

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

1

CONTINUOUS INTEGRATION PIPELINE WITH JENKINS

Alexander1; Wella2*

Information System Study Program1, 2

Universitas Multimedia Nusantara, Tangerang, Indonesia1, 2

www.umn.ac.id1, 2

alexander2@student.umn.ac.id1, wella@umn.ac.id2*

(*) Corresponding Author

The creation is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Abstract— The advancement of technology has led
to continuous improvement in application
development. As a result, there is a growing demand
for application software. Tech companies are
constantly working on building and updating their
existing applications. The development process is
prolonged because to the intricate nature of the build
and deployment procedures, ensuring that the
application software can be accessed and utilized by
individuals across the internet. To address these
issues, this research aims to construct and enhance a
system capable of automating the entire build and
deployment process. By eliminating human
intervention, potential errors and downtime that may
prevent access to the deployed application can be
avoided. The system was developed using the RAD or
Rapid Application Development method, with the
goal of simplifying and expediting the development
process. A DevOps Engineer facilitates the
implementation of Continuous Integration in order to
reduce the duration of the entire Software
Development Life Cycle (SDLC) by utilizing an open-
source tool named Jenkins. This ensures that the
application development process is efficient and
adheres to the designated schedule, allowing all users
to benefit from timely delivery.

Keywords: continuous integration, devOps engineer,
jenkins.

Abstrak— Kemajuan teknologi telah menyebabkan
perbaikan terus-menerus dalam pengembangan
aplikasi. Oleh karena itu, permintaan akan
perangkat lunak aplikasi semakin meningkat.
Perusahaan teknologi terus berupaya membangun
dan memperbarui aplikasi mereka yang sudah ada.
Proses pengembangan memakan waktu lama karena
rumitnya prosedur pembuatan dan penerapan,
sehingga memastikan bahwa perangkat lunak
aplikasi dapat diakses dan digunakan oleh individu
melalui internet. Untuk mengatasi masalah ini,
penelitian ini bertujuan untuk membangun dan

meningkatkan sistem yang mampu mengotomatisasi
seluruh proses pembangunan dan penerapan.
Dengan menghilangkan campur tangan manusia,
potensi kesalahan dan downtime yang mungkin
menghalangi akses ke aplikasi yang diterapkan
dapat dihindari. Sistem dikembangkan dengan
menggunakan metode RAD atau Rapid Application
Development, dengan tujuan untuk mempermudah
dan mempercepat proses pengembangan. Seorang
Insinyur DevOps memfasilitasi penerapan Integrasi
Berkelanjutan untuk mengurangi durasi seluruh
Siklus Hidup Pengembangan Perangkat Lunak
(SDLC) dengan memanfaatkan alat sumber terbuka
bernama Jenkins. Hal ini memastikan bahwa proses
pengembangan aplikasi berjalan efisien dan
mematuhi jadwal yang ditentukan, sehingga semua
pengguna dapat memperoleh manfaat dari
pengiriman yang tepat waktu.

Kata Kunci: continuous integration, devOps
engineer, jenkins.

INTRODUCTION

In the world of information technology, the
role of the developer is an essential role in the
successful implementation of an information
system (Akdur et al., 2024). However, it is not
uncommon for developers in an organization to face
difficulties, especially in making updates or changes
(Bai et al., 2023). This is because the application has
not been containerized so changes must be made
manually in each file that needs to be changed, so
changes take a long time (Kumar et al., 2024). Apart
from that, errors often occur when the update stage
has reached the staging server (Prigent et al., 2024).
Errors in this section could be caused by missing
dependencies so the quality assurance (QA) party
needs to set aside their time to install the
applications one by one that are needed to run well,
such as the database, bash version and node version
if the application runs on Node.JS (Jiang et al., 2021).

http://www.umn.ac.id1/
mailto:alexander2@student.umn.ac.id
http://creativecommons.org/licenses/by-nc/4.0/

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

2

One organization experiencing similar problems is
PT Emporia Digital Raya.

PT. Emporia Digital Raya is a company
founded under the auspices of PT. Anabatic Digital
Raya which operates in the field of Finance and
Technology, PT. Emporia Digital provides several
platforms related to the financial system such as
payments for electricity tokens, credit and PDAM
called IKIMitra, apart from that, there is also a peer-
to-peer lending platform where this platform
connects lenders and borrowers. Peer-to-peer
lending is a method of borrowing money that is
being widely discussed, where this method makes it
easier for an individual to borrow from another
individual who is ready to borrow (Permatasari et
al., 2024).

The problems raised in this research have
been resolved by several previous studies. Similar
research has been carried out using Docker tools
(Giallorenzo et al., 2021). Docker is used as a
virtualization platform to containerize virtual
machines so that they run more efficiently in terms
of virtual machine maintenance costs. Other
research has also been carried out based on the
problem of the large number of application requests
from an organization so that a CI (Continuous
Integration) system is implemented (Elazhary et al.,
2021). The CI used is the open-source tool Jenkins
(Patil et al., 2022). In addition, the CI developed uses
Agile methods to increase flexibility during
implementation (Noor et al., 2020). However, this
Agile method requires professional staff to carry out
system development because documentation in this
method is not really prioritized (Rahmanti et al.,
2022). Another main problem experienced in other
research was regarding the length of time required
in the build and deployment process, so the idea
emerged to automate all processes from build to
deployment, using GitlabCI which is provided by
Gitlab (Wahyu & Guna Noviantama, 2021). The
application design process with a cloud system is
developed in such a way that it uses a web server
and uses a cloud database, namely Google Firebase
(Rahmanti et al., 2022). The design in this research
also implements a Cloud Computing system with a
server that is no longer maintained personally but
uses the cloud provider Google Cloud (Rahmanti et
al., 2022).

Based on the previous explanation, the
solution offered to every problem faced by
developers is to build a CI or Continuous Integration
system using Jenkins. Jenkins is used because
Jenkins is one of the oldest CI/CD tools released
since 2011, it is open source and designed in Java,
apart from that, Jenkins has many advantages,
including supporting many plugins such as
Sonarqube or Sonarscanner which are used to
detect vulnerabilities in an environment. Project

code that is being built, this process is often referred
to as DAST (Dynamic Analysis Security Testing)
(Koskela, 2021).

Apart from Jenkins, the tool used for
containerization is Docker, chosen because Docker
supports many types of repositories such as Gitlab,
Bitbucket, Github, et al. With Docker, one server can
have several containers containing several
applications, so that one server can no longer only
handle one application, but rather many
applications in each container built with Docker
(Poulton, 2023).

This research will focus on the CI
(Continuous Integration) system implementation
process which will be implemented using an open-
source tool called Jenkins, apart from that there will
be 2 workers who will act as builders with instance
specifications that have been determined using
Google Cloud Compute Engine. This research is
expected to help developer performance to be more
efficient and effective using the environment that
has been built with the aim of automating all build
and deployment processes without the high risk of
manually deploying to the server, besides that it is
also hoped that the rollback process on
deployments will be If something doesn't go
according to plan, it can be done quickly to minimize
down time that occurs during servicing.

MATERIALS AND METHODS

Rapid Application Development (RAD)

RAD is a method and framework for creating
or developing an application that takes less time,
Rapid itself is interpreted as fast or takes less time.
RAD or Rapid Application Development has 4
phases, namely Requirements Planning, User
Design, Construction and Cutover Phase (UAT)
(Breyter, 2022). Figure 1 is a visualization of each
phase of RAD (Rapid Application Development).

Source: (Breyter, 2022)

Figure 1. RAD Phases

Docker
Continuous Integration is not far from

Docker, these 2 tools are interconnected to perform
automation of the build and deployment process,

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

3

Docker is one of the tools that functions as a
containerization tool which was published in 2013
(Cuadra et al., 2024). Every developer can isolate an
application from the host or virtual existing
machines so that one server can accommodate
many containerized applications without disturbing
the host system itself (Yang et al., 2024). The
relevance of Docker to VMs is that Docker will use
the resources of the VM itself such as CPU, RAM and
Memory (Baresi et al., 2024).

The reason for using Docker containers is
very simple, the concept of containers is flexibility
and several other reasons, namely (Devopedia,
2024):
a. Creating environments for developers such as

production, staging and isolated development.
b. Creating building blocks for service oriented or

microservices, with Docker making it easier to
isolate applications and use Docker to create
several microservices with containers.

c. Create CI/CD systems easily.
d. Creating a stand-alone container for testing

and research by developers.

Then several components are also explained

so that Docker can run on a server, including
(Rajyashree et al., 2024):
a. Docker engine, which is useful as a client of

Docker or can be called a Docker daemon
which has the task of executing containers.

b. Images, before Docker can run, images are
needed which act as installers which contain
various dependencies. Docker images can be
built yourself or accessed via Dockerhub.

c. Registry, acts as storage which is divided into
2, namely public which can be accessed via
Dockerhub and private via images designed
and built personally.

d. Container, after the image has been
successfully executed a container will be
formed. It is easy to explain that a container is
a running image.

Continuous Integration

Continuous Integration (CI) is here to
implement the function of the DevOps role where CI
is a method that plays a role in continuously
integrating the code created, when a developer
pushes/commits to one of the repositories in a
particular branch, the project will automatically
builds and ensures that the code runs well
(Robinson et al., 2021). Figure 2 is an illustration of
the CI/CD lifecycle.

There are several requirements that will be
implemented to ensure the implementation of CI,
including (Pratama & Sulistiyo Kusumo, 2021):

a. Using a version repository for source code
pushed by developers such as Github, Gitlab,
Bitbucket, et al.

b. Automatic testing of code changes,
c. Build process automation,
d. Deploy or release code into pre-production

areas such as staging and development.

Source: (Pratama & Sulistiyo Kusumo, 2021)

Figure 2. CI/CD Lifecycle

Jenkins

Jenkins is one of the many tools available on
the internet for automating the build and
deployment process, but many large companies
operating in the world of IT (Information
Technology) choose Jenkins for their CI/CD
processes because this tool is classified as safe and
open-source (Zhao et al., 2024). so not a penny
comes out of the company's pocket to use this tool,
then Jenkins is one of the tools that is classified as
complete in integration and can run on any cloud
provider (Patil et al., 2022), even though it is
classified as free, aka open source, Jenkins ensures
that this tool is very complete. Figure 3 is a
comparison of CI/CD tools.

Source: (Light et al., 2021)

Figure 3. Comparison of Several CI/CD Tools

It is literally written down what is the
meaning of Jenkins itself and what is the use of this
tool (Light et al., 2021), Jenkins is one of the tools
used for the process of implementing Continuous
Integration with pipelines or workflows, Jenkins

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

4

works with a Jenkinsfile which will then be detected
by the machine to run build and deployment
processes. The advantages of using Jenkins
pipelines include (Moradvandi et al., 2024):
a. Code: pipelines run using code that has been

written and checked in source control, giving
each team in the organization the freedom to
review, edit and iterate the pipeline.

b. Durable: where pipelines can go through
unplanned stages such as planned or
unplanned restarts from the Jenkins controller.

c. Pausable: the pipeline can be stopped
temporarily to wait for input from the
developer and requires approval to continue
working on the pipeline itself.

d. Versatile: the Jenkins pipeline also supports
quite complex workflows such as looping,
fork/join and IF/ELSE conditions.

e. Extensible: Jenkins has a lot of features that

RESULTS AND DISCUSSION

The data collection process will be carried

out using qualitative methods, which are
unstructured research that is flexible and aims to
understand, explain, examine, and find certain
phenomena based on deductive logic. This research
was conducted by conducting focus group
discussions (FGD).

Based on the FGD with 5 participants, each of
which came from a different background, namely 2
(two) people as mobile and web app developers, 2
(two) people as DevOps Engineer (infrastructure),
and 1 (one) person as QA Tester, the results were
found that developers find it difficult and feel that
the build and deployment process of an application
is quite time-consuming because of the lengthy
process because the application that you want to
deploy must be communicated to the infrastructure
team in charge of doing manual updates, apart from
that from the infrastructure side, they also
experience the same thing. Which is a long time to
deploy, especially if a rollback of applications that
have been deployed is needed. While the QA Tester
always wants the application to run smoothly in a
short time.

Planning

The object studied in this study is a
Continuous Integration system using open-source
tools, namely Jenkins. To ensure that the output is
running correctly, a web or mobile application
developer is needed to run the application via
Gitlab. The requirements for the system designed
are a PC of at least 8GB RAM, 2 (two) Google Cloud
Instances, and a Termius SSH agent.

User Design
The designed system can be used by web and

mobile application developers by committing to
each repo, while the DevOps Engineer has full access
to the resources in the Jenkins CI system.

Source: (Research Result, 2024)

Figure 4. Use Case Diagram

Figure 4 is an activity diagram for the manual

deployment process, where the process is quite
time-consuming because the manual deployment
process involves the infrastructure team and
software engineers to carry out the deployment,
then for the staging stage the QA team must install
dependencies one by one for the application to run.
In addition, the rollback process must be done
manually by replacing files that have been backed
up before deployment. The activity diagam for
manual deployment can be seen on Figure 5.

Source: (Research Result, 2024)

Figure 5. Manual Deployment Activity Diagram

Figure 6 is the activity diagram for

automated deployment. When the CI process has
been implemented, it can be seen that the
differences cut a lot of time because some processes
are eliminated due to automation, the build and
deploy processes are no longer done manually but
Jenkins workers will automatically detect every
commit made by the company's developers, in
addition to the process rollbacks can also be done
automatically with Gitlab, which is a version control
platform that provides a history of every commit
made by developers.

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

5

Source: (Research Result, 2024)
Figure 6. Automation Deployment Activity Diagram

Construction

The first thing that must be done for the CI
implementation process using Jenkins is to create
several servers or instances as needed, at least to
run Jenkins it takes 2 instances where the second
instance is a slave or worker so that the master
server does not have such a heavy burden.
Illustration can be seen on Figure 7 below.

Source: (Research Result, 2024)

Figure 7. Jenkins Structure

The specifications used are instances with

the instance-master tag, located in Jakarta zone A,
using the CentOS 8vCPU 32GB memory operating
system.

Figure 8 is instance details configuration.
After provisioning the instance, Docker must be
installed on each server because Jenkins is run
through Docker to make it easier and doesn't take a
long time. Docker will act as an executor or
containerization tool on a server, the image of an
application running with Docker can be retrieved
via the Docker repository site or Docker hub.

Jenkins installation can be done after the
Docker engine installation process is complete, the
Jenkins version used is the latest release version
which can be found on the Docker hub. Jenkins
installation will be exposed to port 8686 and
forwarded to 8080, so it will be accessible in a web
browser with the format Error! Hyperlink reference
not valid.>. To ensure that Jenkins is running,
Docker provides logs from running containers in the
command 'Docker logs <container-name> format.

After that, configuration of Jenkins, Jenkins
Slave, Gitlab, integration of Jenkins into Gitlab
repository, integration of Gitlab repository into
Jenkins, installation of Jenkins plugins, creation of

Dockerfile, creation of Jenkinsfile, and commit to
staging branch were carried out.

Source: (Research Result, 2024)

Figure 8. Instance Details Configuration

User Design

After Jenkins is integrated by DevOps
Engineer and it is feasible to experiment on the
system, then a test will be carried out on the system
by integrating one of the active repositories, then
Jenkins will detect every branch in the repository.

Referring to an interview conducted with a
DevOps Engineer from PT. Emporia Digital Raya
named Alvian Rizaldi said that the CI system was
proven to speed up the deployment and build
process, before using CI the deployment process
took approximately 30 minutes, Alvian said that the
reason for the long deployment and build time was
the result of manually changing the update file and
one by one, while when using CI, every build and
deploy process can be done automatically with the
system just by creating a Jenkins script.

After conducting an interview with one of the
mobile app and website developers from PT.
Emporia Digital Raya, namely Jontathan Atmadja,
said that the system from Jenkins CI has proven to

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

6

simplify the design process of an application, both
web -based and mobile, one of the frameworks that
are often used is Node.JS and also React Native, "
Jenkins CI simplifies the development process of an
application because The build will be done
automatically by Jenkins workers at every commit
made by the developers, so bugs will be
automatically detected before the application is
deployed to an environment, whether it's the
Development stage or staging for the UAT stage ".

Jenkins CI is proven to increase efficiency in
the build and deployment process, according to
Alvian Rizaldi as DevOps Engineer at PT. Emporia
Digital Raya explained that the system from Jenkins
CI automates every build and deployment process
so that it doesn't take a lot of personnel to upgrade
an application because the application can go up to
the internet automatically without any human
intervention in the middle of the process, a DevOps
Engineer only needs to create a script which is
important for Jenkins workers to run according to
the script that was created earlier.

Discussion

Table 1 shows the results before the
implementation of the Jenkins System and after the
implementation of the CI (Continuous Integration)
system from Jenkins. Before the CI system, the
application build process was carried out manually,
while after the CI system, the build process was
carried out automatically by Jenkins Workers. Then
it can be concluded that the deployment process
before the CI system was carried out manually by
the infrastructure team and after the Jenkins CI
system, the process was carried out automatically
and faster.

Figure 9 is a display of the Jenkins UI for
performing maintenance in the form of updates to
the Jenkins system, the maintenance update process
can be done manually or automatically, the
automatic method can be done by going directly to

the Manage Jenkins options from the UI but the
manual update process can be done by executing
into the container and downloading the latest
application from Jenkins from Docker Hub.

Table 1. Before and After Jenkins CI
Implementation

No Scenario Before After
1 Application

build
process

Done manually
only when the
developer wants
to test the
application that
has been
developed

Performed every
time the code is
pushed or
uploaded to the
repository

2 Deployment
process

Done manually
by the
infrastructure
team when
receiving a
request for an
application ready
to be deployed to
the server, the
process takes up
to 30 minutes

Occurring
automatically, the
deployment
process is carried
out by the Jenkins
worker and takes
only half the time
of the manual
deployment
process, which is
15 minutes.

Source: (Research Result, 2024)

CONCLUSION

The conclusion of this study is that the build
and deployment process is no longer done manually
with human intervention, but all processes are
automated with the Jenkins CI system that has been
built using the Rapid Application Development
approach and Jenkins workers, indirectly the risk of
errors in the build and deployment process can be
reduced because all processes can be tracked
through Gitversion control on Gitlab. Jenkins CI has
been proven to reduce human resources and time in
the build and deployment process because the
process has been automated, the infrastructure
team no longer bothers to deploy manually and can-
do research on other things rather than doing
monotonous and time-consuming activities.

Source: (Research Result, 2024)
Figure 9. Jenkins UI

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

7

ACKNOWLEDGMENT

This research will not be successful without
the help of various internal and external parties.
Acknowledgments are addressed to Universitas
Multimedia Nusantara and to all information
system lecturers who have participated in this
research.

REFERENCE

Akdur, G., Aydin, M. N., & Akdur, G. (2024).

Understanding Virtual Onboarding Dynamics
and Developer Turnover Intention in the Era
of Pandemic. Journal of Systems and Software,
216, 112136.
https://doi.org/10.1016/j.jss.2024.112136

Bai, S., Liu, L., Meng, C., & Liu, H. (2023). Automating
discussion structure re-organization for
GitHub issues. Expert Systems with
Applications, 225, 120024.
https://doi.org/10.1016/j.eswa.2023.12002
4

Baresi, L., Quattrocchi, G., & Rasi, N. (2024). A
qualitative and quantitative analysis of
container engines. Journal of Systems and
Software, 210, 111965.
https://doi.org/10.1016/j.jss.2024.111965

Breyter, M. (2022). Agile Estimation and Planning.
Agile Product and Project Management, 161–
185. https://doi.org/10.1007/978-1-4842-
8200-7_7

Cuadra, J., Hurtado, E., Sarachaga, I., Estévez, E.,
Casquero, O., & Armentia, A. (2024). Enabling
DevOps for Fog Applications in the Smart
Manufacturing domain: A Model-Driven
based Platform Engineering approach.
Future Generation Computer Systems, 157,
360–375.
https://doi.org/10.1016/j.future.2024.03.0
53

Devopedia. (2024). Continuous Integration.
Devopedia. 2022. “Continuous Integration.”
Version 6, February 15. Accessed 2024-06-
25. Https://Devopedia.Org/Continuous-
Integration.
https://devopedia.org/continuous-
integration

Elazhary, O., Werner, C., Li, S., Lowlind, D., Ernst, N.
A., & Storey, M.-A. (2021). Uncovering the
benefits and challenges of continuous
integration practices. IEEE Transactions on
Software Engineering, 48(7), 2570–2583.
https://doi.org/10.1109/tse.2021.3064953

Giallorenzo, S., Mauro, J., Poulsen, M. G., & Siroky, F.
(2021). Virtualization Costs: Benchmarking
Containers and Virtual Machines Against
Bare-Metal. SN Computer Science, 2(5).

https://doi.org/10.1007/S42979-021-
00781-8

Jiang, Z., Zhong, H., & Meng, N. (2021). Investigating
and recommending co-changed entities for
JavaScript programs. Journal of Systems and
Software, 180, 111027.
https://doi.org/10.1016/j.jss.2021.111027

Koskela, P. (2021). Automated Security Testing
Utilizing Continuous Integration and
Continuous Delivery Technologies.
https://www.theseus.fi/bitstream/handle/
10024/502952/Opinnaytetyto_Koskela_Pyr
y.pdf

Kumar, B., Verma, A., & Verma, P. (2024). Optimizing
resource allocation using proactive scaling
with predictive models and custom
resources. Computers and Electrical
Engineering, 118, 109419.
https://doi.org/10.1016/j.compeleceng.202
4.109419

Light, J., Pfeiffer, P., & Bennett, B. (2021). An
Evaluation of Continuous Integration and
Delivery Frameworks for Classroom Use.
Proceedings of the 2021 ACM Southeast
Conference, 204–208.
https://doi.org/10.1145/3409334.3452085

Moradvandi, A., Abraham, E., Goudjil, A., De
Schutter, B., & Lindeboom, R. E. F. (2024). An
identification algorithm of switched Box-
Jenkins systems in the presence of bounded
disturbances: An approach for
approximating complex biological
wastewater treatment models. Journal of
Water Process Engineering, 60.
https://doi.org/10.1016/j.jwpe.2024.10520
2

Noor, S., Koehler, B., Steenson, A., Caballero, J.,
Ellenberger, D., & Heilman, L. (2020). IoTDoc:
A Docker-Container Based Architecture of
IoT-Enabled Cloud System. Big Data, Cloud
Computing, and Data Science Engineering,
51–68. https://doi.org/10.1007/978-3-030-
24405-7_4

Patil, K., Kapadnis, S., Waghmare, R., & Thakare, H.,
& Raut, R. (2022). Implementation of a
Continuous Integration and Deployment
Pipeline for Containerized Applications in
Amazon Web Services Using Jenkins.
Interantional Journal of Scientific Research in
Engineering and Management, 06(11).
https://doi.org/10.55041/ijsrem16948

Permatasari, E., Fatimah, S., Safitri, N., & Wijaya, R.
(2024). Problems of Peer-to-Peer Lending
(P2PL) in Indonesia from an Islamic Law
Perspective. Jurnal Ilmiah Mizani: Wacana
Hukum, Ekonomi Dan Keagamaan, 11(1),
115.
https://doi.org/10.29300/mzn.v11i1.3440

https://doi.org/10.1016/j.jss.2024.112136
https://doi.org/10.1145/3409334.3452085
https://doi.org/10.1007/978-3-030-24405-7_4
https://doi.org/10.1007/978-3-030-24405-7_4
https://doi.org/10.55041/ijsrem16948
https://doi.org/10.29300/mzn.v11i1.3440

Vol. 21, No. 1 March 2025 | DOI: 10.33480/pilar.v21i1.6062

8

Poulton, N. (2023). Docker Deep Dive: Zero to Docker
in a single book.
https://books.google.com/books?hl=en&lr=
&id=tJnMEAAAQBAJ&oi=fnd&pg=PP1&dq=
%5B3%5D%09Poulton,+N.,+Docker+deep+
dive:+Zero+to+docker+in+a+single+book+.+
London:+Leanpub+publishing,+2018.&ots=
nzPrXI0mPu&sig=XLJ7l_J6W-
z2BTl2yh_rroel_BY

Pratama, M. R., & Sulistiyo Kusumo, D. (2021).
Implementation of Continuous Integration
and Continuous Delivery (CI/CD) on
Automatic Performance Testing. 2021 9th
International Conference on Information and
Communication Technology (ICoICT), 230–
235.
https://doi.org/10.1109/icoict52021.2021.
9527496

Prigent, C., Costan, A., Antoniu, G., & Cudennec, L.
(2024). Enabling federated learning across
the computing continuum: Systems,
challenges and future directions. Future
Generation Computer Systems, 160, 767–783.
https://doi.org/10.1016/j.future.2024.06.0
43

Rahmanti, F. Z., Permata, O. A., Amiroh, K., Daely, P.
T., Ittaqullah, A., & Saputro, D. B. (2022). An
Improvement Using Global Positioning
System (GPS) and Cloud Firestore for
Integration of Information System in
Surabaya Public Transportation. EDUTEC :
Journal of Education and Technology, 5(4),
894–909.
https://doi.org/10.29062/edu.v5i4.294

Rajyashree, R., Mathi, S., Saravanan, G., & Sakthivel,
M. (2024). An Empirical Investigation of

Docker Sockets for Privilege Escalation and
Defensive Strategies. Procedia Computer
Science, 233, 660–669.
https://doi.org/10.1016/j.procs.2024.03.25
5

Robinson, A. C., Drake, R. R., Swan, M. S., Bennett, N.
L., Smith, T. M., Hooper, R., & Laity, G. R.
(2021). A software environment for effective
reliability management for pulsed power
design. Reliability Engineering and System
Safety, 211, 107580.
https://doi.org/10.1016/j.ress.2021.10758
0

Wahyu, A. P., & Guna Noviantama, I. (2021).
IMPLEMENTASI CONTIONOUS
INTEGRATION DAN CONTINOUS
DEPLOYMENT PADA APLIKASI LEARNING
MANAGEMENT SYSTEM DI PT. MILLENNIA
SOLUSI INFORMATIKA. Jurnal Ilmiah
Teknologi Infomasi Terapan, 8(1), 183–186.
https://doi.org/10.33197/jitter.vol8.iss1.20
21.744

Yang, H., Shao, R., Cheng, Y., Chen, Y., Zhou, R., Liu, G.,
Xie, G., & Zhou, Q. (2024). REDB: Real-time
enhancement of Docker containers via
memory bank partitioning in multicore
systems. Journal of Systems Architecture, 151,
103135.
https://doi.org/10.1016/j.sysarc.2024.1031
35

Zhao, X., Clear, T., & Lal, R. (2024). Identifying the
primary dimensions of DevSecOps: A multi-
vocal literature review. Journal of Systems
and Software, 214, 112063.
https://doi.org/10.1016/j.jss.2024.112063

https://doi.org/10.1109/icoict52021.2021.9527496
https://doi.org/10.1109/icoict52021.2021.9527496
https://doi.org/10.29062/edu.v5i4.294
https://doi.org/10.33197/jitter.vol8.iss1.2021.744
https://doi.org/10.33197/jitter.vol8.iss1.2021.744

