential arrhythmia, and 
high potential arrhythmia. To assess the 
generalization performance of the model, five-fold 
cross-validation was employed. The dataset was 

randomly partitioned into five equal subsets. In 
each fold, four subsets were used for training and 
one for validation, such that each subset served as 
the validation set exactly once. This iterative 
process helped ensure robust and unbiased 
performance evaluation. A comprehensive 
overview of the entire signal processing and 
classification pipeline was presented in the system 
block diagram shown in Figure 1. 

 

Source: (Research Results, 2025) 
Figure 1. Block Diagram 

 
RESULTS AND DISCUSSION 

 
To support classification and pattern 

recognition of ECG signals, a set of physiological 
parameters was derived from each subject's 
recording. These features capture individual cardiac 
activity characteristics and reflect variations 
influenced by heart condition and physical activity 
levels. Figure 2 illustrates the variations in ECG 
interval features, categorized according to three 
types of physical activity: walking (blue), sitting 
(orange), and running (gray). Figure 2(a) presents 
the RR interval, defined as the duration between 
two consecutive heartbeats measured in 
milliseconds (ms). As expected, the RR interval is 
significantly shorter during running compared to 
walking or sitting, reflecting an increased heart rate 
associated with more intense physical exertion. In 
Figure 2(b), the PR interval, representing the 
conduction time from the onset of atrial activation 
(P wave) to ventricular activation (start of QRS 
complex), shows a slightly prolonged duration 
during sitting. This phenomenon is physiologically 
attributable to heightened parasympathetic activity 
in resting conditions, which reduces the conduction 
speed through the atrioventricular node to optimize 
cardiac efficiency. 

Figure 2(c) depicts the QS interval, 
corresponding to ventricular depolarization from 
the onset of the Q wave to the end of the S wave. The 
QS interval remains relatively stable across all three 
activities, typically ranging from 0.06 to 0.10 
seconds, suggesting a consistent conduction 
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velocity within the ventricles regardless of heart 
rate variations. In Figure 2(d), the QT interval which 
measures ventricular depolarization and 
repolarization from the start of the QRS complex to 
the end of the T wave is observed. The QT interval 
decreases during running, aligning with 
physiological adaptations where faster heart rates 
lead to accelerated ventricular repolarization and 
thus a shortened QT interval. 

Lastly, Figure 2(e) presents the ST segment, 
defined as the period from the end of the QRS 
complex to the beginning of the T wave, 
representing the early phase of ventricular 
repolarization. The graph indicates a reduction in 
ST amplitude during running activities compared to 
resting states. This lowering of the ST segment can 
be attributed to increased myocardial oxygen 
demand during rapid heart rates, shortened 
diastolic intervals, and positional shifts of the heart 
during vigorous movement, potentially causing 
subtle ischemic effects or altered electrical activity 
patterns observable in the ECG waveform. 
Classification within these graphs was performed 
using a threshold-based method, where ECG 
intervals were grouped based on predefined. 

 

 
a)                                                b) 

  
c)                                                d) 

 
e) 

Source: (Research Results, 2025) 
Figure 2. Recorded a) RR b) PR c) QS d) QT e) ST 
wave graph with walking (blue). sitting (orange), 

and running (gray) colors. 
 
A scatter plot is an effective visualization 

tool that displays the distribution of observations 

based on two selected variables. Each point 
represents one instance, with the x-axis and y-axis 
corresponding to distinct ECG feature values. In 
Figure 3, the data points are color-coded to 
represent five classification categories: abnormal 
(blue), normal (purple), potential arrhythmia (red), 
moderately potential arrhythmia (orange), and 
highly potential arrhythmia (green). 

Figure 3(a) illustrates the relationship 
between the RR and PR intervals. A general positive 
trend is observed, indicating that an increase in the 
RR interval tends to be followed by an increase in 
the PR interval. This trend aligns with physiological 
expectations, as a slower heart rate (longer RR) may 
correspond with longer atrioventricular conduction 
time (PR). Normal category predictions (purple) are 
clustered within a physiologically plausible range. 
In contrast, instances classified as potential 
arrhythmia (red) and highly potential arrhythmia 
(green) appear when either or both intervals 
deviate from the normal range. 

Figure 3(b) presents the relationship 
between the PR and QS intervals. The plot reveals 
clear separation between categories, where normal 
recordings typically fall within moderate PR and QS 
interval ranges. Abnormal data points (blue) are 
concentrated in regions with low PR and QS 
intervals. High-risk predictions (green) appear in 
cases where one interval is significantly elevated 
while the other is reduced, suggesting an irregular 
conduction pattern. Meanwhile, moderate 
deviations (orange and red) occur in borderline 
ranges or under unstable interval conditions. 

Figure 3(c) explores the relationship 
between the QT and QS intervals. Unlike the 
previous plots, the distribution here does not follow 
a clear linear pattern. Instead, dispersion is 
observed across the classification groups. 
Prolonged QT intervals are associated with the 
high-risk category (green), while abnormally short 
intervals are often classified as abnormal (blue). 
This visualization further supports the capability of 
the classification model in identifying 
arrhythmogenic risks based on multivariable 
relationships between ECG features. 

 

 
a) 
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b) 

 
c) 

Source: (Research Results, 2025) 
Figure 3. Scatter Plot a) RR-PR b) PR-QS c) QT-QS. 
 

In this study, the Confusion Matrix was 
used to evaluate the performance of the 
classification model. This matrix presents 
classification outcomes in terms of four categories: 
true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). A true positive occurs 
when the model correctly classifies data belonging 
to a target class, while a true negative represents 
correct classification of non-target data. Conversely, 
false positives occur when data are incorrectly 
predicted as positive, and false negatives arise when 
positive instances are misclassified as negative. In 
the graphical representation, correctly classified 
instances are shown in blue, while 
misclassifications appear in red, enabling quick 
visual assessment of model accuracy. 

Figure 4(a) presents the classification 
counts and corresponding observations for each 
category. The results show that the model 
accurately predicted four out of five classes: 
abnormal, normal, potential arrhythmia, and 
moderately potential arrhythmia. However, two 
samples of high potential arrhythmia were 
misclassified as moderately potential arrhythmia, 
contributing to the false negative rate for that class. 

Figure 4(b) highlights the true positive rate 
(TPR) and false negative rate (FNR). For the high 
potential arrhythmia category, the TPR reached 
66.7%, with the remaining 33.3% falling under the 
FNR due to misclassification. All other categories 

abnormal, normal, potential arrhythmia, and 
moderately potential arrhythmia achieved a perfect 
TPR of 100%. Figure 4(c) presents the positive 
predictive value (PPV) and false discovery rate 
(FDR). The PPV for the abnormal, normal, potential 
arrhythmia, and high potential arrhythmia classes 
was 100%, indicating all predicted instances were 
correctly classified. The moderately potential 
arrhythmia class showed a PPV of 86.7%, with an 
FDR of 13.3%, suggesting some overlap with nearby 
risk categories. These evaluation metrics 
underscore the effectiveness of the model while also 
identifying areas for potential refinement. 

 

 
a) 

 
b) 

 
c) 

Source: (Research Results, 2025) 
Figure 4. a) Number of Observations b) True 

Positive Rate (TPR) and False Negative Rate (FNR) 
c) Positive Predictive Value (PPV) and False 

Discovery Rate (FDR). 
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Beyond visual interpretation, the confusion 
matrix also forms the basis for calculating key 
performance metrics such as accuracy, precision 
(positive predictive value), recall (true positive 
rate), and F1-score which each formula is explained 
in Equations (4) to (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                         (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (6) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

After applying Random Forest, the next 
step is to evaluate the performance of the resulting 
models. The assessment is carried out using 
evaluation metrics such as accuracy, precision, 
recall and F1-score to discover the effectiveness of 
the algorithms in making predictions on the 
processed data. Besides that, it can also be used to 
identify prediction errors in the model, which is 
shown in Table 3. 

 
Table 3. Model Evaluation Results 

No. Class Accuracy Precision Recall F1-
Score 

1 Abnormal 97% 100% 100% 100% 

2 
High 

potential 
arrhythmia 

97% 100% 67% 80% 

3 
Moderately 

potential 
arrhythmia 

97% 100% 100% 100% 

4 Normal 97% 100% 100% 100% 

5 
Potential 

arrhythmia 
97% 93% 100% 96% 

 Average 97% 98% 98% 98% 
Source: (Research Results, 2025) 
 

The Receiver Operating Characteristic 
(ROC) curve in Figure 5 illustrates the trade-off 
between the true positive rate (TPR) and false 
positive rate (FPR) for each classification category. 
The area under the curve (AUC) serves as a key 
metric in evaluating the classifier’s ability to 
distinguish between classes. The model achieved a 
perfect AUC score of 1.0 for the abnormal, normal, 
and potential arrhythmia categories, indicating 
excellent sensitivity and specificity with no 
misclassification. The moderately potential 
arrhythmia category also performed well, with an 
AUC of 0.984, suggesting high reliability and strong 
class separability. In contrast, the high potential 

arrhythmia category yielded a lower AUC of 0.8819. 
While still acceptable, this result indicates reduced 
classification precision relative to other categories. 
Two possible factors may explain this outcome. 
First, the limited number of training samples for this 
class could have restricted the model’s learning 
ability. Second, the extracted features for high 
potential arrhythmia may substantially overlap 
with those of the moderately potential category, 
complicating accurate differentiation. 

To improve classification in this category, 
two strategies are recommended. Increasing the 
number of representative training samples would 
help balance the dataset and improve learning 
generalization. In addition, incorporating more 
discriminative features such as frequency-domain 
parameters, refined morphological characteristics, 
or nonlinear heart rate variability measures could 
enhance the model’s ability to distinguish subtle 
differences specific to high-risk arrhythmia. 
Visually, the ROC curves for the abnormal, normal, 
and potential arrhythmia categories cluster near the 
upper-left corner, confirming strong performance 
in these classes. A slight deviation is observed in the 
moderately potential arrhythmia curve, while a 
more noticeable deviation appears in the high 
potential arrhythmia category. Despite this, the ROC 
analysis demonstrates the robustness of the 
classification model across four out of five 
categories, while highlighting the need for further 
refinement in high-risk arrhythmia detection.  

 

 
Source: (Research Results, 2025) 

Figure 5. ROC Curve Validation 
 

CONCLUSION 
 

This study successfully demonstrated the 
classification of ECG signals into five arrhythmia 
risk categories: normal, abnormal, potential 
arrhythmia, moderately potential arrhythmia, and 
high potential arrhythmia through signal 
preprocessing, feature extraction, and the Random 
Forest algorithm. The developed model achieved a 
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high accuracy of 97.4%, confirming its effectiveness 
and robustness in distinguishing cardiac risk 
patterns. These results suggest the feasibility of a 
low-cost, compact, and automated ECG analysis 
system that could support early arrhythmia 
screening in resource-limited settings where access 
to trained cardiologists is constrained. 

Nevertheless, important limitations should 
be acknowledged. The study was conducted with a 
relatively small and homogeneous cohort of young, 
healthy participants, limiting generalizability to 
broader clinical populations. Furthermore, the 
current feature set relied solely on time-domain 
intervals, which may not fully capture the complex 
morphology and frequency characteristics of 
pathological ECGs. Misclassifications were most 
evident in the high-potential arrhythmia category, 
attributable to both the small sample size and the 
feature overlap with adjacent risk groups. 

Future research should therefore focus on 
more representative datasets that include diverse 
age groups and confirmed clinical diagnoses, along 
with external validation across independent 
cohorts. Incorporating more discriminative 
features, such as frequency-domain indices, 
advanced morphological descriptors, and nonlinear 
heart rate variability measures, together with class-
balancing strategies could enhance performance, 
particularly in high-risk categories. Attention 
should also be given to deployment challenges, 
including real-world noise, variability across 
devices, regulatory requirements, and 
interpretability for clinical end-users. Clinically, 
features such as PR, QRS duration, and QTc are 
established indicators of conduction abnormalities 
and arrhythmia risk, reinforcing the potential of the 
proposed model as a complementary screening tool 
in early cardiac risk assessment. 
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