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Abstract—As the usage of GPU (Graphical 
Processing Unit) for non-graphical computation is 
rising, one important area is to study how the device 
helps improve numerical calculations. In this work, 
we present a time performance comparison 
between purely CPU (serial) and GPU-assisted 
(parallel) programs in numerical computation. 
Specifically, we design and implement the 
calculation of the hexadecimal n-digit of the 
irrational number Pi in two ways: serial and 
parallel. Both programs are based upon the BBP 
formula for Pi in the form of infinite series identity. 
We then provide a detailed time performance 
analysis of both programs based on the magnitude 
n. Our result shows that the GPU-assisted parallel 
algorithm ran a hundred times faster than the serial 
algorithm. To be more precise, we offer that as the 
value n grows, the ratio between the execution time 
of the serial and parallel algorithms also increases. 
Moreover, when n it is large enough, that is n ≥ 3 ×
106This GPU efficiency ratio converges to a constant 
105.53, showing the GPU's maximally utilized 
capacity. On the other hand, for sufficiently small 
enough n, the serial algorithm performed solely on 
the CPU works faster since the GPU's small usage of 
parallelism does not help much compared to the 
arithmetic complexity. 

 
Keywords: GPU, parallel computing, BBP formula, 
CPU-GPU comparison, parallel numerical method. 

 
Abstrak—Seiring bertumbuhnya penggunaan GPU 
(Graphical Processing Unit) untuk komputasi non-
grafis, salah satu wilayah kajian yang penting adalah 
bagaimana piranti tersebut mampu meningkatkan 
perhitungan numerik. Dalam artikel ini, akan 
dibahas perbandingan kinerja waktu antara dua 
program komputer yang murni menggunakan CPU 
(seri) dan yang ditingkatkan oleh GPU (paralel), 
untuk melakukan perhitungan numerik. Secara 
spesifik, penelitian ini memberikan perancangan dan 
implementasi dari komputasi digit heksadesimal ke-
𝑛 dari bilangan irasional Pi dalam dua cara: seri dan 
paralel. Kedua program berbasiskan pada rumus 
BBP untuk Pi dalam bentuk identitas deret tak 
hingga. Artikel ini kemudian akan menampilkan 

analisis mendetail mengenai kinerja waktu kedua 
program berdasarkan tingkat besarnya nilai 𝒏. Hasil 
penelitian menunjukkan bahwa algoritma paralel 
yang dioptimalkan oleh GPU berhasil bekerja ratusan 
kali lebih cepat daripada algoritma seri. Persisnya, 
ketika nilai 𝑛 meningkat, maka rasio waktu eksekusi 
antara program seri dan paralel juga ikut 
meningkat. Lebih lanjut lagi, saat 𝑛 cukup besar, 
yaitu ketika 𝑛 ≥ 3 × 106, rasio efisiensi GPU ini 
cenderung melandai ke suatu nilai konstanta 105.53, 
yang menunjukkan penggunaan kapasitas GPU  yang 
termaksimalkan. Sementara itu, pada nilai 𝑛 yang 
cukup kecil, algoritma seri yang dijalankan murni 
oleh CPU bekerja lebih cepat karena paralelisme GPU 
dalam skala kecil tidak mampu mengimbangi 
kecepatan CPU dalam mengerjakan operasi 
aritmatika yang kompleks. 
 
Kata Kunci: GPU, komputasi paralel, rumus BBP, 
perbandingan CPU-GPU, metode numerik paralel. 
 
 

INTRODUCTION 
 

For decades, the emergence of the 
Graphical Processing Unit (GPU) had been 
extremely successful in helping to boost graphic-
related computation, for example rendering high-
resolution images and videos. Many threads in the 
GPU allow many simple arithmetical calculations to 
be done massively in parallel. Therefore, this 
feature suits the graphical computational demand 
very well as many image processing algorithms 
include matrix operations which naturally could be 
performed using blocks of parallel agents (David 
Kirk, 2017). 
 It should be noted, however, that GPU does 
not provide a universal solution for all types of 
problems. For some surveys on challenges in GPU 
programming, one could consult (Brodtkorb, Hagen, 
& Sætra, 2013). There are three general 
characteristics of problems that are well suited to be 
computed by GPU: 1) The demand for 
computational amount is enormous; 2) Parallel 
computation scheme is substantial, and 3) 
Throughput is prioritized over latency.  
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 Despite the limitation of the GPU-solvable 
problem domain, it is apparent that the trend to 
harness GPU for non-graphical-related computation 
is sharply rising due to its ability to speed up 
analysis using relatively affordable devices. It is 
often coined the term GPGPU (General Purpose 
GPU) Computing. Some possible applications of 
GPGPU computing include conducting agent-based 
modelling (Baylor G.Fain, 2022), computational 
fluid dynamics (Reguly & Mudalige, 2020), 
accelerating convolutional neural networks (Hu, 
Liu, & Liu, 2022),  accelerating data query 
(Rosenfeld, Breß, & Markl, 2022), and numerical 
computation (Abdelfattah, et al., 2020). 
 One possible GPU application of interest is 
efficiently computing large amounts of non-
recurrent digits of some irrational numbers. As the 
oldest recognized irrational number, the 
Archimedes constant Pi (π) might be the one which 
generates the most excitement in the scientific 
community. Many global attempts had been made to 
compute as many digits of the number as possible. 
The first ever Pi digits computation using a 
computer was done as early as 1950 (Reitwiesner, 
1950), with 2.037 digits of Pi presented. The race to 
compute greater and greater number of digits was 
quickly emerging. It includes the ones which 
harness some parallel computation schemes using 
GPU and other devices. The latest record holder for 
the computation of the longest Pi digits is Emma 
Haruka Iwao from Google (Iwao, 2022), which was 
just done very recently in June 2022. The work 
provided 100 trillion digits of Pi under a 
computation time of 158 days and 12.6 hours of 
verification. It outnumbered roughly 60% of the 
previous record holder, an academics team from the 
University of Applied Sciences Grisons in 2021 that 
was successfully computed ⌊2𝜋 × 1013⌋ digits of Pi 
(Keller, 2021). 
 This challenge brings sensation for a 
limited ambitious community and provides a useful 
application in some areas. It is well known that the 
non-recurring digits of many irrational numbers, 
including Pi, have been guiding many advanced-
level random number generators (Jeong, Oh, Cho, & 
Choi, 2020). Moreover, the infinitude of the 
irrational's unorderly digits also recently 
inspiredany physicists to suggest a new 
interpretation of time (Wolchover, 2022). 
 In this paper, we focus on studying the 
computational performance comparison between 
CPU and GPU in numerical calculations. Many such 
comparative studies exist, such as under the context 
of Convolutional Neural Networks (Yunus, Kanata, 
& Ariessaputra, 2021), solving partial differential 
equation problems (Semenenko, Kolesau, 
Starikovičius, Mackūnas, & Šešok, 2020), and 
Bayesian estimation (Kim, Williams, Hernandez-

Fernandez, & Bjornson, 2022). Specifically, this 
paper's contribution is to compare these devices 
while computing long hexadecimal digits of Pi. 
While the GPU-assisted computation would surely 
be faster than the one served by the CPU alone, we 
will provide some quantitative data to illustrate the 
significance of the GPU power in optimizing 
numerical computation tasks. 
 

MATERIALS AND METHODS 
 

The main methods used in this research are 
the algorithm design and implementation methods, 
equipped with quantitative analysis of the 
numerical data obtained from the algorithm 
running results. Two approaches to algorithm 
computing the 𝑛-th hexadecimal digit of Pi, which 
are the serial (CPU only) and the parallel (GPU 
assisted), are designed and implemented in this 
project. Both algorithms are then run to obtain the 
comparison performance data. The running times of 
both algorithms are collected for various sizes of the 
instance. Those values are then analyzed 
quantitatively based on their trend concerning the 
instances' small and large variational size. 

Three main steps to conduct this research are 
presented as follows. 

 
1. Numerical Formula Manipulation 

Among many mathematical identities of Pi, 
we pick a certain formula, commonly known as the 
BBP formula, introduced by Bailey-Borwein-Plouffe 
in 1997 (Bailey, Borwein, & Plouffe, 1997) and lately 
popularised by Takahashi in 2020 (Takahashi, 
2020). The following is the expression of the 
formula 

 

𝜋 = ∑
1

16𝑘 (
4

8𝑘+1
−

2

8𝑘+4
−

1

8𝑘+5
−

1

8𝑘+6
)∞

𝑘=0  ................ (1) 

 
The main feature of the identity is the factor 

16−𝑘 Appearing in each summand of the infinite 
sum. We follow some methods and notations taken 
from (Bailey D. H., 2006). By this, one could compute 
hexadecimal digits of pi starting from the (𝑛 + 1)-th 
position effectively without adding any previous 
numbers. If 𝑎𝑘  is the 𝑘-th term of the sum, then by 
simple manipulation, from equation (1), one could 
obtain the following expression 

 
⌊16{16𝑛 ∑  𝑎𝑘

∞
𝑘=0 }⌋ .............................................................. (2) 

 
is exactly the (𝑛 + 1)-th hexadecimal digit of pi 
where the notation {𝑎} represents the fractional 
part of 𝑎. We will call this expression the Main 
Value of Interest for the upcoming sections. For 
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convenience, define 𝑆𝑗 = ∑
1

16𝑘(8𝑘+𝑗)
∞
𝑘=0  So that the 

curly bracket expression in (2) can be rewritten as 
{16𝑛𝜋 } = {4{16𝑛𝑆1} − 2{16𝑛𝑆4} − {16𝑛𝑆5} − {16𝑛𝑆6}} ... (3) 

Now, we focus on the expression {16𝑛𝑆𝑗} and 

expose some ways to compute it parallelly. After 
some manipulations, the expression can be split into 
two parts: 

{16𝑛𝑆𝑗  } = {{∑
16𝑛−𝑘 𝑚𝑜𝑑 (8𝑘+𝑗)

8𝑘+𝑗
n
𝑘=0 } + ∑

16𝑛−𝑘 

8𝑘+𝑗
C
𝑘=𝑛+1 }(4) The 

upper bound of the second sum 𝐶, is a constant 
independent of 𝑛, chosen large enough to achieve 
the desired degree of precision. 

We will mainly focus on computing the first 
sum in Equation (4) since it involves 𝑂(𝑛) number 
of addition and exponentiation operations. We label 
this term as the Major Sum. In contrast, the second 
summand only accounts for an insignificant fraction 
of the algorithm's running time, and we label it the 
Minor Sum. It is because the iteration only occurs a 
constant number of times that depends only on how 
much precision the user desires. 

 
2. Serial and Parallel Schemes Design 

To design the algorithm scheme, we first 
break down the tasks involved in the computation 
based on Equation (4) from the previous subsection. 
A high-level overview of the algorithm is also 
described in (Bailey D. H., 2006). The breakdown of 
the tasks is listed in Table 1 below. It should be 
noted that the referenced paper does not provide a 
detailed task breakdown since they are merely 
labels defined by ourselves for the convenience and 
organization of this article. 

 
Table 1. Tasks Breakdown 

Task Location Description 
Prerequisite Scheme 

Design 

1 
Major 
Sum 

Computing 
summand 
terms 
16𝑛−𝑘 𝑚𝑜𝑑 (8𝑘+𝑗)

8𝑘+𝑗
 

N/A 

Serial/ 
Parallel 

2 
Major 
Sum 

Summing all 
the terms 
from Task 1 

Task 1 
Serial/ 
Parallel 

3 
Minor 
Sum 

Computing 
the 
summation 

N/A 
Serial 

4 
Equation 
4 

Computing 
{16𝑛𝑆𝑗  } 

Task 2, Task 
3 Serial 

5 
Equation 
3 

Computing 
the main 
value of 
interest 

Task 4 

Serial 

Source: Bailey (2006) 
    
The terms "Major Sum", "Minor Sum", and 

some other equations on the Location column refer 
to the definition in the previous subsection. A 
detailed explanation of each task is given in the next 
section. 

 
3. Implementation using C and CUDA 

We then run two different computer 
programs: 1) a purely serial program and 2) the one 
enhanced with the GPU parallel scheme. Both 
programs receive the same input 𝑛, that is, the 
starting digit position, after which the programs are 
required to output the hexadecimal digits of pi. All 
procedures designed serially are implemented 
using C, while the parallel ones use the CUDA 
programming language. 

The device used to implement the programs 
has the specifications described in Table 2 below. 

 
Table 2. Device Specification 

Device Details 
Processor* Intel Core i5-9400F, 2.90 GHz 

RAM** 8 GB 
System Type 64-bit 
Operating 
System 

Windows 10 Pro 

GPU*** NVIDIA GTX1060 6 GB 

Source: *) Intel Corp. (2019) , **) V-gen (n.d.),  
***) Nvidia (2016) 
 

RESULTS AND DISCUSSIONS 
 

1. Design of the Algorithms 
In this section, we discuss the strategy for 

how each task listed in Table 1 is designed. First, 
note that the main tasks of interest are Task 1 and 
Task 2 because they are the GPU-optimized sub-
hairs. Both charges are responsible for computing 
the Major Sum, whose computing performance 
depends on 𝑛. On the other hand, all the other tasks 
mainly deal with a constant number of operations, 
so it seems best to compute these using CPU alone. 
Figure 1 below provides the visualization of the 
tasks involved. 
 

 
Figure 1. Tasks Dependency Diagram 
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The exponentiation procedure within Task 1 
is a common computational problem solved by the 
Divide and Conquer strategy (Kumar & Sen, 2019). 
It results in 𝑂(log 𝑛) number of multiplication and 
modulo operations. Now, we have 𝑛 typical 
procedures to compute the 𝑘-th term for 𝑘 =

 0, 1, . . . , 𝑛. To compute all the summand terms 
serially, one could simply iterate each 
exponentiation computation. Meanwhile, for the 
parallel scheme, these 𝑛 subtasks are to be split into 
several batches, each of which has a size of the 
number of GPU threads to be computed 
simultaneously. 

Task 2, which is performing a sum of a finite 
sequence of numbers, is a classic task to conduct in 
a parallel scheme. It is often given as a standard 
exercise for undergraduate-level similar 
programming courses. The main idea used in the 
algorithm design is Parallel Prefix Computation. For 
reference, one could consult many textbooks, for 
instance (Hockney & Jesshope, 2019). Here, the 
summands are stored in an array partitioned into 
several blocks of subarrays. Using a divide and 
conquer paradigm, the algorithm keeps breaking 
down those subarray blocks until they are small 
enough to be computed for each of their paired 
summations. The results are then summed from 
other blocks in a balanced-binary-tree-like 
structure. Thus, if there are 𝑛 numbers to be 
summed, then the complexity of the task is roughly 
𝑂(𝑛 log 𝑛). 

On the other hand, Task 3, Task 4, and Task 5 
are handled solely on the CPU due to their 
complexity's independence of 𝑛, which means that 
the tasks are relatively not demanding. The number 
of operations (the number 𝐶 of the sum upper 
bound) taken to perform Task 3 depends only on 
the degree of accuracy, the number of digits for 
which the result assures the exact value. The 
number 𝐶 would not grow big as 𝑛 would, so this 
task is not very suitable to be done in parallel. 
Finally, Task 4 and Task 5 are small single sets of 
arithmetical operations combining all other results 
from previous tasks. It explains the reason why both 
studies are naturally designed in serial schemes. 
 
2. CUDA Implementation Details 

While the algorithm implementation in the 
serial scheme using CPU programming is a standard 
exercise in terms of algorithm design, the parallel 
version is the main interest of this paper. In this 
subsection, we present the CUDA kernel functions 
used in this project, that is, the function to instruct 
how the host feeds the input data for the 
computation process done in the kernels, which are 
the heart of the parallelism. 

Before exposing each of the details, it is 
worth noting that we use some special bit operation 

commands replacing routine arithmetic procedures 
on the kernel functions to optimize the 
computation. It is because the bitwise operations 
are substantially faster than ordinary arithmetic 
operations. The left shift operator (<<) and right 

shift operator (>>) have the arithmetical meaning of 
multiply by two and integral divide by 2, 
respectively. The 'AND' bitwise operator is applied 
to a variable, and the number 1 (for example: "var 

& 1") is a logical operator that returns TRUE if and 
only if the variable has zero value. 

The following figures (Figure 2, Figure 3, and 
Figure 4) show the kernel functions performing 
Task 1 and Task 2 parallelly. 

 

 
Figure 2. Kernel Function for Task 1 

 

The kernel function in Figure 2 above 
performs Task 1, that is, computing the value of  
(16𝑑−𝑘 mod (8𝑘+𝑗))

8𝑘+𝑗
 for all values of 𝑘 with a start < 𝑘 

< stop, where the start and stop are parameters 
of the function. The main algorithm would firstly 
break down the main range of 𝑘, which suppose to 
be from 0 to n, into smaller subranges whose size is 
suited to the capacity of the GPU number of threads 
and then call the kernel function using the 
appropriate choices of start and stop. In 
addition, the sub-algorithm presented in lines 14-22 
of the process above employs the classic divide-and-
conquer approach to compute the modular 
exponentiation efficiently. 

 

 
Figure 3. Kernel Functions for Task 2 
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Two kernel functions described in Figure 3 
above provide ingredients to implement the Parallel 
Prefix Computation method to compute the sum of 
all terms computed in Task 1 previously. First, we 
describe how the binary_sum function works. The 
summand terms from Task 1 are first stored in an 
array that would be passed as the parameter *in 
the function. The function then computes the sum of 
each pair of consecutive summand terms on the 
array and stores the result in another array whose 
pointer is *out. Thus, the resulting array *out 

length is half that of *in. The process is done for the 

first pj elements of the array, which are 
parameterized by the function. Some special 
treatment in lines 15-17 is provided to handle the 
case where the array length is odd. Next, the e 
*binary_copy function copies the values of the 

array *from into the array *to parallel with size of 
pj. Both functions would be called in a loop many 
times with decreasing values of pj that will be later 
explained in the next figure. 

Lines 12-19 of the Host-Kernel Interaction 
code presented in Figure 4 describe how the kernel 
functions are called repetitively inside a loop. Both 
lines 16 and 18 indicate that variable m is passed as 

the parameter pj of both kernel functions in Figure 
3. Also, its value always decreases as the iteration 
continues, as indicated by line 17. 

 

 
Figure 4. Host-Kernel Interaction 

 
The sub-algorithm explains the 

communication between the host and kernel 
function. Note that the sub-algorithm harnesses B 

number of blocks, each of which has T number of 
threads. In our implementation, we pick the 
maximum number of such B and T available on the 
device to optimize the computation fully. 

Next, we present some results obtained by 
the purely CPU and the GPU-assisted algorithms 
regarding the Pi hexadecimal digits computation. 
The digits outputted by the two schemes agree for 
all digit positions. Table 3 displays some selected Pi 
hexadecimal digits computed by the algorithms. 

 

Table 3. Pi Hexadecimal Digits Obtained by  
BPP Formula in both Serial and Parallel Scheme 
Starting digit position Pi Hexadecimal Digits 

5001 CAD18 
10001 8AC8F 
50001 940C2 

100001 35EA1 
500001 DD637  

1000001 6C65E 
5000001 EE394 

10000001 7AF58 

 
As the serial algorithm starts to work 

considerably slowly (more than 3 minutes) when 
the starting digit position is greater than 108, we 
now employ only the parallel scheme to explore the 
greatest starting digit position, which is feasibly and 
reasonably able to be computed by our parallel 
program. The furthest possible point we have 
already tested is the hundred-billionth hexadecimal 
of pi, "7FB5B", which is computable within 
2156,397 seconds. 

 
3. Running Time Analysis 

In this section, we report the running times of 
both algorithms concerning various values of 𝑛. As 
the data points, we measure the running times of the 
algorithms for 𝑛 =  10.000, 20.000, 30.000, ..., 
5.000.000. So, in total, there are 500 data points 
where each consecutive pair of points has a gap of 
10.000. Figure 5 shows the running time behaviour 
of both algorithms. The x-axis represents the n-digit 
position, and the y-axis (log-scaled) represents the 
running time. 

 

 
Figure 5. Running times of BBP Algorithm: two ways 

 
From Figure 5, it is apparent that the serial 

algorithm runs significantly slower than the parallel 
one. To provide a more detailed comparison, we 
measure the ratio between the running times of the 
serial scheme to that of the parallel one. We can use 
this ratio as a performance measure. The greater the 
ratio value is, the better the parallel scheme 
performs compared to the serial scheme. The value 
of the ratio is presented in figure 6. 
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Figure 6. The ratio between running times of Serial & 

Parallel schemes of BBP Algorithm 

 
Figure 6 represents the serial and parallel 

running time (y-axis) ratio against the n-digit 
position (x-axis). A closer inspection of this figure 
shows that when n is large enough, the running time 
ratio tends to converge into a certain constant, 
around 105.53. Its stable is stabilized once the value 
of n has passed over a certain threshold around 3 ×
106. It means that when n is slightly larger than the 
threshold, the ratio number is about to converge to 
the ratio constant; otherwise, the percentage is still 
increasing as n grows.  

The constant corresponds to the thread 
capacity of the GPU. As 𝑛 grows larger, the 
performance improvement provided by the GPU has 
been optimal as all the threads have already been 
completely utilized. On the other hand, when the 
algorithms compute the formula with a value of 𝑛 
below the threshold, some lines of the GPU are still 
vacant. So, in this case, increasing the value of 𝑛 
would improve the performance ratio. It can be seen 
by the increasing curve of the running time ratio on 
such an interval of 𝑛 (when 𝑛 is less than the 
threshold). 

Although for large 𝑛, the parallel algorithm 
runs faster, it is not exactly the case for some small 
instances of 𝑛. To be more precise, we can take a 
closer look at the running time curves of both 
algorithms when the value of n is small enough, as 
presented in Figure 7. 

 

 
Figure 7. Running times at small instances. 
 

From closer inspection of Figure 7, we 
observe that for a small value of n (around 𝑛 <
 5.000), the parallel scheme performs slower than 
the serial scheme. However, right after this, a 
similar algorithm always performs better.  

We can understand this phenomenon by the 
following explanation. When 𝑛 is small, the parallel 
algorithm utilizes the GPU threads for a relatively 
fewer number of batches. Although in GPU, many 
lines can work simultaneously, the computing 
capability of each thread is much less sophisticated 
than those of CPU. Consequently, when two single 
threads of CPU and GPU are given the same 
computational task, the CPU would likely perform 
better than GPU. It is because the CPU is designed 
for computing complex computations. 

In contrast, GPU has a simpler computing 
feature in the hope that massive parallelism would 
help the GPU to excel over the CPU. To be more 
precise, by having small enough 𝑛, tasks 1 and 2 of 
the parallel scheme would not optimally utilize all 
the GPU threads, so the delay times caused by the 
latency might dominate the whole running time. In 
fact, when only a small number of GPU threads are 
used in the computation, the repetitive nature of 
serial CPU processing would perform better. 
   

CONCLUSION 
 

In this paper, we optimize the 𝑛-digit Pi 
computation by utilizing GPU parallelism. The 
performance of GPU and CPU processing for 
computing 𝑛-digit Pi is then compared. For most 
values of 𝑛, the parallel algorithm assisted by the 
GPU runs significantly faster than the serial 
algorithm. Furthermore, this research measures the 
running time ratio between CPU and GPU 
algorithms. In other words, this ratio measures how 
many times the GPU works better than the CPU. 
From the implementation data collection, we found 
that the ratio tends to increase as the 𝑛 is rising. It 
shows the supremacy of GPU performance over CPU 
in 𝑛-digit Pi calculation. In addition, the balance 
appears to converge to 105.53 once 𝑛 has passed 
over 3 × 106. It shows the fully utilized capacity of 
the GPU in performing computation with a large 
enough size instance. However, a closer inspection 
of small cases indicates that the CPU performs 
better than GPU due to a lack of parallelism. The 
finding shows that numerical computation 
optimization should be strategically planned rather 
than relying on purely GPU computation. The 
computation decision should be carefully designed 
depending on the context of the use case. 
Furthermore, a more rigorous investigation of 
several alternatives of parallel numerical 
computation for various irrational numbers will be 
reserved for future works. 
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