UNVEILING SPATIAL PATTERNS OF LAND CONVERSION THROUGH MACHINE LEARNING AND SPATIAL DISTRIBUTION ANALYSIS
DOI:
https://doi.org/10.33480/jitk.v11i2.7281Kata Kunci:
Land Use Change, machine learning , Sustainable Development Goals (SDGs) , Variance Mean Ratio (VMR)Abstrak
Kayu Agung District in Ogan Komering Ilir (OKI) Regency, South Sumatra, has undergone rapid population growth, resulting in notable land-use transformations. This study examines land-use change dynamics from 2019 to 2023 and identifies their spatial distribution using satellite imagery. Satellite imagery classification was performed using three machine learning algorithms—K-Nearest Neighbors (KNN), Naïve Bayes, and Logistic Regression—with KNN achieving the highest accuracy. Spatial analysis employing the Variance-to-Mean Ratio (VMR) revealed that land-use changes are spatially clustered, indicating concentrated land conversion in specific areas. These findings emphasize potential environmental risks, including declining green open spaces and increasing urban pressure. The study contributes by integrating machine learning and spatial statistical analysis (VMR) as a comprehensive framework for understanding land-use conversion, providing scientific insights to support adaptive spatial planning and the achievement of Sustainable Development Goal (SDG) 11: Sustainable Cities and Communities.
Unduhan
Referensi
BPS-Statistics of Ogan Komering Ilir Regency, Ogan Komering Ilir Regency in Figures, vol. 21. BPS-Statistics of Ogan Komering Ilir Regency, 2025.
A. Andikaputra, “Analisis potensi ekonomi dan kependudukan Kabupaten Ogan Komering Ilir,” Jurnal Paradigma Ekonomika, vol. 17, no. 2, pp. 439–450, 2022, doi: 10.22437/jpe.v17i2.16428.
BPS-Statistics of Ogan Komering Ilir Regency, “Kota Kayu Agung Subdistrict in Figures,” 2022.
H. Long, Y. Zhang, L. Ma, and S. Tu, “Land Use Transitions: Progress, Challenges and Prospects,” Land (Basel), vol. 10, no. 9, p. 903, Aug. 2021, doi: 10.3390/land10090903.
A. Bikis, M. Engdaw, D. Pandey, and B. K. Pandey, “The Impact of Urbanization on Land Use Land Cover Change using Geographic Information System and Remote Sensing: A Case of Mizan Aman City Southwest Ethiopia,” Sci Rep, vol. 15, no. 1, p. 12014, Apr. 2025, doi: 10.1038/s41598-025-94189-6.
A. M. Y. Hakim, S. Baja, D. A. Rampisela, and S. Arif, “Modelling land use/land cover changes prediction using multi-layer perceptron neural network (MLPNN): a case study in Makassar City, Indonesia,” International Journal of Environmental Studies, vol. 78, no. 2, pp. 301–318, 2021, doi: 10.1080/00207233.2020.1804730.
A. Achmad, I. Ramli, S. Sugiarto, I. Irzaidi, and A. Izzaty, “Assessing and Forecasting Carbon Stock Variations in Response to Land Use and Land Cover Changes in Central Aceh, Indonesia,” International Journal of Design and Nature and Ecodynamics, vol. 19, no. 2, pp. 465–475, Apr. 2024, doi: 10.18280/ijdne.190212.
I. L. Sari, C. J. Weston, G. J. Newnham, and L. Volkova, “Assessing accuracy of land cover change maps derived from automated digital processing and visual interpretation in tropical forests in indonesia,” Remote Sens (Basel), vol. 13, no. 8, Apr. 2021, doi: 10.3390/rs13081446.
M. Kelly-Fair et al., “Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/su14137592.
S. Basheer et al., “Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques,” Remote Sens (Basel), vol. 14, no. 19, Oct. 2022, doi: 10.3390/rs14194978.
Z. S. Venter, D. N. Barton, T. Chakraborty, T. Simensen, and G. Singh, “Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover,” Remote Sens (Basel), vol. 14, no. 16, Aug. 2022, doi: 10.3390/rs14164101.
F. Gao, M. Anderson, and R. Houborg, “Impacts of Spatial and Temporal Resolution on Remotely Sensed Corn and Soybean Emergence Detection,” Remote Sens (Basel), vol. 16, no. 22, p. 4145, Nov. 2024, doi: 10.3390/rs16224145.
R. Verma, “Spatial Data Capture in GIS: A Review,” International Journal of Multidisciplinary Research and Growth Evaluation, no. 5, pp. 228–233, 2024.
G. Mezzadri, T. Laloë, F. Mathy, and P. Reynaud-Bouret, “Hold-out strategy for selecting learning models: Application to categorization subjected to presentation orders,” J Math Psychol, vol. 109, p. 102691, Aug. 2022, doi: 10.1016/j.jmp.2022.102691.
M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decision Analytics Journal, vol. 3, p. 100071, Jun. 2022, doi: 10.1016/j.dajour.2022.100071.
R. K. Halder, M. N. Uddin, Md. A. Uddin, S. Aryal, and A. Khraisat, “Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications,” J Big Data, vol. 11, no. 1, p. 113, Aug. 2024, doi: 10.1186/s40537-024-00973-y.
S. Pramana, B. Yuniarto, S. Mariyah, I. Santoso, and R. Nooraeni, Data Mining dengan R: Konsep Serta Implementasi. Bogor: IN MEDIA, 2018.
D. Dey et al., “The Proper Application of Logistic Regression Model in Complex Survey Data: A Systematic Review,” BMC Med Res Methodol, vol. 25, no. 1, p. 15, Jan. 2025, doi: 10.1186/s12874-024-02454-5.
A. Ostovar, D. D. Davari, and M. Dzikuć, “Determinants of Design with Multilayer Perceptron Neural Networks: A Comparison with Logistic Regression,” Sustainability (Switzerland), vol. 17, no. 6, Mar. 2025, doi: 10.3390/su17062611.
B. Sartono and H. Dharmawan, Pemodelan prediktif berbasis pohon klasifikasi. Bogor: IPB Press, 2023.
M. S. Sandeep, K. Tiprak, S. Kaewunruen, P. Pheinsusom, and W. Pansuk, “Shear strength prediction of reinforced concrete beams using machine learning,” Structures, vol. 47, pp. 1196–1211, Jan. 2023, doi: 10.1016/j.istruc.2022.11.140.
S. Sathyanarayanan, “Confusion Matrix-Based Performance Evaluation Metrics,” African Journal of Biomedical Research, pp. 4023–4031, Nov. 2024, doi: 10.53555/AJBR.v27i4S.4345.
D. Chicco and G. Jurman, “A statistical comparison between Matthews correlation coefficient (MCC), prevalence threshold, and Fowlkes–Mallows index,” J Biomed Inform, vol. 144, p. 104426, Aug. 2023, doi: 10.1016/j.jbi.2023.104426.
J. C. Obi, “A comparative study of several classification metrics and their performances on data,” World Journal of Advanced Engineering Technology and Sciences, vol. 8, no. 1, pp. 308–314, Feb. 2023, doi: 10.30574/wjaets.2023.8.1.0054.
S. Wang and L. Dai, “Effect of Quadrat Shape on Spatial Point Pattern Performance of Haloxylon ammodendron,” Open J Ecol, vol. 14, no. 01, pp. 66–76, 2024, doi: 10.4236/oje.2024.141004.
J. Lochman, “The Spatial Distribution of Sustainable Gastronomy: A Case Study of Tourism in Prague,” Tourism Recreation Research, vol. 48, no. 5, pp. 693–709, Sep. 2023, doi: 10.1080/02508281.2021.1949676.
G. S. Fivash et al., “Increasing spatial dispersion in ecosystem restoration mitigates risk in disturbance‐driven environments,” Journal of Applied Ecology, vol. 59, no. 4, pp. 1050–1059, Apr. 2022, doi: 10.1111/1365-2664.14116.
C. Santos, “How the Variance-to-Mean Ratio Behaves in Relation to the Basic Principles for Inequality Measures,” WSEAS Transactions on Business And Economics, vol. 21, pp. 2354–2362, Nov. 2024, doi: 10.37394/23207.2024.21.194.
P. M. B. Cahusac, “Likelihood Ratio Test and the Evidential Approach for 2 × 2 Tables,” Entropy, vol. 26, no. 5, p. 375, Apr. 2024, doi: 10.3390/e26050375.
J. M. Blochberger, “Characterization of Beech Bark Disease on Camels Hump Mountain, Vermont,” 2025.
X. Qiao et al., “Simulating land use change for sustainability: a case study of the northern slope of Tianshan Mountains,” Int J Digit Earth, vol. 18, no. 1, Dec. 2025, doi: 10.1080/17538947.2025.2524055.
Z. Li, B. Zhang, J. Luo, L. Yang, C. Liu, and Q. Deng, “Research on the synergistic evolution of land use transformation and ecosystem service value in the Anning River Basin,” Sci Rep, vol. 15, no. 1, p. 28430, Aug. 2025, doi: 10.1038/s41598-025-12657-5.
O. S. E. Cardenas-Ritzert, J. C. Vogeler, S. Shah Heydari, P. A. Fekety, M. Laituri, and M. R. McHale, “Effects of Land Use Data Spatial Resolution on SDG Indicator 11.3.1 (Urban Expansion) Assessments: A Case Study Across Ethiopia,” Sustainability, vol. 16, no. 22, p. 9698, Nov. 2024, doi: 10.3390/su16229698.
The United Nations, “The Sustainable Development Goals Report: Special Edition Towards a Rescue Plan for People and Planet,” United Nations, Department of Economic and Social Affairs Statistics Division, Jul. 2025. Accessed: Aug. 25, 2025. [Online]. Available: https://unstats.un.org/sdgs/report/2025/.
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Mufida Fauziah Faiz, Achmad Fauzan

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.






-a.jpg)
-b.jpg)











