IMPLEMENTATION OF CNN FOR CLASSIFYING PATCHOULI LEAF IMAGES BASED ON ACCURACY AND EVALUATION
DOI:
https://doi.org/10.33480/jitk.v10i4.6207Keywords:
Accuracy, Convolutional Neural Network, Image Classification, Model Evaluation, Patchouli LeavesAbstract
Patchouli (Nilam leaves) holds significant potential as a high-value natural material, especially in the perfume and essential oil industries. However, the classification and quality analysis of patchouli leaves remain a challenge that requires an automated solution based on technology. This study aims to develop a Convolutional Neural Network (CNN) model capable of automatically classifying the condition of patchouli leaves. The image data of patchouli leaves were processed through several preprocessing stages and divided into training and testing data. The designed CNN model utilizes several convolutional layers, pooling, dropout, and dense layers for the training process. The evaluation results using the confusion matrix showed that the model had a very low error rate, with only 1 misprediction in the training data. For the testing data, the model achieved an accuracy of 85% with a loss value of 0.6191496. The model also demonstrated an accuracy of 98.75% with a loss of 0.443462 on the training data. However, improvements in model generalization are still needed to achieve more consistent performance on new data
Downloads
References
T. Kok, N. Florenika, M. Tua Gultom, P. Hartatie Hardjo, and M. Illayan Massadeh, “Mini-Review: Extraction of Patchouli Oil from Pogostemon cablin Benth. Leaves,” E3S Web of Conferences, vol. 374, 2023, doi: 10.1051/e3sconf/202337400036.
S. K. Pandey et al., “A Comparative Study on Chemical Composition, Pharmacological Potential and Toxicity of Pogostemon cablin Linn., (Patchouli) Flower and Leaf Essential Oil,” Journal of Essential Oil-Bearing Plants, vol. 25, no. 1, pp. 160–179, 2022, doi: 10.1080/0972060X.2021.2013325.
J. Heroweti, M. F. Rochman, D. N. Wibowo, I. R. Khasanah, and S. Salma, “Efektifitas Penyembuhan Luka Sayat Spray Gel Minyak Nilam Pada Kelinci (Oryctolagus cuniculus),” Media Farmasi, vol. 18, no. 1, pp. 10–15, 2022, doi: 10.32382/mf.v18i1.2397.
C. Junren et al., “Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review,” Chinese Medicine (United Kingdom), vol. 16, no. 1, pp. 1–20, 2021, doi: 10.1186/s13020-020-00413-y.
N. Kasim, M. B. Fadilah, W. Al Hidayat, and R. A. Saputra, “Klasifikasi Jenis Tanaman Herbal Berdasarkan Citra Menggunakan Metode Convolution Neural Network ( CNN ),” Jurnal Tekno Kompak, vol. 19, no. 1, pp. 64–78, 2024, doi: 10.33365/jtk.v19i1.4536.
N. Mehendale, S. Suraliya, P. Shah, R. Padia, and B. Kaslikar, “A Review on Automated Plant Classification system using machine vision,” SSRN Electronic Journal, no. May, pp. 1–9, 2022, doi: 10.2139/ssrn.4113044.
A. K. Mulugeta, D. P. Sharma, and A. H. Mesfin, “Deep learning for medicinal plant species classification and recognition: a systematic review,” Front Plant Sci, vol. 14, no. January, pp. 1–18, 2023, doi: 10.3389/fpls.2023.1286088.
A. F. Cobantoro, F. Masykur, and K. Sussolaikah, “Erformance Analysis of Alexnet Convolutional Neural Network (CNN) Architecture With Image Objects of Rice Plant Leaves,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 8, no. 2, pp. 111–116, 2023, doi: 10.33480/jitk.v8i2.4060.
S. Ghosh, A. Singh, Kavita, N. Z. Jhanjhi, M. Masud, and S. Aljahdali, “SVM and KNN Based CNN Architectures for Plant Classification,” Computers, Materials and Continua, vol. 71, no. 2, pp. 4257–4274, 2022, doi: 10.32604/cmc.2022.023414.
R. A. Saputra, S. Wasiyanti, A. Supriyatna, and D. F. Saefudin, “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi,” Swabumi, vol. 9, no. 2, pp. 184–188, 2021, doi: 10.31294/swabumi.v9i2.11678.
A. Julianto, A. Sunyoto, and F. W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” TEKNIMEDIA: Teknologi Informasi dan Multimedia, vol. 3, no. 2, pp. 98–105, 2022, doi: 10.46764/teknimedia.v3i2.77.
S. Sheila, M. K. Anwar, A. B. Saputra, F. R. Pujianto, and I. P. Sari, “Deteksi Penyakit pada Daun Padi Berbasis Pengolahan Citra Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Multinetics, vol. 9, no. 1, pp. 27–34, 2023, doi: 10.32722/multinetics.v9i1.5255.
B. Setiyono et al., “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, pp. 385–392, 2023, doi: 10.25126/jtiik.20231026809.
U. Kulsum and A. Cherid, “Penerapan Convolutional Neural Network Pada Klasifikasi Tanaman Menggunakan ResNet50,” Simkom, vol. 8, no. 2, pp. 221–228, 2023, doi: 10.51717/simkom.v8i2.191.
N. L. Marpaung, R. J. H. Butar Butar, and S. Hutabarat, “Implementasi Deep learning untuk Identifikasi Daun Tanaman Obat Menggunakan Metode Transfer learning,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 3, p. 348, 2023, doi: 10.26418/jp.v9i3.63895.
S. K. Rakibul and A. Wadhawan, “Identification of plants using deep learning: A review,” CEUR Workshop Proc, vol. 2786, pp. 425–435, 2021.
N. Althuniyan, A. R. Al-Shamasneh, A. Bawazir, Z. Mohiuddin, and S. Bawazir, “DeepLeaf : Automated Leaf Classification Using Convolutional Neural Networks,” European Scientific Journal (ESJ), vol. 20, no. 30, pp. 22–33, 2024, doi: 10.19044/esj.2024.v20n30p22.
B. Anandaraj, P. S. Sree, S. R. Prasanna, and B. Thejaswini, “Deep Learning for Plant Species Classification,” International Journal of Research in engineering and Science (IJRES), vol. 10, no. 6, pp. 1893–1898, 2022, doi: 10.1109/ICSEIET58677.2023.10303530.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arif Rahman Hakim, Dewi Marini Umi Atmaja

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.