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Abstract—Antimicrobial Resistance (AMR) has become a growing threat due to the increase in infections that 
are unresponsive to conventional therapies. Therefore, the development and optimization of Transformer-
based Deep Learning using TabTransformer was employed to model the complex interactions between 
categorical features. This model was trained to predict antibiotic susceptibility at the individual culture level 
using the Antibiotic Resistance Microbiology Dataset (ARMD). To address the challenge of highly imbalanced 
data, the methodology applied includes extensive feature engineering to create historical and clinical variables, 
as well as the use of Focal Loss during training. After optimization, the final model demonstrated excellent 
discriminatory ability, with an Area Under the ROC Curve (AUC-ROC) of 0.93 and balanced classification 
performance, yielding a macro average F1-score of 0.82. Interpretability analysis using SHAP confirmed that 
patient clinical history and prior drug exposure were the most dominant predictive factors. These findings 
suggest that the Transformer-based Deep Learning architecture using TabTransformer, combined with 
clinically relevant feature engineering, can produce a reliable and evidence-based predictive tool. 
 
Keywords: Antibiotic Susceptibility Prediction, Antimicrobial Resistance (AMR), SHAP Interpretability 
Analysis, TabTransformer, Transformer-Based Deep Learning. 

 
Intisari—Resistansi Antimikroba (AMR) menjadi ancaman dengan meningkatnya infeksi yang tidak responsif 
terhadap terapi konvensional. Sehingga mengembangkan dan mengoptimalkan Transformer-based Deep 
Learning menggunakan TabTransformer digunakan untuk memodelkan interaksi kompleks antar fitur-fitur 
kategorikal. Model ini dilatih untuk memprediksi suseptibilitas antibiotik pada level kultur individual 
menggunakan Antibiotic Resistance Microbiology Dataset (ARMD). Untuk mengatasi tantangan data yang 
sangat tidak seimbang, metodologi yang diterapkan mencakup rekayasa fitur ekstensif untuk menciptakan 
variabel historis dan klinis, serta penggunaan Focal Loss selama pelatihan. Setelah melalui optimasi, model 
final menunjukkan kemampuan diskriminatif yang sangat baik dengan Area Under the ROC Curve (AUC-ROC) 
sebesar 0.93 dan performa klasifikasi yang seimbang dengan macro average F1-score sebesar 0.82. Analisis 
interpretabilitas menggunakan SHAP mengkonfirmasi bahwa riwayat klinis pasien dan paparan obat 
sebelumnya adalah faktor prediktif yang paling dominan. Temuan ini menunjukkan bahwa arsitektur 
Transformer-based Deep Learning menggunakan TabTransformer dengan rekayasa fitur yang relevan secara 
klinis dapat menghasilkan alat prediksi yang andal dan berbasis bukti. 
 
Kata Kunci: Antimicrobial Resistance (AMR), Analisis Interpretabilitas SHAP, Prediksi Sensitivitas Antibiotik, 
TabTransformer, Transformer-Based Deep Learning. 
 
  

mailto:feri.sulianta@widyatama.ac.id*
mailto:endang.amalia@widyatama.ac.id
mailto:rosalin.samiharjo@widyatama.ac.id


 

VOL. 11. NO. 3 FEBRUARY 2026 
. 

DOI: 10.33480 /jitk.v11i3.7582 
 

 

 

652 

INTRODUCTION 
 

Antimicrobial resistance (AMR) has become 
a global threat to modern healthcare systems, with 
an increase in cases of bacterial infections that are 
unresponsive to conventional therapies[1]. This 
phenomenon is exacerbated by the irrational use of 
antibiotics and the lack of rapid diagnostic methods 
to guide targeted therapy[2]. There has been a 35% 
increase in multidrug-resistant (MDR) infection 
cases in the past decade [1]. Machine learning 
algorithms can be used to identify various 
underlying mechanisms of antimicrobial resistance, 
such as efflux pumps, target modification, and 
enzymatic inactivation, as well as to predict 
resistance in bacterial strains. After training on 
genomic data, several machine learning algorithms, 
including Support Vector Machines (SVM), Logistic 
Regression (LR) models, and Random Forests (RF), 
have demonstrated excellent accuracy in predicting 
antimicrobial resistance [3]. However, these models 
still rely on manually extracted features, which 
makes them less effective in handling data 
complexity [4]. Deep learning (DL) approaches have 
begun to show significant potential in predicting 
antibiotic resistance based on microbiological data, 
including mass spectrometry and genomic 
sequencing [4].  

This approach reduces reliance on peak 
picking or baseline correction techniques, while 
improving accuracy by 10% compared to previous 
methods. The integration of transformer-based 
models has become an innovative solution for 
processing multidimensional data. The use of 
transformer-based models, as applied in predicting 
patient outcomes, enables simultaneous analysis of 
clinical and AST data with an error rate of < 2.5% for 
quinolones and cephalosporins [5]. Microbiological 
data play a crucial role in understanding antibiotic 
resistance patterns, which is critical for the 
development of effective treatment strategies[6]. 
Microbiological culture results and antibiotic 
sensitivity analysis provide the necessary 
information to determine appropriate therapy. For 
example, innovations in antibiotic sensitivity testing 
(AST) systems allow for rapid detection of bacterial 
resistance, thereby improving treatment 
effectiveness and reducing the risk of resistance 
spread. Systematic monitoring of microbiological 
data can reduce the spread of resistance genes in 
hospital environments and assist in better clinical 
decision-making[7]. 

This research aims to develop and evaluate a 
Transformer-based Deep Learning model using 
TabTransformer. The model is specifically designed 
to predict susceptibility outcomes (Resistant or 

Susceptible) at the individual culture level by 
leveraging complex microbiological electronic 
medical record (EMR) data. With the potential for 
integration into hospital business intelligence (BI) 
systems, this model is expected to become a 
practical decision support tool, providing evidence-
based recommendations and contributing to the 
overall antibiotic stewardship program. 

 
MATERIALS AND METHODS 

 
There are several key stages to ensure the 

accuracy and effectiveness of the model in 
predicting antibiotic resistance based on 
microbiological medical record data using 
transformer-based deep learning techniques[8]. As 
described in Figure 1, the research process begins 
with the data collection phase, where relevant 
datasets are gathered from various sources to 
support the analysis of antibiotic resistance. 
Subsequently, an initial analysis is performed to 
understand the structure and characteristics of the 
data, followed by the merging of data from different 
sources into a unified dataset. The data then 
undergoes pre-processing and transformation, 
which includes data cleaning, handling missing 
values, and feature scaling to prepare it for use in 
the model. In the modeling phase, a transformer-
based approach using TabTransformer is applied to 
build a prediction model capable of handling 
complex data. The model is evaluated using various 
metrics such as accuracy, precision, recall, F1-score, 
and AUC-ROC to ensure the quality of predictions 
and the model's generalization ability in the context 
of antibiotic resistance. 

 

 
Source : (Koenigstein, 2025) 

Figure 1. Reseach Framework 
 

The Transformer architecture consists of an 
encoder and a decoder, each containing 𝑁blocks. 
The input is a sequence of events, and the output is 
the predicted sequence of events [9]. Specifically, 
this model uses Scaled Dot-Product Attention, 
which is formulated as follows: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉            (1) 

 
Tabel 1. Algorithms in Transformer Model 

No Layer Algoritma 

1 Selft-Attantion 
Column-Aware Scaled Dot-

Product 

2 
Multi-Head 
Attantion 

Parallel Column-Aware Attention 

3 
Feed Forward 
Layer 

Dense Layer + Gated Activation 

4 
Positional 
Encoding 

Learnable Column Embedding 

5 Masking 
Feature Masking (untuk missing 

value) 

6 Optimization 
Adam Optimizer + Warmup 

Learning Rate 

Source : (Sun [9], 2025) 

 

 
Source : (Koenigstein [8], 2025) 
Figure 2. The TabTransformer - model architecture 

 
In the Transformer architecture, 𝑄(Queries), 

𝐾(Keys), and 𝑉(Values) are matrices that represent 
the input, and 𝑑𝑘is the dimension of the keys. Each 
standard Transformer block consists of a Multi-
Head Attention layer, followed by a Feed-Forward 
Network (FFN), with residual connections and layer 
normalization applied to each sub-layer. However, 
due to the tabular nature of the dataset used in this 
research, which has a mixed structure, the standard 
Transformer model is not directly applicable 
without modification. This is due to the differences 
in characteristics between text data and tabular 

data. In tabular data, the order of rows or columns 
generally does not have sequential meaning, but 
each column has a unique semantic meaning, and 
the interaction between features becomes critical 
[10]. To address this issue, this research adopts the 
TabTransformer approach, a neural network 
architecture developed to handle tabular data by 
leveraging a modified self-attention mechanism 
tailored to the columnar structure of the data. In the 
TabTransformer, as shown in Figure 2, each 
categorical feature is converted into a vector 
embedding through a lookup table, while numerical 
features are normalized before further 
processing.Each layer in the TabTransformer 
contains critical subcomponents, with many 
essential algorithms performing their respective 
functions, as outlined in Table 1. 

 

Data Source 
The Antibiotic Resistance Microbiology 

dataset consists of eleven main interconnected 
tables based on patient identifiers and examination 
procedures. These eleven tables provide 
comprehensive information, including clinical and 
demographic data, antibiotic resistance results, and 
patient antibiotic exposure history. All data has 
undergone a de-identification process to protect 
patient privacy, including the removal of direct 
identifiers, time jittering, age grouping, and binary 
encoding of gender without explicit labels. This 
standardized data structure supports 
comprehensive epidemiological and predictive 
analysis related to antimicrobial resistance [11]. 
The dataset consists of eleven tables that are linked 
through unique identifiers (anon_id for patients and 
order_proc_id_coded for culture procedure 
processes). The data is longitudinal in nature, 
enabling temporal analysis in antibiotic resistance 
prediction based on deep learning models. The 
dataset includes over 2,241,050 microbiological 
cultures from 283,715 patients. Figure 3 illustrates 
the antibiotic resistance patterns for the 10 most 
common infection-causing organisms.  

 
Source: (Research Results, 2025) 

Figure 3. Top 10 Antibiotic & Organism 
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Pre-processing 
Pre-processing improves machine learning 

model accuracy by eliminating noise and 
redundancy in the data [12]. Key steps in data pre-
processing include: 
a. Exploratory Data Analysis (EDA): The initial 

step to understand data patterns, trends, 
anomalies, and structure through statistical 
methods and visualizations [13]. 

b. Missing Value Handling: Critical for accurate 
model building, especially in clinical research. 
A hybrid imputation strategy was used based 
on feature meaning and data type. 

c. Normalization: Ensures features with 
different scales don't affect model accuracy. 
Numeric features were standardized using 
StandardScaler, setting a mean of 0 and 
standard deviation of 1 [14]. 

d. Duplicate Data Check: Removing duplicate 
rows prevents bias during model training, as 
redundancy from merging data can reduce 
quality [15]. 
 

 
Source: (Research Results, 2025) 

Figur 4. Data Preprocessing Workflow 
 

The initial stage focused on integrating and 
preparing core data, namely 
microbiology_cultures_cohort.csv, along with ten 
supporting tables containing demographic, clinical, 
medical history, and laboratory results. The dataset 
had a "long" format, where each unique culture was 
identified by order_proc_id_coded and split into 
multiple rows, each representing the susceptibility 
test results for a specific antibiotic against the 
isolated organism. This format was intentional and 
not a result of duplication, allowing for antibiotic-
specific analysis. To focus on binary classification, 
the target variable susceptibility was filtered to 
retain only definitive 'Susceptible' or 'Resistant' 
results. Ambiguous categories like 'Intermediate', 
'Inconclusive', and 'Synergism' were excluded, 
reducing the dataset from 2,241,050 rows to 
1,554,329 relevant rows for modeling. 

The class distribution in the filtered dataset, 
revealing a major methodological challenge: severe 
class imbalance. The Susceptible class is significantly 
dominant (N ≈ 1.29 million) compared to the 

Resistant class (N ≈ 0.26 million), with a ratio of 
approximately 4.8:1. This imbalance guided the 
selection of evaluation metrics (e.g., F1-score and 
PR AUC) and modeling strategies, such as using 
Focal Loss to address data imbalance in later stages, 
avoiding bias towards the majority class. This 
preparation phase concluded with the creation of 
the target variable.  

The susceptibility column was transformed 
using LabelEncoder, with 'Resistant' labeled as 0 
and 'Susceptible' labeled as 1. After forming the 
base dataset, the next step was to enrich the data 
with clinically relevant features through feature 
engineering, a crucial step in the machine learning 
pipeline for electronic health record (EHR) data, 
shown to improve predictive performance [16]. The 
goal was to transform raw data into predictive 
signals understandable by the model. Feature 
engineering was performed by aggregating and 
transforming data from various source tables into a 
single summary row for each culture order.  

Feature engineering specifically addressed 
two main challenges in the ARMD dataset. The first 
challenge is the complex longitudinal data structure, 
where a single patient (anon_id) may have multiple 
culture events (order_proc_id_coded) over time. 
The data cannot be directly used by the model, so 
the main feature engineering strategy focused on 
transforming this longitudinal data into static 
historical features [17].  

The second challenge is the significant class 
imbalance. The target variable distribution analysis 
showed a much higher number of Susceptible cases 
compared to Resistant cases. This poses a challenge 
as predictive models tend to be biased towards the 
majority class and perform poorly on the minority 
class, which in this case is Resistant. While this 
imbalance was mainly addressed during the 
modeling stage (e.g., using Focal Loss), awareness of 
this issue also guided the feature engineering 
process to create strong signals for the minority 
class [18]. This process generated 189 features 
covering various dimensions, including 
demographics, comorbidities, procedure history, 
drug exposure, lab results, vital signs, and 
engineered historical features. 

 
Final Transformation 

After the integration and feature 
engineering phase, a comprehensive dataset rich in 
information is created, ready for final 
transformation before modeling. The 
TabTransformer architecture employs a unique 
approach for processing categorical features, 
differing from typical models. This model requires 
categorical inputs in integer format (e.g., 0, 1, 2), 
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which are then mapped to internal embedding 
layers. Therefore, all categorical features, including 
key ones like organism and antibiotic, are 
transformed using Label Encoding. This step is 
essential for the model to learn dense, meaningful 
vector representations (contextual embeddings) for 
each category. This approach enables the model to 
effectively capture complex relationships between 
organisms and antibiotics. Given the large data 
volume, the encoding process is efficiently executed 
using the Dask library. The transformation results 
in a final dataset with 1,554,329 rows and 189 
feature columns. For flexibility in analysis and 
modeling, this dataset is saved in three file formats 
(parquet, csv, and pkl), serving as the single data 
source for all subsequent stages. 

Before proceeding to modeling, a 
correlation analysis is conducted to validate the 
predictive signals of the engineered features. This 
analysis measures the strength of the linear 
relationship between each numeric feature and the 
target variable, typically using Pearson correlation 
coefficient, a standard metric for assessing linear 
associations [19]. While low correlations are 
common in complex medical datasets, this step 
remains crucial as a sanity check to ensure the 
engineered features are statistically relevant before 
further modeling.  

The results of this analysis are visualized in 
Figure 6, highlighting features with the strongest 
positive and negative correlations. Key insights 
include that the strongest positively correlated 
features, such as unique_antibiotic_classes_365d 
(0.108) and had_prior_resistant_infection (0.103), 
are clinically logical predictors of resistance. This 
confirms that diverse antibiotic exposure history 
and prior resistant infections are major risk factors. 
Additionally, various comorbidities 
(has_coagulopathy, has_chronic_pulmonary_disease, 
has_renal_failure) also show positive correlations, 
suggesting that patients with more complex health 
conditions are more likely to experience resistant 
infections. 

The strongest negatively correlated 
features are antibiotic_encoded (-0.035) and 
ward_Outpatient (-0.030). The negative correlation 
with ward_Outpatient is logical, as community-
acquired infections (outpatients) are generally 
more susceptible compared to hospital-acquired 
infections (Carestia, M. et al., 2023). These results 
provide initial confidence that the engineered 
features carry valid predictive signals and are ready 
for modeling. 

 
Source: (Research Results, 2025) 

Figure 5. Feature Correlation with Susceptibility 
 
Train-Test Split 

The dataset is divided into two parts: the 
training set (80%) and the test set (20%). This split 
ensures that the model is trained and evaluated 
objectively, as shown in Figure 12. The train-test 
split aims to ensure that the model not only learns 
patterns from the training data but also provides an 
unbiased estimate of its performance on unseen 
data. As explained by Géron (2022), using a separate 
test set is the standard method for evaluating 
generalization error, or the model's error rate on 
new data. In this study, the dataset is split with an 
80-20 ratio, applying stratification to maintain class 
proportions. 
 
Training the Model 

The training process for the 
TabTransformer model is carefully designed to 
optimize predictive performance while addressing 
the main challenge of class imbalance in the dataset. 
Every component of the training workflow, from the 
loss function to the callback mechanisms, is fine-
tuned. Table 2 outlines the hyperparameters used 
during the model training. 

 
Table 2. Hyperprameter Setting 

Hyperparameter Description Value 

embedding_dim 
Embedding vector 
dimensions for 
categorical features. 

64 

depth 
Number of 
Transformer block 
stacks. 

6 

heads 
Number of heads in 
Multi-Head Attention. 

8 

attn_dropout 
Dropout rate in the 
Attention layer. 

0.1 
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Hyperparameter Description Value 

ff_dropout 
Dropout rate in the 
Feed-Forward layer. 

0.1 

mlp_hidden_factors 
Scaling factor for the 
layer size in the MLP 
head. 

[4, 4, 2] 

mlp_dropout 
Dropout rate in the 
MLP head. 

0.2 

learning_rate 
Initial learning rate for 
the Adam optimizer. 

3e-4 
(0.0003) 

batch_size 
Number of samples per 
batch during training. 

256 

epochs 
Maximum number of 
epochs (controlled by 
EarlyStopping). 

50 

Source: (Research Results, 2025) 
 

The BinaryFocalCrossentropy loss function 
with a gamma parameter of 2.0 is used. Unlike 
standard cross-entropy, which assigns equal weight 
to all samples, Focal Loss dynamically reduces the 
contribution of easily classified samples, forcing the 
model to focus on the harder-to-classify one [20]. 
This approach is particularly effective for 
addressing severe class imbalance. For model 
parameter optimization, the Adam optimizer is 
chosen for its computational efficiency and ability to 
compute adaptive learning rates for each parameter 
[21]. The initial learning rate is set to 3e-4. To 
ensure stable convergence, a dynamic learning rate 
strategy is employed using the ReduceLROnPlateau 
callback. This callback monitors the validation_loss 
metric and reduces the current learning rate by a 
factor of 0.5 if no improvement in performance is 
detected over three epochs. 

To prevent overfitting and enhance 
training efficiency, two additional callbacks are 
implemented. First, EarlyStopping is activated to 
halt training prematurely if the validation_loss does 
not improve over eight epochs. The argument 
restore_best_weights=True ensures that the model's 
weights are reverted to those from the epoch with 
the best performance [21]. Simultaneously, the 
ModelCheckpoint callback is used to permanently 
save the best model version (best_model.keras) 
whenever a new minimum validation_loss is 
achieved. The model is trained with a batch size of 
256 for up to 50 epochs, with the actual training 
duration determined by EarlyStopping. 

 
Model Evaluation Metrics 

Model performance is evaluated using a 
comprehensive set of metrics to provide a holistic 
view, particularly given the imbalanced nature of 
the data where accuracy alone is insufficient. The 
primary metrics for assessing the model’s ability to 
identify susceptibility classes are Precision, Recall, 
and F1-Score. Additionally, the model's overall 
discriminative ability across all probability 

thresholds is evaluated using the Area Under the 
Curve (AUC) for both the ROC (Receiver Operating 
Characteristic) curve and the Precision-Recall (PR) 
curve. 

RESULTS AND DISCUSSION 
 

The model performance is objectively 
measured through a comprehensive set of metrics, 
including the classification report, confusion matrix, 
and analysis of the Area Under the Curve (AUC) for 
both the ROC (Receiver Operating Characteristic) 
and Precision-Recall curves to assess the model's 
discriminative power. Additionally, an in-depth 
interpretative analysis is conducted using SHAP 
(SHapley Additive exPlanations) to identify and 
discuss the most dominant predictive factors. The 
purpose of using two evaluation methods, AUC-ROC 
and Precision-Recall curves, is to provide a more 
comprehensive assessment of the model's 
performance, especially with imbalanced data. AUC-
ROC measures class distinction, while Precision-
Recall focuses on detecting the minority class. 
Together, they offer a balanced view of the model's 
ability to handle both classes effectively The 
training process is dynamically evaluated at each 
epoch to monitor convergence and prevent 
overfitting. Figure 6 presents the loss and accuracy 
graphs for the model on both the training and 
validation data throughout the training process. 

 

 
Source: (Research Results, 2025) 

Figure 6. Grafik Loss dan Grafik Accuracy in 
Training Process 

 
The loss graph (left) shows a consistently 

decreasing training loss curve from start to finish, 
indicating that the model effectively learned 
patterns from the training data. Similarly, the 
validation loss curve also experiences a smooth 
decline, reaching its lowest point at epoch 25, 
marked by the vertical line, before leveling off. The 
stability of the validation curve, which does not 
increase after reaching its minimum, strongly 
suggests that the EarlyStopping callback 
successfully halted training at the optimal 
convergence point, effectively preventing 
overfitting. This positive trend is confirmed in the 
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accuracy graph (right), where both the training 
accuracy and validation accuracy curves rise 
synchronously and plateau at a high level (around 
90.6% for validation). The small and stable gap 
between the two accuracy curves further supports 
the conclusion that the model demonstrates good 
generalization capability. The curve dynamics 
indicate a stable and effective training process. 
Evaluation on the test data shows that the final 
optimized model performs strongly and balanced. 
The quantitative results of the evaluation are 
presented in the Classification Report in Figure 7, 
with performance visualization in the Confusion 
Matrix in Figure 8. 
 

 
Source: (Research Results, 2025) 

Figure 7. Classification Report 
 

 
Source: (Research Results, 2025) 

Figure 8. Confusion Matrix 
 
Test Data Evaluation 

Evaluation on the test data shows that the 
developed final model performs strongly and 
balanced. As summarized in the Classification 
Report in Figure 14, the model achieves an overall 
accuracy rate of 90%, indicating high predictive 
validity across the test samples. However, given the 
inherent class imbalance in medical data, this metric 
alone is not sufficiently representative. Therefore, 
the macro average F1-score is used as the primary 
indicator of balanced performance, with the model 
achieving a score of 0.82. This score reflects the 
model’s ability to maintain a balance between 

macro average precision (0.82) and macro average 
recall (0.83). 
The model is not simply accurate by predicting the 
majority class but is also effectively capable of fairly 
identifying cases from both classes. This balance 
confirms that the resulting model is a reliable and 
not significantly biased tool, a fundamental 
prerequisite for clinical applications. The model's 
discriminative ability, or its capacity to distinguish 
between classes, is further evaluated through the 
ROC and Precision-Recall curves presented in 
Figure 10. 
 

 
Source: (Research Results, 2025) 

Figure 9. AUC-ROC and Precision-Recall Curve 
 
The model demonstrates excellent class 

separation ability, as evidenced by an Area Under 
the ROC Curve (AUC-ROC) score of 0.93. The AUC 
score measures how well the model differentiates 
between the two classes, with a score of 0.5 
representing random guessing and 1.0 indicating 
perfect separation. With a score of 0.93, the model 
shows near-perfect discriminative ability, meaning 
it achieves a very high True Positive Rate (Detection 
Rate for Resistant cases) while maintaining a very 
low False Positive Rate (Error Rate for Susceptible 
cases). 

Given the imbalanced nature of the dataset, 
Precision-Recall (PR) curve analysis is crucial. The 
model achieves an Area Under the Precision-Recall 
Curve (PR AUC) score of 0.80, highlighting its ability 
to maintain high precision even while maximizing 
recall for the minority Resistant class. This indicates 
the model's robustness in providing practically 
useful predictions, where detecting rare Resistant 
cases is the main challenge. 
 
Model Performance Interpretation 

The quantitative results presented in the 
previous chapter show that the optimized 
TabTransformer model has achieved strong and 
balanced performance. The macro average F1-score 
of 0.82 confirms that the model excels not only in 
predicting the majority class (Susceptible) but also 
has solid capabilities in handling the minority class 
(Resistant). This balanced performance is critical, as 
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the goal of the research is to create a reliable tool for 
clinical data environments that are inherently 
imbalanced. 

A deeper analysis of each individual class 
provides a comprehensive view of the model's 
performance profile. For the majority class, 
Susceptible, the model shows very high and reliable 
performance. With precision (0.94) and recall 
(0.94), the model almost never errs in identifying 
Susceptible cases and rarely misclassifies Resistant 
cases as Susceptible. Reliability in this class is 
essential to ensure that patients who should be 
treated with certain antibiotics are not 
misclassified. 

On the other hand, for the minority class, 
Resistant, the model strikes a pragmatic balance 
between precision (0.69) and recall (0.73). A recall 
rate of 73% implies good sensitivity in detecting 
most Resistant cases. Meanwhile, a precision rate of 
69% indicates a manageable false positive rate, with 
most of the model's Resistant predictions being 
correct. This combination of strong performance in 
one class and solid balance in the other shows that 
the developed model is a robust tool, capable of 
handling both prediction scenarios with clear and 
measurable capability. 

The high AUC-ROC (0.93) and PR AUC (0.80) 
further confirm the fundamental strength of the 
model. The near-perfect AUC-ROC score indicates 
that the model has good discriminative ability in 
separating the two class populations. Meanwhile, 
the PR AUC score, well above the random baseline, 
proves that the model's performance remains 
strong even under the pressure of severe class 
imbalance. The developed model has successfully 
maximized the available predictive signals to 
generate reliable and clinically meaningful 
predictions. 

 
Analysis of Key Predictive Factors 

To understand the model's internal decision-
making process and identify the most influential 
factors, an interpretability analysis was conducted 
using SHAP (SHapley Additive exPlanations).  The 
SHAP analysis results in Figure 11 indicate that 
organism_encoded is the most dominant predictive 
factor in the model. The feature's values show a 
broad range of impact along the SHAP axis, 
signifying that the type of organism consistently 
plays a key role in determining whether a case is 
likely to be Resistant or Susceptible. The next most 
influential factors are combinations of comorbidity 
and microbiological features, namely 
has_cardiac_arrhythmias and antibiotic_encoded. 

 
Source: (Research Results, 2025) 

Figure 10. SHAP (SHapley Additive exPlanations 
 
The finding that heart conditions such as 

arrhythmias and congestive heart failure 
(has_congestive_heart_failure) are important 
predictors offers significant clinical insights. The 
presence of these comorbidities (indicated by 
red/high feature values) consistently contributes 
negative SHAP values, meaning they push the 
prediction away from Susceptible or towards 
Resistant. 

 

 
Source: (Research Results, 2025) 

Figure 11. SHAP Categorical Features (SHapley 
Additive exPlanations) 

 
It is evident that organism_encoded and 

antibiotic_encoded have a far greater impact 
compared to other categorical features, such as 
ordering_mode and culture_description (Fig. 11). 
This is clinically logical, as the identity of the 
microorganism and the type of antibiotic tested are 
the foundation of susceptibility testing, while the 
context of sample collection is secondary 
information. Overall, this SHAP analysis validates 
that the model does not act as a "black box" but 
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bases its predictions on clinically relevant factors, 
with a strong emphasis on microbial identity and 
the patient's heart health status. The SHAP analysis 
demonstrates that the model's strong performance 
is attributed to its ability to integrate information 
from three distinct domains: the patient's long-term 
history, specific microbiological context, and acute 
clinical status. The ability to weigh and prioritize 
features from these diverse sources is key to the 
reliability of the developed predictive model. 

 
CONCLUSION 

 
Transformer-based deep learning model, is 

developed and optimized a based on 
TabTransformer, to predict antibiotic susceptibility 
in response to the global challenge of Antimicrobial 
Resistance (AMR). A key innovation is the 
integration of methodological approach, including 
the engineering of clinical and historical features, as 
well as using Focal Loss to address data imbalance, 
the resulting model demonstrated strong and 
balanced performance. Evaluation results on test 
data revealed excellent discriminative ability, with 
an AUC-ROC of 0.93 and a macro average F1-score 
of 0.82. Further interpretability analysis confirmed 
that the model's predictions were based on 
clinically relevant factors, with patient history being 
the most dominant predictor. The study concludes 
that the Transformer-based deep learning 
architecture, utilizing TabTransformer combined 
with rich contextual data, can serve as a reliable and 
evidence-based decision support tool, especially 
when implemented in a hybrid system alongside 
deterministic clinical rules, to guide more prudent 
antibiotic use. 
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