# DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER

## Bahtiar Imran<sup>1\*</sup>); Hambali<sup>2</sup>; Ahmad Subki<sup>3</sup>; Zaeniah<sup>4</sup>; Ahmad Yani<sup>5</sup>; Muhammad Rijal Alfian<sup>6</sup>

<sup>1</sup>Computer System Engineering, <sup>2</sup>Informatics Engineering, <sup>3,4</sup>Software Engineering, <sup>5</sup>Information Technology, <sup>6</sup>Computer Engineering Universitas Teknologi Mataram

<sup>1</sup>bahtiarimranlombok@gmail.com, <sup>2</sup>08mi071@gmail.com, <sup>3</sup>lp2mutm@gmail.com, <sup>4</sup>hambaaloh847@gmail.com, <sup>5</sup>m4dy45@gmail.com, kodeflek@gmail.com

(\*) Corresponding Author

Abstract— This study predicts and classifies benign and malignant breast cancer using 3 classification models. The method used in this research is Random Forest, Naïve Bayes and AdaBoost. The prediction results get Random Forest = 100%, Naïve Bayes = 80% and AdaBoost = 80%. Results using Test and Score with Number of Folds 2, 5 and 10. Number of Folds 2 Random Forest model Accuracy = 95%, Precision = 95% and Recall = 95%, Naïve Bayes Accuracy = 93%, Precision = 93% and Recall 93%, AdaBoost Accuracy = 90%, Precision = 90% and Recall = 90%. With Number of Folds 5 with Random Forest = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 93%, Precision = 93% and Recall = 93%. With Number of Folds 10 Random Forest model = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 92%, Precision = 92% and Recall = 92%. Of the 3 models used, Random Forest got the best classification results compared to the others.

**Keywords:** prediction; data mining; classification; breast cancer; model classification

Abstrak—Penelitian ini memprediksi dan klasifikasi kanker payudara jinak dan ganas degan menggunakan 3 model klasifikasi. Metode yang digunakan pada penelitian ini menggunakan Random Forest, Naïve Bayes dan AdaBoost. Hasil prediksi mendapatkan hasil Random Forest = 100%, Naïve Bayes = 80% dan AdaBoost = 80%. Hasil menggunakan Test and Score dengan Number of Folds 2, 5 dan 10. Number of Folds 2 model Random Forest nilai Akurasi = 95%, Precision = 95% dan Recall = 95%, Naïve Bayes nilai Akurasi = 93%, Precision = 93% dan Recall 93%, AdaBoost nilai Akurasi = 90%, Precision = 90% dan Recall = 90%. Dengan Number of Folds 5 dengan hasil Random Forest = 96%, Precision = 96% dan Recall 96%. Naïve Bayes nilai Akurasi = 94%, Precision = 94% dan Recall = 94%, AdaBoost nilai Akurasi = 93%, Precision = 93% dan Recall = 93%. Dengan Number of Folds 10 model Random Forest = 96%, Precision = 96% dan Recall 96%. Naïve Bayes nilai Akurasi = 94%, Precission = 94% dan Recall = 94%, AdaBoost nilai Akurasi = 92%, Precission = 92% dan Recall = 92%. Dari ke 3 model yang digunakan, Random Forest mendapatkan hasil klasifikasi yang paling baik dibanding dengan yang lainnya..

*Kata Kunci:* prediksi, data mining, klasifikasi, kanker payudara, model klasifikasi.

## **INTRODUCTION**

Breast cancer is one of the primary diseases threatening humans, especially women worldwide (BV, 2019). In women aged between 45 years to 60 years (Gupta & Kaushik, 2018), breast cancer is the leading cause of death for women after lung cancer. Based on the data, about 1.7 million new cases worldwide were diagnosed, and 521,900 deaths in 2012 (Octaviani & Rustam, 2019). Breast cancer is one of the most widespread cancers among women and is one of the leading causes of death. Not all tumors in the breast are breast cancer. However, further examination is needed from a doctor to determine breast cancer diagnosis (Abd-Elrazek et al., 2018). The early stages of breast cancer may not cause any symptoms, depending on the type of cancer to cause various symptoms (Krishna & Rao, 2018).

Calculation of breast cancer risk factors can be determined using an algorithm or model for early detection of breast cancer risk through determinant factors and requires preventive action, using machine learning by classifying breast cancer risk from predictor variables, making it easier to classify (Nindrea et al., 2018).

From several previous studies, there has been no research that uses Data Mining with Random Forest, Naïve Bayes, and AdaBoost models to predict benign and malignant breast cancer, as in the study (BV, 2019), researchers used data mining techniques to predict breast cancer and got an accuracy result of 98%. Octaviani (Octaviani & Rustam, 2019) uses the RF method for breast cancer prediction and produces an accuracy of 100%, Krishna (Krishna & Rao, 2018) proposes Machine Learning for breast cancer prediction. The proposed Machine Learning models include SVM (Support Vector Machine) classifier, Random Forest, Gradient boosting, Naive Bayes, Cart Model, Neural Network, and Linear Regression. The results obtained that using the SVM model gives the best results. Vikas Chaurasia (Chaurasia et al., 2018) proposed a Data Mining technique to predict benign and malignant breast cancer. The results obtained that the naive Bayes model gave the highest accuracy of 97.36%. Nikita Rane (Jean Sunny et al., 2020) proposed a Machine Learning method for the classification and precision of breast cancer. The proposed method can classify benign and malignant breast cancer. Swetha K (Swetha & Ranjana, 2020) suggested Machine Learning and Data Mining for breast cancer prediction and got the results that the Simple Logistics algorithm got better results than other methods with an accuracy rate of 99.7612%. Angela More's (More et al., 2022) this study uses Machine Learning Techniques to classify and predict breast cancer. The results obtained are that the SVM model gives good accuracy results of 97.87%. Morgana Darshini Ganggayah (Ganggayah et al., 2019) uses Machine Learning to predict the survival of breast cancer patients. The proposed model results that the model from Random Forest gets the best results with 82.7% accuracy. Nitasha (Nitasha, 2019) uses Data Mining to predict breast cancer by bringing the results that the proposed method can give good results. Aqua Anjum (Anjum, 2019) uses Machine Learning to diagnose breast cancer with the result that the proposed method can help in the diagnosis process. Iffat Khan's study (Khan et al., 2020) suggested the prediction of breast cancer using Data Mining. The focus of this study was on female breast cancer. Hiba Masood (Masood, 2021) uses a Machine Learning algorithm to detect breast cancer. This study proposes a model to provide the best accurate results. Ramik Rawal (Rawal, 2020) suggested using Machine Learning to predict breast cancer. The result was that the accuracy obtained by SVM (97.13%) was better than the accuracy obtained by C4.5, Naïve Bayes, and k-NN, which had varying accuracy between 95.12 % and 95.28%. Ayyoubzadeh S.M (Ayyoubzadeh et al., 2021) uses Data Mining to predict early breast cancer; This study at a hospital in Iran. The results obtained that the Random Forest model provides high accuracy results. Harjasdeep Singh (Singh, 2021) analyzed and predicted breast cancer using the Machine Learning method. The results obtained that the Random Forest algorithm shows promising results with an accuracy of 99.76%. Jiaxin Li (Li et al., 2021) this study predicts the survival of breast cancer for five years using Machine Learning, with the results of decision trees (19 studies, 61.3%, artificial neural networks (18 studies, 58.1%), support vector machines (16 studies, 51.6%, and ensemble learning (10 studies, 32.3%). Keerthana Rajendran (Rajendran et al., 2020) This research applies the Supervised Machine Learning method for breast cancer prediction. This study finds that the Bayesian Network algorithm achieves accurate results. In predicting breast cancer based on its risk factors.

There have been many studies that have been done by predicting breast cancer objects and using different methods. However, research using Data Mining with Random Forest, Naïve Bayes, and The AdaBoost model has not performed predicting and classifying benign and malignant breast cancer. So the purpose of this study is to predict benign and malignant breast cancer using Data Mining using Random Forest, Naïve Bayes, and AdaBoost models. The determination of the three models has reasons:. The Random Forest model is the model used because this model has good accuracy results (Ayyoubzadeh et al., 2021; Ganggayah et al., 2019; Octaviani & Rustam, 2019; Singh, 2021). Naïve Bayes is a model used for classification. This model also provides a good classification with a high level of accuracy (Kharya & Soni, 2016). AdaBoost is a method with good performance and performance in delivering classification (Kaur & Chopra, 2015; Kumari & Rani, 2017; Perveen et al., 2016). Before the classification stage uses the proposed method, the data is pre-processed using Normalize to Interval. It is done because there are still a lot of data that are still Null and redundant (Krishna & Rao, 2018).

## **MATERIALS AND METHODS**

The stages of the research process carried out in this study are documented in the research methodology flow chart, which can be seen in Figure 1.

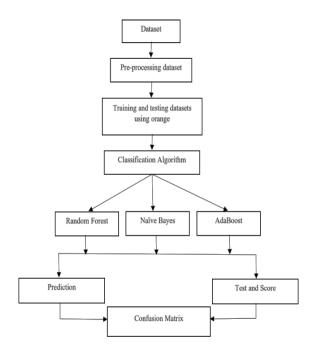



Figure 1. Research Methodology

## a. Dataset

This data set takes from the UCI Machine Learning Repository website. This dataset was obtained from Dr. W.H. Wolberg at the University of Wisconsin-Madison, consisting of 569 data (Abd-Elrazek et al., 2018; BV, 2019; Chaurasia et al., 2018; Krishna & Rao, 2018; Octaviani & Rustam, 2019), cases classified into benign and malignant breast cancer? (BV, 2019). *This dataset is grouped into two classes, namely benign and malignant classes* (Chaurasia et al., 2018), while the tools used in this study are Orange. Orange is one data mining tool that produces better and more effective results than others (Kodati & Vivekanandam, 2018; Kukasvadiya et al., 2017; Manimannan et al., 2019; Sasikala, 2017). The attributes used are 29 attributes, and Table 1 is the attribute used in this study.

| . Attributes Used | Table 1   |
|-------------------|-----------|
| . All IDULES USE  | I ADIE I. |

|    | Table 1. Att           | IIDut | es useu              |
|----|------------------------|-------|----------------------|
| No | Nama Atribut           | No    | Nama Atribut         |
| 1  | radius_mean            | 15    | compactness_se       |
| 2  | texture_mean           | 16    | concavity_se         |
| 3  | perimeter_mean         | 17    | concave points_se    |
| 4  | area_mean              | 18    | symmetry_se          |
| 5  | smoothness_mean        | 19    | fractal_dimension_se |
| 6  | compactness_mean       | 20    | radius_worst         |
| 7  | concavity_mean         | 21    | texture_worst        |
| 8  | concave points_mean    | 22    | perimeter_worst      |
| 9  | symmetry_mean          | 23    | area_worst           |
| 10 | fractal_dimension_mean | 24    | smoothness_worst     |
| 11 | radius_se              | 25    | compactness_worst    |
| 12 | texture_se             | 26    | concavity_worst      |
| 13 | perimeter_se           | 27    | concave              |
|    |                        |       | points_worst         |
| 14 | area_se                | 28    | symmetry_worst       |

### b. Pre-processing Dataset

The data obtained on the UCI Machine Learning Repository site, the data is processed first. It is because there is still a lot of inaccurate and redundant data (Krishna & Rao, 2018). The method used in this pre-processing is Normalize Features with Normalize to Interval [-1,1] feature. An example of data that has not been pre-processed can be seen in Figure 2, while the size of the preprocessing results with Normalize Features is in Figure 2.

|    | radius_mean | texture_mean | perimeter_mean | area_mean    | smoothness_mean | compactness_mean | concavity_mean | oncave points_mea | symmetry_mean | <pre>ctal_dimension_me</pre> | radius_se | texture_se |
|----|-------------|--------------|----------------|--------------|-----------------|------------------|----------------|-------------------|---------------|------------------------------|-----------|------------|
| 1  | 17.99       | 0 10.38      | 122.80         | 1001.0       | 0.11840         | 0.27760          | 0.3001         | 0.1471            | 0.2419        | 0.07871                      | 1.0950    | 0.905      |
| 2  | 20.57       | 0 17.77      | 132.90         | 1326.0       | 0.08474         | 0.07864          | 0.0869         | 0.07017           | 0.1812        | 0.05667                      | 0.5435    | 0.733      |
| 3  | 19.69       | 0 21.25      | 130.00         | 1203.0       | 0.10960         | 0.15990          | 0.1974         | 0.1279            | 0.2069        | 0.05999                      | 0.7456    | 0.786      |
| 4  | 11.42       | 0 20.38      | 77.58          | 386.1        | 0.14250         | 0.28390          | 0.2414         | 0.1052            | 0.2597        | 0.09744                      | 0.4956    | 1.156      |
| 5  | 20.29       | 0 14.34      | 135.10         | 1297.0       | 0.10030         | 0.13280          | 0.198          | 0.1043            | 0.1809        | 0.05883                      | 0.7572    | 0.78       |
| 6  | 12.45       | 0 15.70      | 82.57          | 477.1        | 0.12780         | 0.17000          | 0.1578         | 0.08089           | 0.2087        | 0.07613                      | 0.3345    | 0.890      |
| 7  | 18.25       | 0 19.98      | 119.60         | 1040.0       | 0.09463         | 0.10900          | 0.1127         | 0.074             | 0.1794        | 0.05742                      | 0.4467    | 0.773      |
| 8  | 13.71       | 0 20.83      | 90.20          | 577.9        | 0.11890         | 0.16450          | 0.09366        | 0.05985           | 0.2196        | 0.07451                      | 0.5835    | 1.377      |
| 9  | 13.00       | 0 21.82      | 87.50          | 519.8        | 0.12730         | 0.19320          | 0.1859         | 0.09353           | 0.2350        | 0.07389                      | 0.3063    | 1.002      |
| 16 | 12.46       | 0 24.04      | 83.97          | 475.9        | 0.11860         | 0.23960          | 0.2273         | 0.08543           | 0.2030        | 0.08243                      | 0.2976    | 1.599      |
| 11 | 16.02       | 0 23.24      | 102.70         | 797.8        | 0.08206         | 0.06669          | 0.03299        | 0.03323           | 0.1528        | 0.05697                      | 0.3795    | 1.187      |
| 1  | 15.78       | 0 17.89      | 103.60         | 781.0        | 0.09710         | 0.12920          | 0.09954        | 0.06606           | 0.1842        | 0.06082                      | 0.5058    | 0.984      |
| 13 | 3 19.17     | 0 24.80      | 132.40         | 1123.0       | 0.09740         | 0.24580          | 0.2065         | 0.1118            | 0.2397        | 0.07800                      | 0.9555    | 3.568      |
| 14 | 15.85       | 0 23.95      | 103.70         | 782.7        | 0.08401         | 0.10020          | 0.09938        | 0.05364           | 0.1847        | 0.05338                      | 0.4033    | 1.078      |
| 15 | 5 13.73     | 0 22.61      | 93.60          | 578.3        | 0.11310         | 0.22930          | 0.2128         | 0.08025           | 0.2069        | 0.07682                      | 0.2121    | 1.169      |
| 10 | 5 14.54     | 0 27.54      | 96.73          | 658.8        | 0.11390         | 0.15950          | 0.1639         | 0.07364           | 0.2303        | 0.07077                      | 0.3700    | 1.033      |
| 1  | 7 14.68     | 0 20.13      | 94.74          | 684.5        | 0.09867         | 0.07200          | 0.07395        | 0.05259           | 0.1586        | 0.05922                      | 0.4727    | 1.240      |
| 18 | 8 16.13     | 0 20.68      | 108.10         | 798.8        | 0.11700         | 0.20220          | 0.1722         | 0.1028            | 0.2164        | 0.07356                      | 0.5692    | 1.073      |
| 19 | 9 19.81     | 0 22.15      | 130.00         | 1260.0       | 0.09831         | 0.10270          | 0.1479         | 0.09498           | 0.1582        | 0.05395                      | 0.7582    | 1.017      |
| 20 | 13.54       | 0 14.36      | 87.46          | 566.3        | 0.09779         | 0.08129          | 0.06664        | 0.04781           | 0.1885        | 0.05766                      | 0.2699    | 0.788      |
| 21 | 13.08       | 0 15.71      | 85.63          | 520.0        | 0.10750         | 0.12700          | 0.04568        | 0.0311            | 0.1967        | 0.06811                      | 0.1852    | 0.747      |
| 2  | 9.50        | 4 12.44      | 60.34          | 273.9        | 0.10240         | 0.06492          | 0.02956        | 0.02076           | 0.1815        | 0.06905                      | 0.2773    | 0.976      |
| 2  | 15.34       | 0 14.26      | 102.50         | 704.4        | 0.10730         | 0.21350          | 0.2077         | 0.09756           | 0.2521        | 0.07032                      | 0.4388    | 0.709      |
| 24 | 21.16       | 0 23.04      | 137.20         | 1404.0       | 0.09428         | 0.10220          | 0.1097         | 0.08632           | 0.1769        | 0.05278                      | 0.6917    | 1.127      |
| 2  | 5 16.65     | 0 21.38      | 110.00         | 904.6        | 0.11210         | 0.14570          | 0.1525         | 0.0917            | 0.1995        | 0.06330                      | 0.8068    | 0.901      |
| 28 | 5 17.14     | 0 16.40      | 116.00         | 912.7        | 0.11860         | 0.22760          | 0.2229         | 0.1401            | 0.3040        | 0.07413                      | 1.0460    | 0.976      |
| 27 |             | 0 21.52      | 07.41          | <b>БЛЛ В</b> | 0 10540         | 0 18680          | 0 1.425        | 0.08783           | 0 2252        | 0.06034                      | 0.2545    | 0082       |

१ 🖹 | 🕂 561 🕞 561|561

Figure 2. Data Before Pre-Processing

## PILAR Nusa Mandiri: Journal of Computing and Information System Vol. 18 No. 1 March 2022 | DOI: 10.33480/pilar.v18i1.2912

Figure 3 is an example of breast cancer data in pre-processing. Previously processed data still contains Null and redundant data.

|    | radius_mean | texture_mean | perimeter_mean | area_mean  | smoothness_mean | compactness_mean | concavity_mean | oncave points_mea | symmetry_mean | ictal_dimension_me | radius_se  | texture_se |
|----|-------------|--------------|----------------|------------|-----------------|------------------|----------------|-------------------|---------------|--------------------|------------|------------|
| 1  | 0.0420749   | -0.954684    | 0.0919771      | -0.2725345 | 0.1079393       | 0.5840746        | 0.406279       | 0.462227          | 0.336893      | 0.211036           | -0.2877060 | -0.759061  |
| 2  | 0.2862890   | -0.454853    | 0.2315666      | 0.0031813  | -0.5593220      | -0.6364640       | -0.592784      | -0.302485         | -0.311265     | -0.717355          | -0.6871266 | -0.834821  |
| 3  | 0.2029911   | -0.219479    | 0.1914864      | -0.1011665 | -0.0665081      | -0.1379670       | -0.0749766     | 0.271372          | -0.036839     | -0.577506          | -0.5407568 | -0.811395  |
| 4  | -0.5798192  | -0.278323    | -0.5329970     | -0.7941888 | 0.5856874       | 0.6227225        | 0.131209       | 0.0457256         | 0.526962      | 1.0000             | -0.7218179 | -0.648249  |
| 5  | 0.2597851   | -0.686845    | 0.2619722      | -0.0214210 | -0.2508673      | -0.3042145       | -0.0721649     | 0.0367793         | -0.314469     | -0.626369          | -0.5323556 | -0.813870  |
| 6  | -0.4823229  | -0.594860    | -0.4640315     | -0.7169883 | 0.2942809       | -0.0760076       | -0.260544      | -0.195924         | -0.017619     | 0.102359           | -0.8384936 | -0.765735  |
| 7  | 0.0666856   | -0.305377    | 0.0477507      | -0.2394486 | -0.3632669      | -0.4502178       | -0.471884      | -0.264414         | -0.330486     | -0.685762          | -0.7572334 | -0.817450  |
| 8  | -0.3630555  | -0.247886    | -0.3585792     | -0.6314740 | 0.1178511       | -0.1097479       | -0.561106      | -0.40507          | 0.098772      | 0.034120           | -0.6581568 | -0.550565  |
| 9  | -0.4302617  | -0.180927    | -0.3958952     | -0.6807635 | 0.2843691       | 0.0663150        | -0.128866      | -0.0702783        | 0.263214      | 0.008003           | -0.8589173 | -0.716319  |
| 10 | -0.4813763  | -0.030774    | -0.4446825     | -0.7180064 | 0.1119041       | 0.3509601        | 0.0651359      | -0.150795         | -0.078484     | 0.367734           | -0.8652182 | -0.452439  |
| 11 | -0.1443987  | -0.084883    | -0.1858199     | -0.4449205 | -0.6124492      | -0.7097724       | -0.845408      | -0.669682         | -0.614522     | -0.704718          | -0.8059026 | -0.634547  |
| 12 | -0.1671163  | -0.446737    | -0.1733812     | -0.4591729 | -0.3143027      | -0.3262990       | -0.533552      | -0.34334          | -0.279231     | -0.542544          | -0.7144306 | -0.723877  |
| 13 | 0.1537697   | 0.020629     | 0.2246562      | -0.1690350 | -0.3083556      | 0.3889945        | -0.0323336     | 0.111332          | 0.313401      | 0.181129           | -0.3887380 | 0.417874   |
| 14 | -0.1604903  | -0.036862    | -0.1719992     | -0.4577306 | -0.5737932      | -0.5042022       | -0.534302      | -0.466799         | -0.273892     | -0.855939          | -0.7886656 | -0.682726  |
| 15 | -0.3611624  | -0.127494    | -0.3115887     | -0.6311347 | 0.0028744       | 0.2877738        | -0.00281162    | -0.202286         | -0.036839     | 0.131424           | -0.9271410 | -0.642503  |
| 16 | -0.2844905  | 0.205952     | -0.2683298     | -0.5628420 | 0.0187333       | -0.1404208       | -0.231959      | -0.267992         | 0.213027      | -0.123420          | -0.8127829 | -0.702616  |
| 17 | -0.2712386  | -0.295232    | -0.2958330     | -0.5410392 | -0.2831797      | -0.6771977       | -0.653468      | -0.477237         | -0.552589     | -0.609941          | -0.7384030 | -0.611120  |
| 18 | -0.1339865  | -0.258032    | -0.1111879     | -0.4440721 | 0.0801863       | 0.1215263        | -0.193065      | 0.0218688         | 0.064602      | -0.005897          | -0.6685135 | -0.684936  |
| 19 | 0.2143499   | -0.158607    | 0.1914864      | -0.0528102 | -0.2903162      | -0.4888657       | -0.306935      | -0.0558648        | -0.556861     | -0.831929          | -0.5316314 | -0.709688  |
| 20 | -0.3791471  | -0.685492    | -0.3964481     | -0.6413150 | -0.3006244      | -0.6202073       | -0.687723      | -0.524751         | -0.233316     | -0.675653          | -0.8852797 | -0.810643  |
| 21 | -0.4226892  | -0.594183    | -0.4217400     | -0.6805938 | -0.1081376      | -0.3397951       | -0.785942      | -0.690855         | -0.145755     | -0.235468          | -0.9466232 | -0.828721  |
| 22 | -0.7611813  | -0.815353    | -0.7712667     | -0.8893743 | -0.2092378      | -0.7206306       | -0.861481      | -0.793638         | -0.308062     | -0.195872          | -0.8799203 | -0.727457  |
| 23 | -0.2087652  | -0.692256    | -0.1885841     | -0.5241569 | -0.1121023      | 0.1908472        | -0.0267104     | -0.0302187        | 0.445809      | -0.142376          | -0.7629549 | -0.845562  |
| 24 | 0.3421364   | -0.098411    | 0.2909958      | 0.0693531  | -0.3702052      | -0.4919330       | -0.485942      | -0.141948         | -0.357181     | -0.881213          | -0.5797936 | -0.661067  |
| 25 | -0.0847650  | -0.210687    | -0.0849285     | -0.3543160 | -0.0169492      | -0.2250782       | -0.28538       | -0.0884692        | -0.115857     | -0.438079          | -0.4964331 | -0.760652  |
| 26 | -0.0383833  | -0.547514    | -0.0020040     | -0.3474443 | 0.1119041       | 0.2773449        | 0.0445173      | 0.392644          | 1.0000        | 0.018113           | -0.3231939 | -0.727811  |
| 77 | -0 2807042  | -0.200541    | -0 2589317     | -0 57/7190 | -0 1/197671     | 0.0270536        | *0.555V        | .0 126938         | 0 158560      | -0 187869          | -0.8964331 | .0 724629  |

Figure 3. Data After Pre-Processing

## c. Training and Testing Data

After the dataset is collected and preprocessing is carried out, it is necessary to conduct training and testing of the data used as a classification test. There are two groups of data files, namely training files and testing files. In the training data, the attributes used as targets are first determined. In this case, the target attribute is the diagnosis attribute. In the diagnosis attribute, two classes will be targeted in this case, coded M and B. In this case, M = Malignant and B = Benign (Krishna & Rao, 2018; Rawal, 2020).

## d. Data Mining Stage Process

To evaluate the proposed categorization model's performance. It is necessary to compare the performance and performance of the model used. Of the three proposed classification models, several previous studies concluded that Random Forest is a model that provides a good classification (Ayyoubzadeh et al., 2021; Ganggayah et al., 2019; Octaviani & Rustam, 2019; Singh, 2021). Naïve Bayes is also a classification model that provides high accuracy results (Kharya & Soni, 2016). The AdaBoost classification model is a model that offers good classification performance (Kaur & Chopra, 2015; Kumari & Rani, 2017; Perveen et al., 2016). The previous stage uses the data as training data. The next step is to process test data to reduce invalid and redundant data.

## e. Process Results in Evaluation Stage

In this process, the process for calculating the success rate of the Random Forest, Naïve Bayes, and AdaBoost methods for calculating the success rate using Test and Score. Meanwhile, to evaluate the success and performance of the proposed model, this study uses the Confusion Matrix.

The Confusion Matrix includes a table that is applied to represent the results of the classification process on a test data set whose actual level is known (BV, 2019), using the Confusion matrix to evaluate and calculate the performance of the classification model (More et al., 2022). Table 2 is an example of a Confusion Matrix.

| _      | Та | able 2. Confusion M | latrix          |
|--------|----|---------------------|-----------------|
|        |    | Predicted           |                 |
| Actual |    | В                   | М               |
|        | В  | True Positives      | False Negatives |
| _      |    | (TP)                | (FN)            |
|        | М  | False Positives     | True Negatives  |
|        |    | (FP)                | (TN)            |

Accuracy is measured using (Ayyoubzadeh et al., 2021; Bissanum et al., 2021; Chaurasia et al., 2018):

Accuracy 
$$\frac{TP+TN}{TP+FP+FN+TN}$$
 .....(1)

Precision is measured using (Abd-Elrazek et al., 2018; Bissanum et al., 2021; BV, 2019):

40

Precision 
$$\frac{TP}{TP+FP}$$
 ......(2)

The recall is measured using (Abd-Elrazek et al., 2018; Bissanum et al., 2021; BV, 2019; Chaurasia et al., 2018):

Recall  $\frac{TP}{TP+FN}$ .....(3)

### Predictions - Orange Random Forest Naive Bayes AdaBoost radius\_mean texture\_mean perimeter\_mean area\_mean moothness\_mear ompactness\_mea concavity\_mean incave points\_mei symmetri В В R 923465 10,820 24.21 68.89 361.6 0.08192 0.06602 0.01548 В В 360.5 0.07431 0 923748 10.860 21.48 68.51 0.04227 В 923780 11.130 22.44 71.49 378.4 0.09566 0.08194 0.04824 B B В 924084 12.770 29.43 81.35 507.9 0.08276 0.04234 0.01997 0.09240 924342 59.01 0.05605 B B B 9.333 21.94 264.0 0.03996 В B B 82.50 0.08123 924632 12 880 28.92 514.3 0.05824 0.06195 В В В 924934 10.290 27.61 65.67 321.4 0.09030 0.07658 0.05999 В В В 0.07504 924964 19.59 64.73 311.7 0.005025 10.160 0.10030 В В В 925236 9.423 27.88 9.26 271.3 0.08123 .04971 22.68 10 B М В 925277 14.590 96.39 657.1 0.08473 0.13300 0.1029

74.52

91.38

70.67

103.40

143.00

142.00

131.20

108.30

140.10

403.5

600.4

386.0

716.9

1347.0

1479.0

1261.0

858.1

1265.0

101 0

0.09261

0.09929

0.07449

0.10480

0.10990

0.11100

0.09780

0.08455

0.11780

0.0526

23.93

27.15

29.37

30.62

25.09

22.39

28.25

28.08

29.33

## 02751 < **Figure 4. Prediction Results**

## b. Evaluation Results with Test and Score

### **Testing with Number of Folds 2** 1)

The results of the tests carried out on a set of test data with 1 attribute that is the target in this case the diagnosis. In the tests that have been carried out the sampling used is Cross Sapling and with a Number of Folds of 2, 5 and 10. For testing using Number of Folds 2, the evaluation results from the Random Forest model with AUC = 0.985, accuracy = 0.946, F1 = 0.945, precision = 0.945 and recall = 0.946. And for the Naïve Bayes model with AUC = 0.983, accuracy = 0.944, F1 = 0.944, precision = 0.944 and recall = 0.944. Meanwhile for AdaBoost with AUC = 0.906, accuracy = 0.910, F1 = 0.910, precision = 0.911 and recall = 0.910. Figure 5 is the result of testing using Number of Folds 2.

| Model         | AUC   | CA    | F1    | Precision | Recall |
|---------------|-------|-------|-------|-----------|--------|
| Random Forest | 0.985 | 0.946 | 0.945 | 0.945     | 0.946  |
| Naive Bayes   | 0.983 | 0.944 | 0.944 | 0.944     | 0.944  |
| AdaBoost      | 0.906 | 0.910 | 0.910 | 0.911     | 0.910  |
|               |       |       |       |           |        |

## Figure 5. Number of Folds 2

Figure 6 is a Confusion Matrix from the test results using the Random Forest model for the actual data successfully classified were B = 344 and M = 194, while those that failed to be classified were B = 13 and M = 18.

## Figure 4 is the result of predictions made using the prediction widget.

a. Prediction Results with Prediction Widget At this stage, predictions to determine whether the proposed model can provide the correct

predictions following the input testing data. In the

test data carried out, the model using Random

Forest gives good predictive results, as evidenced by the prediction results with values for the

Random Forest model = 100%, the Naïve Bayes model = 80%, and the AdaBoost model = 80%.

P-ISSN: 1978-1946 | E-ISSN: 2527-6514 Rank 3 Accredited Journal based on Decree No. 85/M/KPT/2020 Data Mining Using Random ...

٥

0 1976

0.1661

0.2030

0.1539

0.1692

0.1566

0.1593

0.1791

0.1742

0.1454

0.1388

0.1537

0.1060

0.2128

0.2149

0.1726

0.1752

0.1590

0.2397

0 1507

0.00816

0.00000

0.02257

0.01499

0.01282

0.02343

0.02738

0.01116

0.00000

0.03736

0.04105

0.04304

0.00000

0.09429

0.14740

0.13890

0.09791

0.05302

0.15200

0.00000

0.1112

0.04462

0.255

0.3174

0.2439

0.144

0.09251

0.3514

0.10210

0.11260

0.03558

0.20870

0.22360

0.11590

0.10340

0.10230

0.27700

### **RESULTS AND DISCUSSION**

3

5

6

7

8

9

11 B

12 B

13 B

14 M

15 M

16 M

17 M

18 M

19 M

В

м

В

м

м

м

М

м

М

В

м

М

М

м

м

М

м

м

925291

925292

925311

925622

926125

926424

926682

926954

927241

11.510

14.050

11.200

15.220

20.920

21.560

20.130

16.600

20.600

l

## PILAR Nusa Mandiri: Journal of Computing and Information System Vol. 18 No. 1 March 2022 | DOI: 10.33480/pilar.v18i1.2912

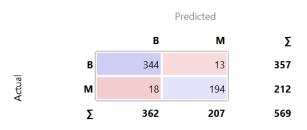



Figure 6. Confusion Matrix with Random Forest Model.

Figure 7 is a Confusion Matrix from the test results using the Naïve Bayes model for the actual data successfully classified were B = 340 and M = 197, while those that failed to be classified were B = 17 and M = 15.

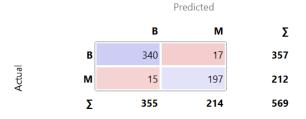



Figure 7. Confusion Matrix with Naïve Bayes Model

Figure 8 is a Confusion Matrix from the test results using the Naïve Bayes model, for the actual data successfully classified were B = 330 and M = 188, while those that failed to be classified were B = 27 and M = 24.

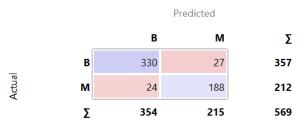



Figure 8. Confusion Matrix with Adaboost. Model

### 2) Testing with Number of Folds 5

For testing using Number of Folds 5, the evaluation results from the Random Forest model with AUC = 0.987, accuracy = 0.951, F1 = 0.951, precision = 0.951 and recall = 0.951. And for the Naïve Bayes model with AUC = 0.983, accuracy = 0.937, F1 = 0.937, precision = 0.937 and recall = 0.937. Meanwhile for AdaBoost with AUC = 0.911, accuracy = 0.916, F1 = 0.916, precision = 0.916 and recall = 0.916. Figure 9 is the result of testing using Number of Folds 5.

| ,                                      | Evaluation Result |       | CA    | F1    | Precision | Recall |
|----------------------------------------|-------------------|-------|-------|-------|-----------|--------|
| ······                                 | Random Forest     | 0.987 | 0.951 | 0.951 | 0.951     | 0.951  |
| AdaBoost 0.911 0.916 0.916 0.916 0.916 | Naive Bayes       | 0.983 | 0.937 | 0.937 | 0.937     | 0.937  |
|                                        | AdaBoost          | 0.911 | 0.916 | 0.916 | 0.916     | 0.916  |

Figure 10 is a Confusion Matrix from the test results using the Random Forest model for the actual data successfully classified were B = 343 and M = 198, while those that failed to be classified were B = 14 and M = 14.

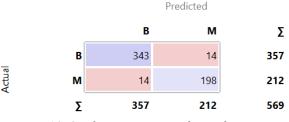



Figure 12. Confusion Matrix with Random Forest Model

Figure 11 is the Confusion Matrix from the test results using the Random Forest model, and the actual data successfully classified were B = 338 and M = 195, while those that failed to be classified were B = 19 and M = 17.

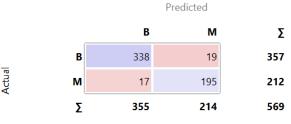
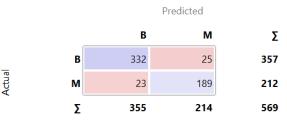




Figure 11. Confusion Matrix with Naïve Bayes Model

Figure 12 is the Confusion Matrix from the test results using the Random Forest model, and the actual data successfully classified were B = 332 and M = 189, while those that failed to be classified were B = 25 and M = 23.





## 3) Testing with Number of Folds 10

For testing using Number of Folds 10, the evaluation results from the Random Forest model with AUC = 0.984, accuracy = 0.947, F1 = 0.947, precision = 0.947 and recall = 0.947. And for the Naïve Bayes model with AUC = 0.983, accuracy = 0.940, F1 = 0.940, precision = 0.940 and recall = 0.940. Meanwhile for AdaBoost with AUC = 0.906, accuracy = 0.912, F1 = 0.912, precision = 0.912 and recall = 0.912. Figure 13 is the result of testing using Number of Folds 10.

Evaluation Results

| Evaluation Result | <u> </u> |       |       |           |        |
|-------------------|----------|-------|-------|-----------|--------|
| Model             | AUC      | CA    | F1    | Precision | Recall |
| Random Forest     | 0.984    | 0.947 | 0.947 | 0.947     | 0.947  |
| Naive Bayes       | 0.983    | 0.940 | 0.940 | 0.940     | 0.940  |
| AdaBoost          | 0.906    | 0.912 | 0.912 | 0.912     | 0.912  |

Figure 13. Number of Folds 10

Figure 14 is the Confusion Matrix from the test results using the Random Forest model, for the actual data successfully classified were B = 347 and M = 192, while failed to be classified were B = 10 and M = 20.

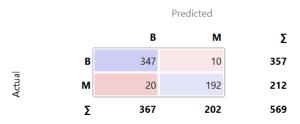



Figure 14. Confusion Matrix with Random Forest Model.

Figure 15 is a confusion matrix from the test results using the Naïve Bayes model for the actual data successfully classified was B = 339 and M = 196, while those that failed to be classified were B = 18and M = 16.

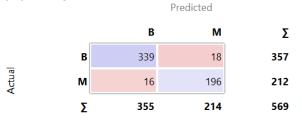



Figure 15. Confusion Matrix with Naïve Bayes Model.

Figure 16 is a Confusion Matrix from the test results using the AdaBoost model for the actual data successfully classified was B = 332 and M = 187, while those that failed to be classified were B = 25 and M = 15.

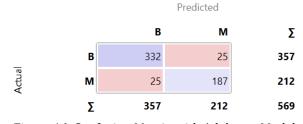



Figure 16. Confusion Matrix with Adaboost Model.

### CONCLUSION

From the results of the classification tests carried out, using three models from Data Mining, namely Random Forest, Naïve Bayes, and AdaBoost, the results obtained that the Random Forest model produces better and consistent results in classifying benign and malignant breast cancer using either Prediction or Test and Score. Prediction results using the Prediction widget get results with Random Forest model = 100%, Naïve Bayes model = 80% and AdaBoost model = 80%. The Number of Folds used in this study are 2, 5 and 10, using Number of Folds 2 to get Random Forest results for Accuracy = 95%, Precision = 95% and Recall = 95%, for the Naïve Bayes model with Accuracy value = 93%, Precision = 93% and Recall 93%, while for AdaBoost the Accuracy = 90%, Precision = 90% and Recall = 90%. Using Number of Folds 5, the results are Random Forest = 96%, precision = 96%, and Recall 96%. For the Naïve Bayes model, Accuracy = 94%, Precision = 94% and Recall = 94%, while for the AdaBoost model, Accuracy = 93%, Precision = 93% and Recall = 93%. Using the Number of Folds 10 to get the results, the Random Forest model = 96%, precision = 96%, and Recall 96%. For the Naïve Bayes model, Accuracy = 94%, Precision = 94% and Recall = 94%, while for the AdaBoost model, Accuracy = 92%, Precision = 92% and Recall = 92%. Results Based on the accuracy obtained, the use of 29 attribute data for benign and malignant cancers gave good results. As a suggestion for development, the prediction and further classification models used are more diverse by adding a more varied Number of Folds and using different data pre-processing methods to get maximum results.

### REFERENCE

## Abd-Elrazek, M. A., Othman, A. A., Abd Elaziz, M. H., & Abd-Elwhab, M. N. (2018). Intelligent

## PILAR Nusa Mandiri: Journal of Computing and Information System Vol. 18 No. 1 March 2022 | DOI: 10.33480/pilar.v18i1.2912

Prediction of Breast Cancer: A Comparative Study. *Egyptian Computer Science Journal*, 42(3), 29–43.

Anjum, A. (2019). Role of Machine Learning in Diagnosis of Breast Cancer. *International Journal of Innovative Science and Research Technology*, 4(5), 280–284.

Ayyoubzadeh, S. M., Almasizand, A., & ... (2021). Early Breast Cancer Prediction Using Dermatoglyphics: Data Mining Pilot Study in a General Hospital in Iran. *Health Education and Health Promotion*, 9(3), 279–285.

Bissanum, R., Chaichulee, S., Kamolphiwong, R., Navakanitworakul, R., & Kanokwiroon, K. (2021). Molecular classification models for triple negative breast cancer subtype using machine learning. *Journal of Personalized Medicine*, 11(9).

https://doi.org/10.3390/jpm11090881 BV, E. (2019). Application of Data Mining

Techniques to Predict Breast Cancer. Procedia Computer Science.

Chaurasia, V., Pal, S., & Tiwari, B. B. (2018). Prediction of benign and malignant breast cancer using data mining techniques. *Journal of Algorithms and Computational Technology*, *12*(2), 119–126. https://doi.org/10.1177/174830181875622

Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., & Dhillon, S. K. (2019). Predicting factors for survival of breast cancer patients using machine learning techniques. *BMC Medical Informatics and Decision Making*, *19*(1), 1–17. https://doi.org/10.1186/s12911-019-0801-4

Gupta, A., & Kaushik, B. N. (2018). Feature selection from biological database for breast cancer prediction and detection using machine learning classifier. *Journal of Artificial Intelligence*, 11(2), 55–64. https://doi.org/10.3923/jai.2018.55.64

Jean Sunny, Nikita Rane, Rucha Kanade, & Sulochana Devi. (2020). Breast Cancer Classification and Prediction using Machine Learning. International Journal of Engineering Research And, V9(02), 576–580. https://doi.org/10.17577/ijertv9is020280

Kaur, E. R., & Chopra, V. (2015). Implementing Adaboost and Enhanced Adaboost Algorithm in Web Mining. International Journal of Adanced Research in Computer and Communication Engineering, 4(7), 306–311. https://doi.org/10.17148/IJARCCE.2015.477 1

Khan, I., Gandhi, A., Parmar, N., & Garg, B. (2020). Breast cancer prediction using data mining. International Journal of Scientific Research and Engineering Development, 3(2), 978–980.

Kharya, S., & Soni, S. (2016). Weighted Naive Bayes Classifier: A Predictive Model for Breast Cancer Detection. *International Journal of Computer Applications*, *133*(9), 32–37. https://doi.org/10.5120/ijca2016908023

Kodati, S., & Vivekanandam, R. (2018). Analysis of Heart Disease using in Data Mining Tools Orange and Weka. *Global Journal of Computer Science and Technology: C Software & Data Engineering, 18*(1), 16–22.

Krishna, M. H., & Rao, D. K. N. (2018). PREDICTION OF BREAST CANCER USING MACHINE LEARNING TECHNIQUES. International Journal of Management, Technology And Engineering, 8(12), 150–153. https://doi.org/10.2174/221327591266619 0617160834

Kukasvadiya, M. S., Nidhi, D., & Divecha, H. (2017). Analysis of Data Using Data Mining tool Orange. International Journal of Engineering Development and Research, 5(2), 1836–1840.

Kumari, G. T. P., & Rani, M. U. (2017). A Study of AdaBoost and Bagging Approaches on Student Dataset. *Journal of Advanced Engineering and Science*, 2(2), 375–380.

Li, J., Zhou, Z., Dong, J., Fu, Y., Li, Y., Luan, Z., & Peng, X. (2021). Predicting breast cancer 5-year survival using machine learning: A systematic review. *PLoS ONE*, *16*(4 April), 1– 23.

https://doi.org/10.1371/journal.pone.02503 70

Manimannan, G., Priya, R. L., & Kumar, C. A. (2019). Application of Orange Data Mining Approach of Argiculture Productivity Index Performance in Tamilnadu. *International Journal of Scientific and Innovative Mathematical Research*, 7(8), 8–16. https://doi.org/10.20431/2347-3142.0708003

Masood, H. (2021). Breast Cancer Detection Using Machine Learning Algorithms. *International Research Journal of Engineering and Technology (IRJET), 8*(2), 738–747. https://doi.org/10.1007/978-981-16-6309-3\_34

More, A., Mhatre, S., Kamble, V., Patil, V., & Bhairnallykar, S. (2022). Breast Cancer Prediction Using Classification Techniques of Machine Learning. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10(1). https://doi.org/10.26483/ijarcs.v10i5.6464

Nindrea, R. D., Aryandono, T., Lazuardi, L., & Dwiprahasto, I. (2018). Diagnostic accuracy of different machine learning algorithms for breast cancer risk calculation: A meta-

analysis. *Asian Pacific Journal of Cancer Prevention, 19*(7), 1747–1752. https://doi.org/10.22034/APJCP.2018.19.7.1 747

- Nitasha. (2019). Review on Breast Cancer Prediction Using Data Mining Algorithms. International Journal of Computer Science Trends and Technology (IJCST), 7(4), 42–45.
- Octaviani, T. L., & Rustam, Z. (2019). Random forest for breast cancer prediction. *AIP Conference Proceedings*, *2168*(November). https://doi.org/10.1063/1.5132477

Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance Analysis of Data Mining Classification Techniques to Predict Diabetes. *Procedia Computer Science*, 82(March), 115–121.

https://doi.org/10.1016/j.procs.2016.04.016 Rajendran, K., Jayabalan, M., & Thiruchelvam, V.

(2020). Predicting breast cancer via supervised machine learning methods on class imbalanced data. *International Journal of Advanced Computer Science and Applications*, 11(8), 54–63. https://doi.org/10.14569/IJACSA.2020.0110 808

- Rawal, R. (2020). BREAST CANCER PREDICTION USING MACHINE LEARNING. Journal of Emerging Technologies and Innovative Research (JETIR), 7(5), 13–24. https://doi.org/10.2478/acss-2020-0018
- Sasikala, R. (2017). a Comparative Analysis for Smart Water Resource Using Data Mining Tools. International Journal of Research -GRANTHAALAYAH, 5(7(SE)), 24–30. https://doi.org/10.29121/granthaalayah.v5.i 7(se).2017.2039
- Singh, H. (2021). Breast Cancer Analysis and Prediction by Using Machine Learning. International Journal of Research in Engineering and Science (IJRES), 9(6), 69–73.
- Swetha, K., & Ranjana, R. (2020). Breast Cancer Predication Using Machine Learning and Data Mining. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 6(3), 610–615.

