OPTIMIZATION OF SVM ALGORITHM FOR OBESITY CLASSIFICATION WITH SMOTE TECHNIQUE AND HYPERPARAMETER TUNING
DOI:
https://doi.org/10.33480/jitk.v11i2.6878Kata Kunci:
classification, hyperparameter tuning, machine learning, obesity, SVMAbstrak
Excessive fat accumulation that impairs personal health and raises the risk of chronic diseases is the hallmark of obesity, a global health issue. Decision Tree (DT) has been widely used for obesity classification, but it tends to suffer from overfitting and poor performance on imbalanced datasets. To overcome these limitations, this study proposes an optimization of the Support Vector Machine (SVM) algorithm using Synthetic Minority Over-sampling Technique (SMOTE) and Hyperparameter Tuning. SMOTE was applied to balance the class distribution, whereas Grid Search was utilized to determine the optimal combination of hyperparameters (C, gamma, and kernel). The dataset employed in this research comprises multiple features related to individual health and lifestyle, with obesity level as the target class. The experimental results demonstrate that the optimized SVM model demonstrated strong classification performance, attaining 97% in accuracy, precision, recall, and F1-score. This high performance is significant because it enables more accurate early detection of obesity risk, which can support timely medical intervention and personalized treatment planning, ultimately contributing to better public health outcomesThese findings suggest that incorporating SMOTE and Hyperparameter Tuning substantially improves SVM performance, establishing it as a robust approach for obesity classification and early risk detection.
Unduhan
Referensi
D. Mohajan and H. K. Mohajan, “Obesity and Its Related Diseases: A New Escalating Alarming in Global Health,” J. Innov. Med. Res., vol. 2, no. 3, pp. 12–23, 2023, doi: 10.56397/jimr/2023.03.04.
A. Koceva, R. Herman, A. Janez, M. Rakusa, and M. Jensterle, “Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications,” Int. J. Mol. Sci., vol. 25, no. 13, 2024, doi: 10.3390/ijms25137342.
A. Gutiérrez-Gallego et al., “Combination of Machine Learning Techniques to Predict Overweight/Obesity in Adults,” J. Pers. Med., vol. 14, no. 8, 2024, doi: 10.3390/jpm14080816.
Nikolaos Tzenios, “Obesity As a Risk Factor for Different Types of Cancer,” EPRA Int. J. Multidiscip. Res., no. February, pp. 97–100, 2023, doi: 10.36713/epra12421.
Y. Zhou, S. Wang, Y. Xie, T. Zhu, and C. Fernández, “An Improved Particle Swarm Optimization-Least Squares Support Vector Machine-Unscented Kalman Filtering Algorithm on SOC Estimation of Lithium-Ion Battery,” Int. J. Green Energy, vol. 21, no. 2, pp. 376–386, 2023, doi: 10.1080/15435075.2023.2196328.
S. Jeon, M. Kim, J. Yoon, S. Lee, and S. Youm, “Machine learning-based obesity classification considering 3D body scanner measurements,” Sci. Rep., vol. 13, no. 1, pp. 1–10, 2023, doi: 10.1038/s41598-023-30434-0.
A. Maulana, R. Perucha, F. Afidh, N. B. Maulydia, and G. M. Idroes, “Predicting Obesity Levels with High Accuracy : Insights from a CatBoost Machine Learning Model,” vol. 2, no. 1, pp. 17–27, 2024, doi: 10.60084/ijds.v2i1.195.
M. Mujahid et al., “Data oversampling and imbalanced datasets : an investigation of performance for machine learning and feature engineering,” J. Big Data, 2024, doi: 10.1186/s40537-024-00943-4.
A. I. Putri, N. A. Husna, N. M. Cia, and M. A. Arba, “Implementation of K-Nearest Neighbors , Naïve Bayes Classifier , Support Vector Machine and Decision Tree Algorithms for Obesity Risk Prediction,” Inst. Res. Publ. Indones. Public Res. J. Eng. Data Technol. Comput. Sci., vol. 2, no. July, pp. 26–33, 2024.
N. Khodadadi, M. Saber, and M. Abotaleb, “A Data-Driven Approach for Obesity Classification using Machine Learning,” J. Artif. Intell. Metaheuristics, vol. 3, no. 2, pp. 08–17, 2023, doi: 10.54216/jaim.030201.
D. A. Kristiyanti, S. A. Sanjaya, V. C. Tjokro, and J. Suhali, “Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia,” IAES Int. J. Artif. Intell., vol. 13, no. 2, pp. 2058–2070, 2024, doi: 10.11591/ijai.v13.i2.pp2060-2072.
S. A. Alsareii et al., “Machine-Learning-Enabled Obesity Level Prediction Through Electronic Health Records,” Comput. Syst. Sci. Eng., 2023, doi: 10.32604/csse.2023.035687.
R. Ruliana, Z. Rais, M. Marni, and A. S. Ahmar, “Implementation of the Support Vector Regression (SVR) Method in Inflation Prediction in Makassar City,” ARRUS J. Math. Appl. Sci., vol. 4, no. 1, pp. 28–35, 2024, doi: 10.35877/mathscience2608.
M. Y. Anshori, T. Herlambang, and M. F. A. Yaziz, “Optimalizing Occupancy of Hospitality Sector Using Support Vector Regression and Genetic Algorithm,” J. Revenue Pricing Manag., no. 0123456789, 2025, doi: 10.1057/s41272-025-00539-4.
O. Iparraguirre-Villanueva, L. Mirano-Portilla, M. Gamarra-Mendoza, and W. Robles-Espiritu, “Predicting Obesity in Nutritional Patients using Decision Tree Modeling,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 254–260, 2024, doi: 10.14569/IJACSA.2024.0150326.
Z. Azam, M. Islam, and M. N. Huda, “Comparative Analysis of Intrusion Detection Systems and Machine Learning-Based Model Analysis Through Decision Tree,” IEEE Access, vol. 11, no. June, 2023.
R. Hassanzadeh, M. Farhadian, and H. Rafieemehr, “Hospital mortality prediction in traumatic injuries patients : comparing different SMOTE ‑ based machine learning algorithms,” BMC Med. Res. Methodol., pp. 1–15, 2023, doi: 10.1186/s12874-023-01920-w.
X. Chuhan, Pablo, and X. Jiang, “Empirical Study of Overfitting in Deep Learning for Predicting,” Cancers (Basel)., 2023.
W. Gou, H. Zhang, and R. Zhang, “Multi-Classification and Tree-Based Ensemble Network for the,” 2023.
S. N. Khan, S. U. Khan, H. Aznaoui, and C. B. Şahin, “Generalization of linear and non-linear support vector machine in multiple fields : a review,” Comput. Sci. Inf. Technol., vol. 4, no. 3, pp. 226–239, 2023, doi: 10.11591/csit.v4i3.pp226-239.
A. Sultana and R. Islam, “Machine learning framework with feature selection approaches for thyroid disease classification and associated risk factors identification,” J. Electr. Syst. Inf. Technol., 2023, doi: 10.1186/s43067-023-00101-5.
M. Salmi, D. Atif, D. Oliva, A. Abraham, and S. Ventura, Handling imbalanced medical datasets : review of a decade of research, vol. 57, no. 10. Springer Netherlands, 2024. doi: 10.1007/s10462-024-10884-2.
J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” J. Komput. dan Inform., vol. 11, no. 2, pp. 195–202, 2023, doi: 10.35508/jicon.v11i2.12571.
T. Wongvorachan, S. He, and O. Bulut, “A Comparison of Undersampling, Oversampling, and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining,” Inf., vol. 14, no. 1, 2023, doi: 10.3390/info14010054.
T. Elansari, M. Ouanan, and H. Bourray, “Mixed Radial Basis Function Neural Network Training Using Genetic Algorithm,” Neural Process. Lett., vol. 55, no. 8, pp. 10569–10587, 2023, doi: 10.1007/s11063-023-11339-5.
D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results,” Int. J. Comput. Appl., vol. 44, no. 9, pp. 875–886, 2022, doi: 10.1080/1206212X.2021.1974663.
C. Gyurik, D. Van Vreumingen, and V. Dunjko, “Structural risk minimization for quantum linear classifiers,” 2022.
O. Farombi, “DEVELOPMENT OF KERNEL SVM MODEL TO PREDICT CUSTOMERS SUV DEVELOPMENT OF KERNEL SVM MODEL TO PREDICT,” no. July, 2024, doi: 10.13140/RG.2.2.13774.47689.
G. Boteju, L. Tang, and M. S. Brown, “Support Vector Machine for Predicting Student Dropout Under Different Normalization Methods,” Proc. - 2024 IEEE Int. Conf. Big Data, BigData 2024, no. December, pp. 8633–8636, 2024, doi: 10.1109/BigData62323.2024.10825023.
S. Panno et al., “A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin,” Agronomy, vol. 11, no. 11, pp. 1–45, 2021, doi: 10.3390/agronomy11112188.
B. Gaye, D. Zhang, and A. Wulamu, “Improvement of Support Vector Machine Algorithm in Big Data Background,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/5594899.
Jumanto et al., “Optimizing Support Vector Machine Performance for Parkinson’s Disease Diagnosis Using GridSearchCV and PCA-Based Feature Extraction,” J. Inf. Syst. Eng. Bus. Intell., vol. 10, no. 1, pp. 38–50, 2024, doi: 10.20473/jisebi.10.1.38-50.
Smita Panigrahy, “SMOTE-based Deep LSTM System with GridSearchCV Optimization for Intelligent Diabetes Diagnosis,” J. Electr. Syst., vol. 20, no. 7s, pp. 804–815, 2024, doi: 10.52783/jes.3455.
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Khairun Nisa Arifin Nur, Anjar Wanto, Poningsih Poningsih

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.






-a.jpg)
-b.jpg)











