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Abstract—Antimicrobial Resistance (AMR) has become a growing threat due to the increase in infections that
are unresponsive to conventional therapies. Therefore, the development and optimization of Transformer-
based Deep Learning using TabTransformer was employed to model the complex interactions between
categorical features. This model was trained to predict antibiotic susceptibility at the individual culture level
using the Antibiotic Resistance Microbiology Dataset (ARMD). To address the challenge of highly imbalanced
data, the methodology applied includes extensive feature engineering to create historical and clinical variables,
as well as the use of Focal Loss during training. After optimization, the final model demonstrated excellent
discriminatory ability, with an Area Under the ROC Curve (AUC-ROC) of 0.93 and balanced classification
performance, yielding a macro average F1-score of 0.82. Interpretability analysis using SHAP confirmed that
patient clinical history and prior drug exposure were the most dominant predictive factors. These findings
suggest that the Transformer-based Deep Learning architecture using TabTransformer, combined with
clinically relevant feature engineering, can produce a reliable and evidence-based predictive tool.

Keywords: Antibiotic Susceptibility Prediction, Antimicrobial Resistance (AMR), SHAP Interpretability
Analysis, TabTransformer, Transformer-Based Deep Learning.

Intisari—Resistansi Antimikroba (AMR) menjadi ancaman dengan meningkatnya infeksi yang tidak responsif
terhadap terapi konvensional. Sehingga mengembangkan dan mengoptimalkan Transformer-based Deep
Learning menggunakan TabTransformer digunakan untuk memodelkan interaksi kompleks antar fitur-fitur
kategorikal. Model ini dilatih untuk memprediksi suseptibilitas antibiotik pada level kultur individual
menggunakan Antibiotic Resistance Microbiology Dataset (ARMD). Untuk mengatasi tantangan data yang
sangat tidak seimbang, metodologi yang diterapkan mencakup rekayasa fitur ekstensif untuk menciptakan
variabel historis dan klinis, serta penggunaan Focal Loss selama pelatihan. Setelah melalui optimasi, model
final menunjukkan kemampuan diskriminatif yang sangat baik dengan Area Under the ROC Curve (AUC-ROC)
sebesar 0.93 dan performa klasifikasi yang seimbang dengan macro average F1-score sebesar 0.82. Analisis
interpretabilitas menggunakan SHAP mengkonfirmasi bahwa riwayat klinis pasien dan paparan obat
sebelumnya adalah faktor prediktif yang paling dominan. Temuan ini menunjukkan bahwa arsitektur
Transformer-based Deep Learning menggunakan TabTransformer dengan rekayasa fitur yang relevan secara
klinis dapat menghasilkan alat prediksi yang andal dan berbasis bukti.

Kata Kunci: Antimicrobial Resistance (AMR), Analisis Interpretabilitas SHAP, Prediksi Sensitivitas Antibiotik,
TabTransformer, Transformer-Based Deep Learning.

Aceredited Rank 2 (Sinta 2 based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti 651
No.225/E/KPT,/2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri



mailto:feri.sulianta@widyatama.ac.id*
mailto:endang.amalia@widyatama.ac.id
mailto:rosalin.samiharjo@widyatama.ac.id

VOL. 11. NO. 3 FEBRUARY 2026
P-ISSN: 2685-8223 | E-ISSN: 2527-4864
DOI: 10.33480 /jitk.v11i3.7582

JITK (JURNAL ILMU PENGETAHUAN

DAN TEKNOLOGI KOMPUTER)

INTRODUCTION

Antimicrobial resistance (AMR) has become
a global threat to modern healthcare systems, with
an increase in cases of bacterial infections that are
unresponsive to conventional therapies[1]. This
phenomenon is exacerbated by the irrational use of
antibiotics and the lack of rapid diagnostic methods
to guide targeted therapy[2]. There has been a 35%
increase in multidrug-resistant (MDR) infection
cases in the past decade [1]. Machine learning
algorithms can be used to identify various
underlying mechanisms of antimicrobial resistance,
such as efflux pumps, target modification, and
enzymatic inactivation, as well as to predict
resistance in bacterial strains. After training on
genomic data, several machine learning algorithms,
including Support Vector Machines (SVM), Logistic
Regression (LR) models, and Random Forests (RF),
have demonstrated excellent accuracy in predicting
antimicrobial resistance [3]. However, these models
still rely on manually extracted features, which
makes them less effective in handling data
complexity [4]. Deep learning (DL) approaches have
begun to show significant potential in predicting
antibiotic resistance based on microbiological data,
including mass spectrometry and genomic
sequencing [4].

This approach reduces reliance on peak
picking or baseline correction techniques, while
improving accuracy by 10% compared to previous
methods. The integration of transformer-based
models has become an innovative solution for
processing multidimensional data. The use of
transformer-based models, as applied in predicting
patient outcomes, enables simultaneous analysis of
clinical and AST data with an error rate of < 2.5% for
quinolones and cephalosporins [5]. Microbiological
data play a crucial role in understanding antibiotic
resistance patterns, which is critical for the
development of effective treatment strategies[6].
Microbiological culture results and antibiotic
sensitivity analysis provide the necessary
information to determine appropriate therapy. For
example, innovations in antibiotic sensitivity testing
(AST) systems allow for rapid detection of bacterial
resistance, thereby  improving  treatment
effectiveness and reducing the risk of resistance
spread. Systematic monitoring of microbiological
data can reduce the spread of resistance genes in
hospital environments and assist in better clinical
decision-making][7].

This research aims to develop and evaluate a
Transformer-based Deep Learning model using
TabTransformer. The model is specifically designed
to predict susceptibility outcomes (Resistant or
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Susceptible) at the individual culture level by
leveraging complex microbiological electronic
medical record (EMR) data. With the potential for
integration into hospital business intelligence (BI)
systems, this model is expected to become a
practical decision support tool, providing evidence-
based recommendations and contributing to the
overall antibiotic stewardship program.

MATERIALS AND METHODS

There are several key stages to ensure the
accuracy and effectiveness of the model in
predicting antibiotic resistance based on
microbiological medical record data using
transformer-based deep learning techniques[8]. As
described in Figure 1, the research process begins
with the data collection phase, where relevant
datasets are gathered from various sources to
support the analysis of antibiotic resistance.
Subsequently, an initial analysis is performed to
understand the structure and characteristics of the
data, followed by the merging of data from different
sources into a unified dataset. The data then
undergoes pre-processing and transformation,
which includes data cleaning, handling missing
values, and feature scaling to prepare it for use in
the model. In the modeling phase, a transformer-
based approach using TabTransformer is applied to
build a prediction model capable of handling
complex data. The model is evaluated using various
metrics such as accuracy, precision, recall, F1-score,
and AUC-ROC to ensure the quality of predictions
and the model's generalization ability in the context
of antibiotic resistance.
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Figure 1. Reseach Framework

The Transformer architecture consists of an
encoder and a decoder, each containing Nblocks.
The input is a sequence of events, and the output is
the predicted sequence of events [9]. Specifically,
this model uses Scaled Dot-Product Attention,
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Attention(Q,K,V) =
T
QK
softmax|—=|V (1)
Vai
Tabel 1. Algorithms in Transformer Model
No Layer Algoritma
1 Selft-Attantion Column-Aware Scaled Dot-
Product
2 Multl—ﬂead Parallel Column-Aware Attention
Attantion
3 Feed Forward Dense Layer + Gated Activation
Layer
4 P081t19nal Learnable Column Embedding
Encoding
5 Masking Feature Masking (untuk missing

value)
Adam Optimizer + Warmup

6  Optimization Learning Rate

Source : (Sun [9], 2025)
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Figure 2. The TabTransformer - model architecture

[Cnlumn Embedding

In the Transformer architecture, Q(Queries),
K (Keys), and V(Values) are matrices that represent
the input, and d,,is the dimension of the keys. Each
standard Transformer block consists of a Multi-
Head Attention layer, followed by a Feed-Forward
Network (FFN), with residual connections and layer
normalization applied to each sub-layer. However,
due to the tabular nature of the dataset used in this
research, which has a mixed structure, the standard
Transformer model is not directly applicable
without modification. This is due to the differences
in characteristics between text data and tabular
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data. In tabular data, the order of rows or columns
generally does not have sequential meaning, but
each column has a unique semantic meaning, and
the interaction between features becomes critical
[10]. To address this issue, this research adopts the
TabTransformer approach, a neural network
architecture developed to handle tabular data by
leveraging a modified self-attention mechanism
tailored to the columnar structure of the data. In the
TabTransformer, as shown in Figure 2, each
categorical feature is converted into a vector
embedding through a lookup table, while numerical
features are normalized before further
processing.Each layer in the TabTransformer
contains critical subcomponents, with many
essential algorithms performing their respective
functions, as outlined in Table 1.

Data Source

The Antibiotic Resistance Microbiology
dataset consists of eleven main interconnected
tables based on patient identifiers and examination
procedures. These eleven tables provide
comprehensive information, including clinical and
demographic data, antibiotic resistance results, and
patient antibiotic exposure history. All data has
undergone a de-identification process to protect
patient privacy, including the removal of direct
identifiers, time jittering, age grouping, and binary
encoding of gender without explicit labels. This
standardized data structure supports
comprehensive epidemiological and predictive
analysis related to antimicrobial resistance [11].
The dataset consists of eleven tables that are linked
through unique identifiers (anon_id for patients and
order_proc_id_coded for culture procedure
processes). The data is longitudinal in nature,
enabling temporal analysis in antibiotic resistance
prediction based on deep learning models. The
dataset includes over 2,241,050 microbiological
cultures from 283,715 patients. Figure 3 illustrates
the antibiotic resistance patterns for the 10 most
common infection-causing organisms.
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Figure 3. Top 10 Antibiotic & Organism
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Pre-processing

Pre-processing improves machine learning
model accuracy by eliminating noise and
redundancy in the data [12]. Key steps in data pre-
processing include:

a. Exploratory Data Analysis (EDA): The initial
step to understand data patterns, trends,
anomalies, and structure through statistical
methods and visualizations [13].

b. Missing Value Handling: Critical for accurate
model building, especially in clinical research.
A hybrid imputation strategy was used based
on feature meaning and data type.

c. Normalization: Ensures features with
different scales don't affect model accuracy.
Numeric features were standardized using
StandardScaler, setting a mean of 0 and
standard deviation of 1 [14].

d. Duplicate Data Check: Removing duplicate
rows prevents bias during model training, as
redundancy from merging data can reduce
quality [15].

Dt D
]

10Diisel amya

Source: (Research Results, 2025)
Figur 4. Data Preprocessing Workflow

The initial stage focused on integrating and
preparing core data, namely
microbiology_cultures_cohort.csv, along with ten
supporting tables containing demographic, clinical,
medical history, and laboratory results. The dataset
had a "long" format, where each unique culture was
identified by order_proc_id_coded and split into
multiple rows, each representing the susceptibility
test results for a specific antibiotic against the
isolated organism. This format was intentional and
not a result of duplication, allowing for antibiotic-
specific analysis. To focus on binary classification,
the target variable susceptibility was filtered to
retain only definitive 'Susceptible’ or 'Resistant’
results. Ambiguous categories like 'Intermediate’,
'Inconclusive’, and 'Synergism' were excluded,
reducing the dataset from 2,241,050 rows to
1,554,329 relevant rows for modeling.

The class distribution in the filtered dataset,
revealing a major methodological challenge: severe
class imbalance. The Susceptible class is significantly
dominant (N = 1.29 million) compared to the
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Resistant class (N = 0.26 million), with a ratio of
approximately 4.8:1. This imbalance guided the
selection of evaluation metrics (e.g., F1-score and
PR AUC) and modeling strategies, such as using
Focal Loss to address data imbalance in later stages,
avoiding bias towards the majority class. This
preparation phase concluded with the creation of
the target variable.

The susceptibility column was transformed
using LabelEncoder, with 'Resistant’ labeled as 0
and 'Susceptible' labeled as 1. After forming the
base dataset, the next step was to enrich the data
with clinically relevant features through feature
engineering, a crucial step in the machine learning
pipeline for electronic health record (EHR) data,
shown to improve predictive performance [16]. The
goal was to transform raw data into predictive
signals understandable by the model. Feature
engineering was performed by aggregating and
transforming data from various source tables into a
single summary row for each culture order.

Feature engineering specifically addressed
two main challenges in the ARMD dataset. The first
challenge is the complex longitudinal data structure,
where a single patient (anon_id) may have multiple
culture events (order_proc_id_coded) over time.
The data cannot be directly used by the model, so
the main feature engineering strategy focused on
transforming this longitudinal data into static
historical features [17].

The second challenge is the significant class
imbalance. The target variable distribution analysis
showed a much higher number of Susceptible cases
compared to Resistant cases. This poses a challenge
as predictive models tend to be biased towards the
majority class and perform poorly on the minority
class, which in this case is Resistant. While this
imbalance was mainly addressed during the
modeling stage (e.g., using Focal Loss), awareness of
this issue also guided the feature engineering
process to create strong signals for the minority
class [18]. This process generated 189 features
covering various dimensions, including
demographics, comorbidities, procedure history,

drug exposure, lab results, vital signs, and
engineered historical features.
Final Transformation

After the integration and feature

engineering phase, a comprehensive dataset rich in
information is created, ready for final
transformation before modeling. The
TabTransformer architecture employs a unique
approach for processing categorical features,
differing from typical models. This model requires
categorical inputs in integer format (e.g., 0, 1, 2),
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which are then mapped to internal embedding
layers. Therefore, all categorical features, including
key ones like organism and antibiotic, are
transformed using Label Encoding. This step is
essential for the model to learn dense, meaningful
vector representations (contextual embeddings) for
each category. This approach enables the model to
effectively capture complex relationships between
organisms and antibiotics. Given the large data
volume, the encoding process is efficiently executed
using the Dask library. The transformation results
in a final dataset with 1,554,329 rows and 189
feature columns. For flexibility in analysis and
modeling, this dataset is saved in three file formats
(parquet, csv, and pkl), serving as the single data
source for all subsequent stages.

Before proceeding to modeling, a
correlation analysis is conducted to validate the
predictive signals of the engineered features. This
analysis measures the strength of the linear
relationship between each numeric feature and the
target variable, typically using Pearson correlation
coefficient, a standard metric for assessing linear
associations [19]. While low correlations are
common in complex medical datasets, this step
remains crucial as a sanity check to ensure the
engineered features are statistically relevant before
further modeling.

The results of this analysis are visualized in
Figure 6, highlighting features with the strongest
positive and negative correlations. Key insights
include that the strongest positively correlated
features, such as unique_antibiotic_classes_365d
(0.108) and had_prior-_resistant_infection (0.103),
are clinically logical predictors of resistance. This
confirms that diverse antibiotic exposure history
and prior resistant infections are major risk factors.
Additionally, various comorbidities
(has_coagulopathy, has_chronic_pulmonary_disease,
has_renal_failure) also show positive correlations,
suggesting that patients with more complex health
conditions are more likely to experience resistant
infections.

The strongest negatively correlated
features are antibiotic_encoded (-0.035) and
ward_Outpatient (-0.030). The negative correlation
with ward_Outpatient is logical, as community-
acquired infections (outpatients) are generally
more susceptible compared to hospital-acquired
infections (Carestia, M. et al.,, 2023). These results
provide initial confidence that the engineered
features carry valid predictive signals and are ready
for modeling.
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Figure 5. Feature Correlation with Susceptibility

Train-Test Split

The dataset is divided into two parts: the
training set (80%) and the test set (20%). This split
ensures that the model is trained and evaluated
objectively, as shown in Figure 12. The train-test
split aims to ensure that the model not only learns
patterns from the training data but also provides an
unbiased estimate of its performance on unseen
data. As explained by Géron (2022), using a separate
test set is the standard method for evaluating
generalization error, or the model's error rate on
new data. In this study, the dataset is split with an
80-20 ratio, applying stratification to maintain class
proportions.

Training the Model

The training process for the
TabTransformer model is carefully designed to
optimize predictive performance while addressing
the main challenge of class imbalance in the dataset.
Every component of the training workflow, from the
loss function to the callback mechanisms, is fine-
tuned. Table 2 outlines the hyperparameters used
during the model training.

Table 2. Hyperprameter Setting

Hyperparameter  Description Value
Embedding vector

embedding_dim dimensions for 64
categorical features.
Number of

depth Transformer block 6
stacks.
Number of heads in

heads

Multi-Head Attention.
Dropout rate in the 01

attn_dropout .
-drop Attention layer.
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Hyperparameter  Description Value
Dropout rate in the

Jf-dropout Feed-Forward layer. 0.1
Scaling factor for the

mlp_hidden_factors layer size in the MLP [4, 4, 2]
head.
Dropout rate in the

mlip_dropout MLP head. 0.2

learning rate Initial learning rate for 3e-4

9- the Adam optimizer. (0.0003)
. Number of samples per

batch_size batch during training. 256
Maximum number of

epochs epochs (controlled by 50

EarlyStopping).
Source: (Research Results, 2025)

The BinaryFocalCrossentropy loss function
with a gamma parameter of 2.0 is used. Unlike
standard cross-entropy, which assigns equal weight
to all samples, Focal Loss dynamically reduces the
contribution of easily classified samples, forcing the
model to focus on the harder-to-classify one [20].
This approach is particularly effective for
addressing severe class imbalance. For model
parameter optimization, the Adam optimizer is
chosen for its computational efficiency and ability to
compute adaptive learning rates for each parameter
[21]. The initial learning rate is set to 3e-4. To
ensure stable convergence, a dynamic learning rate
strategy is employed using the ReduceLROnPlateau
callback. This callback monitors the validation_loss
metric and reduces the current learning rate by a
factor of 0.5 if no improvement in performance is
detected over three epochs.

To prevent overfitting and enhance
training efficiency, two additional callbacks are
implemented. First, EarlyStopping is activated to
halt training prematurely if the validation_loss does
not improve over eight epochs. The argument
restore_best weights=True ensures that the model's
weights are reverted to those from the epoch with
the best performance [21]. Simultaneously, the
ModelCheckpoint callback is used to permanently
save the best model version (best modelkeras)
whenever a new minimum validation_loss is
achieved. The model is trained with a batch size of
256 for up to 50 epochs, with the actual training
duration determined by EarlyStopping.

Model Evaluation Metrics

Model performance is evaluated using a
comprehensive set of metrics to provide a holistic
view, particularly given the imbalanced nature of
the data where accuracy alone is insufficient. The
primary metrics for assessing the model’s ability to
identify susceptibility classes are Precision, Recall,
and F1-Score. Additionally, the model's overall
discriminative ability across all probability
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thresholds is evaluated using the Area Under the
Curve (AUC) for both the ROC (Receiver Operating
Characteristic) curve and the Precision-Recall (PR)
curve.

RESULTS AND DISCUSSION

The model performance is objectively
measured through a comprehensive set of metrics,
including the classification report, confusion matrix,
and analysis of the Area Under the Curve (AUC) for
both the ROC (Receiver Operating Characteristic)
and Precision-Recall curves to assess the model's
discriminative power. Additionally, an in-depth
interpretative analysis is conducted using SHAP
(SHapley Additive exPlanations) to identify and
discuss the most dominant predictive factors. The
purpose of using two evaluation methods, AUC-ROC
and Precision-Recall curves, is to provide a more
comprehensive assessment of the model's
performance, especially with imbalanced data. AUC-
ROC measures class distinction, while Precision-
Recall focuses on detecting the minority class.
Together, they offer a balanced view of the model's
ability to handle both classes effectively The
training process is dynamically evaluated at each
epoch to monitor convergence and prevent
overfitting. Figure 6 presents the loss and accuracy
graphs for the model on both the training and
validation data throughout the training process.

Source: (Research Results, 2025)
Figure 6. Grafik Loss dan Grafik Accuracy in
Training Process

The loss graph (left) shows a consistently
decreasing training loss curve from start to finish,
indicating that the model effectively learned
patterns from the training data. Similarly, the
validation loss curve also experiences a smooth
decline, reaching its lowest point at epoch 25,
marked by the vertical line, before leveling off. The
stability of the validation curve, which does not
increase after reaching its minimum, strongly

suggests that the EarlyStopping callback
successfully halted training at the optimal
convergence  point, effectively  preventing

overfitting. This positive trend is confirmed in the
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accuracy graph (right), where both the training
accuracy and validation accuracy curves rise
synchronously and plateau at a high level (around
90.6% for validation). The small and stable gap
between the two accuracy curves further supports
the conclusion that the model demonstrates good
generalization capability. The curve dynamics
indicate a stable and effective training process.
Evaluation on the test data shows that the final
optimized model performs strongly and balanced.
The quantitative results of the evaluation are
presented in the Classification Report in Figure 7,
with performance visualization in the Confusion
Matrix in Figure 8.

precision recall fl-score support

Susceptible 8.94 8.93 8.94 257852
Resistant 0.69 8.73 8.71 53014
accuracy 0.90 310866
macro avg 0.82 0.83 0.82 310866
weighted avg 8.98 8.90 8.98 318866

Source: (Research Results, 2025)
Figure 7. Classification Report
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Figure 8. Confusion Matrix

Test Data Evaluation

Evaluation on the test data shows that the
developed final model performs strongly and
balanced. As summarized in the Classification
Report in Figure 14, the model achieves an overall
accuracy rate of 90%, indicating high predictive
validity across the test samples. However, given the
inherent class imbalance in medical data, this metric
alone is not sufficiently representative. Therefore,
the macro average F1-score is used as the primary
indicator of balanced performance, with the model
achieving a score of 0.82. This score reflects the
model’s ability to maintain a balance between
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macro average precision (0.82) and macro average
recall (0.83).

The model is not simply accurate by predicting the
majority class but is also effectively capable of fairly
identifying cases from both classes. This balance
confirms that the resulting model is a reliable and
not significantly biased tool, a fundamental
prerequisite for clinical applications. The model's
discriminative ability, or its capacity to distinguish
between classes, is further evaluated through the
ROC and Precision-Recall curves presented in
Figure 10.

Source: (Research Results, 2025)
Figure 9. AUC-ROC and Precision-Recall Curve

The model demonstrates excellent class
separation ability, as evidenced by an Area Under
the ROC Curve (AUC-ROC) score of 0.93. The AUC
score measures how well the model differentiates
between the two classes, with a score of 0.5
representing random guessing and 1.0 indicating
perfect separation. With a score of 0.93, the model
shows near-perfect discriminative ability, meaning
itachieves a very high True Positive Rate (Detection
Rate for Resistant cases) while maintaining a very
low False Positive Rate (Error Rate for Susceptible
cases).

Given the imbalanced nature of the dataset,
Precision-Recall (PR) curve analysis is crucial. The
model achieves an Area Under the Precision-Recall
Curve (PR AUC) score of 0.80, highlighting its ability
to maintain high precision even while maximizing
recall for the minority Resistant class. This indicates
the model's robustness in providing practically
useful predictions, where detecting rare Resistant
cases is the main challenge.

Model Performance Interpretation

The quantitative results presented in the
previous chapter show that the optimized
TabTransformer model has achieved strong and
balanced performance. The macro average F1-score
of 0.82 confirms that the model excels not only in
predicting the majority class (Susceptible) but also
has solid capabilities in handling the minority class
(Resistant). This balanced performance is critical, as
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the goal of the research is to create a reliable tool for
clinical data environments that are inherently
imbalanced.

A deeper analysis of each individual class
provides a comprehensive view of the model's
performance profile. For the majority class,
Susceptible, the model shows very high and reliable
performance. With precision (0.94) and recall
(0.94), the model almost never errs in identifying
Susceptible cases and rarely misclassifies Resistant
cases as Susceptible. Reliability in this class is
essential to ensure that patients who should be
treated with certain antibiotics are not
misclassified.

On the other hand, for the minority class,
Resistant, the model strikes a pragmatic balance
between precision (0.69) and recall (0.73). A recall
rate of 73% implies good sensitivity in detecting
most Resistant cases. Meanwhile, a precision rate of
69% indicates a manageable false positive rate, with
most of the model's Resistant predictions being
correct. This combination of strong performance in
one class and solid balance in the other shows that
the developed model is a robust tool, capable of
handling both prediction scenarios with clear and
measurable capability.

The high AUC-ROC (0.93) and PR AUC (0.80)
further confirm the fundamental strength of the
model. The near-perfect AUC-ROC score indicates
that the model has good discriminative ability in
separating the two class populations. Meanwhile,
the PR AUC score, well above the random baseline,
proves that the model's performance remains
strong even under the pressure of severe class
imbalance. The developed model has successfully
maximized the available predictive signals to
generate reliable and clinically meaningful
predictions.

Analysis of Key Predictive Factors

To understand the model's internal decision-
making process and identify the most influential
factors, an interpretability analysis was conducted
using SHAP (SHapley Additive exPlanations). The
SHAP analysis results in Figure 11 indicate that
organism_encoded is the most dominant predictive
factor in the model. The feature's values show a
broad range of impact along the SHAP axis,
signifying that the type of organism consistently
plays a key role in determining whether a case is
likely to be Resistant or Susceptible. The next most
influential factors are combinations of comorbidity
and microbiological features, namely
has_cardiac_arrhythmias and antibiotic_encoded.
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The finding that heart conditions such as
arrhythmias and congestive heart failure
(has_congestive_heart_failure) are important
predictors offers significant clinical insights. The
presence of these comorbidities (indicated by
red/high feature values) consistently contributes
negative SHAP values, meaning they push the
prediction away from Susceptible or towards
Resistant.
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Figure 11. SHAP Categorical Features (SHapley
Additive exPlanations)

It is evident that organism_encoded and
antibiotic_encoded have a far greater impact
compared to other categorical features, such as
ordering_mode and culture_description (Fig. 11).
This is clinically logical, as the identity of the
microorganism and the type of antibiotic tested are
the foundation of susceptibility testing, while the
context of sample collection is secondary
information. Overall, this SHAP analysis validates
that the model does not act as a "black box" but
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bases its predictions on clinically relevant factors,
with a strong emphasis on microbial identity and
the patient's heart health status. The SHAP analysis
demonstrates that the model's strong performance
is attributed to its ability to integrate information
from three distinct domains: the patient's long-term
history, specific microbiological context, and acute
clinical status. The ability to weigh and prioritize
features from these diverse sources is key to the
reliability of the developed predictive model.

CONCLUSION

Transformer-based deep learning model, is
developed and optimized a based on
TabTransformer, to predict antibiotic susceptibility
in response to the global challenge of Antimicrobial
Resistance (AMR). A Kkey innovation is the
integration of methodological approach, including
the engineering of clinical and historical features, as
well as using Focal Loss to address data imbalance,
the resulting model demonstrated strong and
balanced performance. Evaluation results on test
data revealed excellent discriminative ability, with
an AUC-ROC of 0.93 and a macro average F1-score
of 0.82. Further interpretability analysis confirmed
that the model's predictions were based on
clinically relevant factors, with patient history being
the most dominant predictor. The study concludes
that the Transformer-based deep learning
architecture, utilizing TabTransformer combined
with rich contextual data, can serve as a reliable and
evidence-based decision support tool, especially
when implemented in a hybrid system alongside
deterministic clinical rules, to guide more prudent
antibiotic use.

REFERENCE

[1] Y. Li, X. Cui, X. Yang, G. Liu, and ]. Zhang,
“Artificial  intelligence in  predicting
pathogenic microorganisms’ antimicrobial

resistance: challenges, progress, and
prospects,” Front Cell Infect Microbiol, vol.
14, Nov. 2024, doi:

10.3389/fcimb.2024.1482186.

[2] F. Farhat, M. T. Athar, S. Ahmad, D. @.
Madsen, and S. S. Sohail, “Antimicrobial
resistance and machine learning: past,
present, and future,” Front Microbiol, vol.
Volume 14-2023, 2023, doi:
10.3389/fmicb.2023.1179312.

[3] A.Jain, G. R. Dabburu, B. Samanta, N. Singhal,
and M. Kumar, “An explainable machine
learning pipeline for prediction of
antimicrobial resistance in Pseudomonas
aeruginosa,” Bioinformatics Advances, vol. 5,

Aceredited Rank 2 (Sinta 2 based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
No.225/E/KPT,/2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri

[4]

[5]

[6]

[7]

(8]

[]

[10]

[11]

[12]

[13]

no. 1, Dec. 2024, doi:
10.1093/bioadv/vbaf190.

X. A. Lépez-Cortés, ]. M. Manriquez-
Troncoso, R. Hernandez-Garcia, and D.
Peralta, “MSDeepAMR: antimicrobial
resistance prediction based on deep neural
networks and transfer learning,” Front
Microbiol, vol. 15, Apr. 2024, doi:
10.3389/fmicb.2024.1361795.

J. S. Inda-Diaz et al., “Prediction of antibiotic
resistance at the patient level using deep
learning,” bioRxiv, p. 2023.05.09.539832,
Jan. 2024, doi: 10.1101/2023.05.09.539832.
S. Cannella et al, “Evaluation of EUCAST
Rapid Antimicrobial Susceptibility Testing
for Gram-Negative ESKAPEEc Pathogens in
Blood Cultures, with a Focus on
Carbapenemase-Producing Klebsiella
pneumoniae in a University Hospital in
Palermo, Italy,” Antibiotics, vol. 14, no. 12, p.
1251, Dec. 2025, doi:
10.3390/antibiotics14121251.

A. Elbehiry et al., “Detection of antimicrobial
resistance via state-of-the-art technologies
versus conventional methods,” Front
Microbiol, vol. Volume 16-2025, 2025, doi:
10.3389/fmich.2025.1549044.

N. Koenigstein, Transformers in Action.
Manning Online, 2025.

Y. Sun et al., “Efficient Attention Mechanisms
for Large Language Models: A Survey,” Aug.
2025.

G. Badaro, M. Saeed, and P. Papotti,
“Transformers for Tabular Data
Representation: A Survey of Models and
Applications,” Trans Assoc Comput Linguist,
vol. 11, pp. 227-249, Mar. 2023, doi:
10.1162/tacl_a_00544.

F. , A. F. , & M. M. Nateghi Haredasht,
“Antibiotic Resistance Microbiology Dataset
(ARMD): A de-identified resource for
studying antimicrobial resistance using
electronic health records.,” 2025.

D. Rifaldi, Abdul Fadlil, and Herman, “Teknik
Preprocessing Pada Text Mining
Menggunakan Data Tweet ‘Mental Health,”
Decode:  Jurnal Pendidikan  Teknologi
Informasi, vol. 3, no. 2, pp. 161-171, Apr.
2023, doi: 10.51454 /decode.v3i2.131.

P. Kamath B. G. Sharma, A. Bongale, D.
Dharrao, and M. Seitshiro, “Exploratory Data
Analysis and Water Potability Classification
using  Supervised Machine Learning
Algorithms,” Engineering, Technology &
Applied Science Research, vol. 15, no. 2, pp.

659




VOL. 11. NO. 3 FEBRUARY 2026
P-ISSN: 2685-8223 | E-ISSN: 2527-4864
DOI: 10.33480 /jitk.v11i3.7582

JITK (JURNAL ILMU PENGETAHUAN

DAN TEKNOLOGI KOMPUTER)

20898-20903, Apr. 2025, doi:
10.48084 /etasr.8904.

[14] K. Maharana, S. Mondal, and B. Nemade, “A
review: Data pre-processing and data

augmentation techniques,” Global
Transitions Proceedings, vol. 3, no. 1, pp. 91-
99, Jun. 2022, doi:

10.1016/j.gltp.2022.04.020.

[15] ]., P.]., & K. M. Han, Data mining: Concepts
and techniques, 4th ed. Morgan Kaufmann,
2022.

[16] F.Xieetal, “Deep learning for temporal data
representation in electronic health records:
A systematic review of challenges and
methodologies,” ] Biomed Inform, vol. 126, p.
103980, Feb. 2022, doi:
10.1016/j.jbi.2021.103980.

[17] ]. Xu, X. Xi, J. Chen, V. S. Sheng, ]. Ma, and Z.
Cui, “A Survey of Deep Learning for
Electronic Health Records,” Applied Sciences,
vol. 12, no. 22, p. 11709, Nov. 2022, doi:
10.3390/app122211709.

[18] G. S. Hida and A. C. Alves Do Nascimento,
“Overview of machine learning in class
imbalance scenarios: Trends, challenges,
and approaches,” Expert Syst Appl, vol. 298,
p. 129592, Mar. 2026, doi:
10.1016/j.eswa.2025.129592.

[19] Y. Shi, P. Wei, K. Feng, D.-C. Feng, and M.
Beer, “A survey on machine learning
approaches for uncertainty quantification of
engineering systems,” Machine Learning for
Computational Science and Engineering, vol.
1, no. 1, p. 11, Jun. 2025, doi:
10.1007/s44379-024-00011-x.

[20] X. Qian, S. Gao, W. Deng, and W. Wang,
“Improving Oriented Object Detection by
Scene Classification and Task-Aligned Focal
Loss,” Mathematics, vol. 12, no. 9, p. 1343,
Apr. 2024, doi: 10.3390/math12091343.

[21] Y. Shao et al, “An Improved BGE-Adam
Optimization Algorithm Based on Entropy
Weighting and Adaptive Gradient Strategy,”
Symmetry (Basel), vol. 16, no. 5, p. 623, May
2024, doi: 10.3390/sym16050623.

660 Accredited Rank 2 (Sinta 2) based on the Decree of the Dirjen Penguatan RisBang Kemenristekdikti
No.225/E/KPT /2022, December 07, 2022. Published by LPPM Universitas Nusa Mandiri




